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My First Research Experience

Jan Kalicki
Born: January 28, 1922, Warsaw, Poland
Died: November 25, 1953, Berkeley, California
MA: 1945, Underground University of Warsaw
Ph.D.: 1948, University of London
1951, Visiting Assistant Professor of Mathematics
1953, Assistant Professor of Philosophy, UC Berkeley

Definition. An equational theory is equationally complete if,
and only if, it is non-trivial, but the addition of
any non-provable equation renders it trivial.

Jan Kalicki and Dana Scott. “Equational completeness of abstract
algebras.” Indagationes Mathematicae, vol. 17 (1955), pp. 650-659.
This joint work was done in 1952,

Jan Kalicki. “The number of equationally complete classes of equations.
Indagationes Mathematicae, vol. 17 (1955), pp. 660-662.

Dana Scott. “Equationally complete extensions of finite algebras.” Indagationes Mathematicae, vol. 18 (1956),
pp. 35-38

AIfrgg Igrski. “Equationally complete rings and relation algebras.” Indagationes Mathematicae, vol. 18 (1956),
pp. 39-46.
R

Jan Zygmunt. "The logical investigations of Jan Kalicki." History and Philosophy of Logic, vol. 2 (1981), pp. 41-53.

Jan Zygmunt. "Alfred Tarski: Auxiliary Notes on His Legacy." In: Angel Garrido and Urszula Wybraniec-Skardowska, eds.
The Lvov-Warsaw School. Past and Present. Springer International Publishing:, 2018, pp. 425-455.



Knaster-Tarski Fixed Point Theorem

Alfred (Teitelbaum) Tarski Bronistaw Knaster
Born: January 14, 1901, Warsaw Born: 22 May 1893, Warsaw
Died: October 26, 1983, Berkeley, California Died: 3 November 1980, Wroctaw
Ph.D.: 1924, University of Warsaw Ph.D.: 1923, University of Warsaw

B. Knaster. "Ur theoreme sur les fonctions d'ensembles." Ann. Soc. Polon. Math., vol. 6 (1928),
pp. 133-134. Their joint work was done in 1927.

A. Tarski. “A lattice-theoretical fixpoint theorem and its applications.” Pacific J. Math., vol. 5
(1955), pp. 285 - 309. Most of the results contained in this paper were obtained in 1939.

Anne C. Davis. “A characterization of complete lattices.” Pacific J. Math., vol. 5 (1955),
pp. 311-319. This result was found in 1950.


https://en.wikipedia.org/wiki/Berkeley,_California
https://en.wikipedia.org/wiki/Wroc%C5%82aw
https://en.wikipedia.org/wiki/University_of_Warsaw
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Tarski's Generalized Lattice-Theoretric
Fixed-Point Theorem

Theorem. In a complete lattice the common fixed points of a
commutative family of monotone functions form a complete lattice.

B. Banaschewski and G.C.L. Brummer. “Thoughts on the Cantor-Bernstein Theorem.”
Quaestiones Mathematicae, vol. 9 (1986), pp. 1-27.

Outline. The usual proofs of the well-known set-theoretical theorem "Given one-one maps
f:A=>Bandg:B=A, there exists a one-one onto map h : A-> B" actually produce a map
h : A= B contained in the relationfU g-1.

Considering Tarski's Fixed-point Theorem as the implicit basic ingredient of such proofs, the
authors examine several classical proofs starting with Dedekind (1887), and illuminate their
common feature by means of the categorical notion of a natural fixed point. The authors
consider a categorical form of the theorem in a variety of contexts, obtaining some examples of
categories where the Cantor-Bernstein Theorem holds and others where it fails.

Among other results it is proved for a topos E, that the Cantor-Bernstein Theorem holds if E is

Boolean, and conversely if E has a natural number object; moreover, The Axiom of Choice in E
implies a dual version of Cantor-Bernstein Theorem, and conversely if E has splitting supports

and a natural number object.



The powerset of the integers, P(N) = {X | XCN }, is not only a
complete lattice, butit is also a To-topological space
with the sets of the form { X C N | EC X } as a neighborhood base,

where E is taken as a finite set.

Exercise: What are the open subsets of P(N) in this topology?
Note: The continuous functions F: P(N) — P(N) for this topology
are those where, for all X € P(N) and all finite E € P(N), we have:

E C F(X) iffthere isafinite Dc X withEC F(D).
Such continuous functions are of course monotone for set inclusion.

Exercise: The least fixed point of a continuous F: P(N) — P(N) is

Y(F)= G F(@).

n=0



Enumeration Operators

Definitions. (1) Pairing: (n,m) = 2n(2m+1)-1.
(2) Sequence numbers: {) = 0 and
(no,N1,e¢0+,0kx-1,0k) = ( {(No,N1,+..,0k-1) , Nx)+1.

(3) Sets: E(0) =0 and E((n,m)+1)= E(n)U{m}.

(4) Kleene star: x* ={n|E(n) C X }, forsets X C N,

Note: X* consists of all the sequence numbers representing
all the finite subsets of the set X.

Definition. An enumeration operator F:P(N) — P(N)
is a mapping determined by a given subset F ¢ N by the formula:

F(X) = {m|3IneX*.(n,m)eF}.
The operator is computable iff this set is recursively enumerable.

Note: The enumeration operators on P (N )are exactly
the continuous functions.

Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967, xix + 482 pp.



A A-Calculus Model

Application: F(X) = {m | dn € X*.(n,m)eF }

Abstraction: Ax.[..X..]={(n,m)|me[..E(n)..]},
where X — [..X..] IS continuous.

e Application is a continuous function of fwo variables.

e If F(X) is continuous, then AX.F(X) is the largest set F
where for all sets T, we have F(T)= F(T), but note that
generally we only have F C AX.F(X).

e |f the function F(X,Y) is continuous, then the abstraction term

AX.F(X,Y) is continuous in the other variable.

® The computable enumeration operators are closed under

application and abstraction.



Church's A-Calculus

Definition. The A-calculus — as a formal equational theory —

has rules for the explicit definition of functions
via these well known equational axioms:

Q-conversion

AX.[...Xee] = AY.[...Y.o]
B-conversion

(AX.TeeeXe e 1)(T) = [eeoTeu]
nN-conversion

AX.F(X) = F

Note: The third axiom can be dropped in favor of a theory employing
properties of a partial ordering, as shown by our model.

Note: Church defined numerals in the pure A-calculus, and Kleene
originally developed partial recursive functions on this basis.



The Basic Theorems.

* All pure A -terms define computable operators in the model.

* If ®(X) is continuous and if welet V=AX.® (X (X)), then the
set P=V (V) isin fact the least fixed point of ®.

* So, the least fixed-point operatorisY = AF. (AX.F(X(X)) (AX.F(X(X)))).

* The least fixed point of a computable operator is computable.

The Recursion Theorem. These computable operators:
Succ(X)={n+l|ne X},
Pred (X)={n|n+1 € X}, and
Test(z)(X)(Y)= {neX|0e€Z }u{meY|ak.k+1 €2},

together with A -calculus, suffice for defining all RE sets.

Dana Scott. “Data types as lattices.” SIAM Journal on Computing, vol. 5 (1976), pp. 522-587 .



The Category of Closure Operators

Definition. AsetC = AX.C (X) represents a closure operator iff
forall X C Nwehave X C C(X) =C(C(X)).

Note. The set of fixed points of a closure operator form a

lattice and uniquely determine the operator. They give examples
(up to isomorphism) of all countably based algebraic lattices.

Theorem. We have function spaces and thus
a category for closure operators via these definitions:

F: CoDIff F = DoFoC
and
(C-> D)=AF.DoFoC,whereFoG=AX. F(G(X)).



Products of Closures

Definition. Pairing functions for sets in P(N)

can be defined by these enumeration operators:
Pair(X) (Y)={2n|ne X} U {2m+1 |me Y }
Fst(Z)={n|2neZ} and Snd(Z)={m|2m+1€e Z }.

Theorem. In the category of closure operators, products of closures can be
defined as: (C x D) = AZ.Pair(C(Fst(z)))(D(Snd(Z))).

Theorem. The closure operators as a cartesian closed category is
equivalent to the category of countably based algebraic lattices.

Exercise: Show thatl= (I x I). Are there other such closures?

Note. We may now regard P(N) = P(N)x P(N), and for £ < P(N) we write
X Ay iff Pair(X)(Y) e A.
Note. Every closure operator C determines an equivalence relation over P(N):

X [C] v iff C(X) = C(Y)



A Universal Closure Operator

Theorem. Every enumeration operator F generates a closure
operator C with range { XCN | F(X)CX },

where we can define

C(X) =Y(AY.(X U F(Y))).

Hint. The set {XCN | F(X) <X } is closed under arbitrary intersections,
and we want C (X) to be defined as the least Y in that set with XCY.

Thus we can make the theorem into an operator by the definition:

Clos = AF.AX.Y(AY. (X U F(Y))).

Theorem. Clos(Clos) = Clos.



Using Fixed Points of Closures

Definition. In the category of closure operators, define:
D = Y(AD.Clos(D=1)).

Theorem. Because D =D - land1=1x1, we have
D=DxD and D=D - D,

where we invoke the idea of isomorphism
in the cartesian closed category of closure operators.

Conclusion: The range of D can be made into

a new model of all the three A-calculus axioms
along with a surjective pairing.



Are There More General Types?

Definition. The types over P(N) are the (partial) equivalence relations (PERs):

ACP(N) and where, forall x,Y,z € P(N), we have
X A Y implies Y £ X, and
XAYand YA z imply X £ zZ.

Additionally we often write x: A for x A X.
And let T be the class of all such types, which forms a complete lattice.

Note. There is much more opportunity now for forming fixed points!

Definition. The exponentiation of types £, € P(N) is defined by:
F(A - B)G iff VX, Y. X A Y implies F(X) B G(Y).

Note. F: A - B implies VX. X: A implies F(X):h.

Note. More information on PERs and categorical fixed points can be found in:

W.P. Stekelenburg. "A note on “Extensional PERs”." Journal of Pure and Applied Algebra,
vol. 215 (2011), pp. 253-256.



The Category of Types

Definition. The product of types A, € P(N) is defined as:
X(AxRB)Y iff Fst(X)A Fst(Y)and Snd(X) B Snd(Y).

Note. x: (A xRB) iff Fst(X):4£ and Snd(X):B.

Theorem. The types give us a cartesian closed category
extending the category of closure operations.

Note: Every X € P(N) can be considered as a topological subspace of the the

powerset. The type corresponding to X is the equivalence relation:
X[X1Y ifx=Ye X,

Theorem. Every countably based To-space is
homeomorphic to a subspace of P(N).

Note: This theorem is originally due to:

P. Alexandroff. “Zur Theorie der topologischen Raume.” C.R. (Doklady) Acad. Sci. URSS,
vol. 11 (1936), pp, 55-58.



Polymorphic Types
Note: As the class T of all types is a complete lattice, because it is closed
under arbitrary intersections, this allows for many typings:
AX.AY.Pair(X)(Y): N (A->(B-(AxRB)Y)y)
A B
Definition. The Scott numerals (1963) in A -calculus are:
0= AX.AF.X, 1= AX.AF.F(0), 2= AX.AF.F(1), etc., and

succ=AY.AX.AF.F(Y), and
pred=AY.Y(0)(AX.X).

Note: Since a monotone ® : T— T has a least fixed point, we can define:

Peott = [ (A= ((Leatt - A)y-A)y),

A
giving types to these numerals.

Martin Abadi, Luca Cardelli, & Gordon Plotkin. "Types for the Scott numerals." Unpublished note (1993).



Some Conclusions

e Enumeration operators on P(N) model A -calculus and have a simple topology.

® Hence, the category of types (PERs) over P(N) inherits much topology.

e A-calculus over P(N) together with the arithmetic combinators
provides a basic notion of computability.
e Hence, the category of types over P(N) inherits aspects of computability.

e Polymorphism for types (PERs) then gives an abstract foundation
for defining inductive and co-inductive data structures.

® Also Propositions-as-types can enforce using constructive logic.

e This modeling can in this way function as a laboratory for
exploring many ideas in a very concrete fashion.




¢ Jonathan Sterling found that browsing the works of Marcelo Fiore and his collaborators, especially Gordon

Plotkin, from the late 1990s made him realize how rudimentary his knowledge of later domain theory was. He
especially recommends Fiore's thesis:

Marcelo P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Cambridge University Press, 1996,
254 pp.

e The papers by Birkedal and collaborators on guarded domain theory are the touchstone for a lot of very
interesting generalizations of metric approaches to domain theory:

Lars Birkedal, Kristian Stevring, and Jacob Thamsborg. "The category-theoretic solution of recursive
metric-space equations." Theoretical Computer Science, vol. 411 (2010), pp. 4102-4122.

Kristian Stovring, Jan Schwinghammer, Rasmus Ejlers Mogelberg, and Lars Birkedal. "First steps in
synthetic guarded domain theory: step-indexing in the topos of trees." Logical Methods in Computer Science,
vol. 8 (2012), pp. 1-45.

¢ And a recent extension of the guarded domain theory program in his paper with Palombi generalizes many of
earlier results to relative topos theory (e.g. the theory of bounded geometric morphisms):

Daniele Palombi and Jonathan Sterling. "Classifying topoi in synthetic guarded domain theory: The Universal
Property of Multi-clock Guarded Recursion.” In: Proceedings of MFPS 2022, Electronic Notes in Theoretical
Informatics And Computer Science, vol. 1 (2023), pp. 12-1 - 12-14.

e For other references, see Sterling’s bibliography of guarded domain theory at:

https://www.jonmsterling.com/gdt-bibliography.html





