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Dependent types are ubiquitous in mathematics, pure and applied. When we say ”let 𝑣 be
a vector of length 𝑛,” we make the collection of values to which 𝑣 may belong dependent

upon the value of 𝑛. Such dependency of types-of-things on values-of-things is fundamental to
our ability to express complex mathematical ideas and build up sophisticated abstractions. By
taking this essential idea to heart, dependent type theory provides all of the following:

• An elegant syntax for expressing mathematical ideas.

• Computational interpretations that allow automation and formal verification of mathe-
matical proofs.

• A robust categorical semantics that allow type theoretic syntax to be used in order to
work in the internal languages of well-structured categories, and even more exotic struc-
tures, such as∞-categories.

Of these, it is the categorical semantics of dependent type theory that shall be the focus of
this blog post. Specifically, although these categorical semantics are evidently quite powerful, they
are also notoriously subtle and difficult to get right, owing mainly to the issue of strictness. As we
shall see, one often needs to strictify various identities that typically hold only up to isomorphism
in arbitrary categories, but that must hold strictly in order for such a category to soundly model
the type-theoretic syntax.

Perhaps surprisingly – or unsurprisingly to regular readers of this blog – a key device in re-
solving this difficulty turns out to be the categorical machinery of polynomial functors. Awodey
– and later Newstead – have shown that there is a strong connection between dependent type
theory and polynomial functors, via their concept of natural models, which cleanly solves the
strictification problem for the categorical semantics of dependent type theory. In particular, the
solution to this problem offered by Awodey and Newstead makes use of the type-theoretic con-
cept of a universe. Such universes turn out to naturally be regarded as polynomial functors on a
suitably-chosen category of presheaves.

In this post, I will summarize the work I conducted over the summer at Topos, together with
David Spivak, wherein we have aimed to extend, refine, and generalize this treatment of models
of type theory by studying properties of such polynomial universes. We shall see how the language
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of polynomial functors can be used to elegantly capture all of the usual constructs of dependent
type theory, and moreover, how interpreting this language in homotopy type theory reveals striking
properties of these structures.

1 Recap of Dependent Type Theory & Natural Models
In Martin-Löf Type Theory (MLTT) we have the primitive judgments:

Γ Ctx Γ ⊢ A Type Γ ⊢ 𝑎 : A Γ ⊢ 𝑎0 ≡ 𝑎1 : A

which are then subject to the following rules:

ϵ Ctx

Γ Ctx Γ ⊢ A Type

Γ, 𝑥 : A Ctx

Γ ⊢ 1Type Γ ⊢ () : 1
Γ ⊢ 𝑢 : 1

Γ ⊢ 𝑢 = () : 1

Γ ⊢ A Type Γ, 𝑥 : A ⊢ BType

Γ ⊢ Σ𝑥 : A.BType

Γ ⊢ 𝑎 : A Γ ⊢ 𝑏 : B[𝑎/𝑥]
Γ ⊢ (𝑎, 𝑏) : Σ𝑥 : A.B

Γ ⊢ 𝑝 : Σ𝑥 : A.B
Γ ⊢ π1( 𝑝) : A

Γ ⊢ 𝑝 : Σ𝑥 : A.B
Γ ⊢ π2( 𝑝) : B[π1( 𝑝)/𝑥]

Γ ⊢ 𝑎 : A Γ ⊢ 𝑏 : B[𝑎/𝑥]
Γ ⊢ π1(𝑎, 𝑏) ≡ 𝑎 : A

Γ ⊢ 𝑎 : A Γ ⊢ 𝑏 : B[𝑎/𝑥]
Γ ⊢ π2( 𝑝) ≡ 𝑏 : B[𝑎/𝑥]

Γ ⊢ 𝑝 ∈ Σ𝑥 : A.B
Γ ⊢ 𝑝 ≡ (π1( 𝑝), π2( 𝑝)) : Σ𝑥 : A.B

Γ ⊢ A Type Γ, 𝑥 : A ⊢ BType

Γ ⊢ Π𝑥 : A.BType

Γ, 𝑥 : A ⊢ 𝑓 : B
Γ ⊢ λ𝑥.𝑓 : Π𝑥 : A.B

Γ ⊢ 𝑓 : Π𝑥 : A.B Γ ⊢ 𝑎 : A
Γ ⊢ 𝑓 (𝑎) : B[𝑎/𝑥]

Γ ⊢ 𝑓 : Π𝑥 : A.B γ ⊢ 𝑎 : A
Γ ⊢ (λ𝑥.𝑓 ) (𝑎) ≡ 𝑓 [𝑎/𝑥] : B[𝑎/𝑥]

Γ ⊢ 𝑓 ∈ Π𝑥 : A.B
Γ ⊢ 𝑓 ≡ λ𝑥.𝑓 (𝑥) : Π𝑥 : A.B
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where the operation of substitution is defined as follows:

1[𝑎/𝑥] = 1
() [𝑎/𝑥] = ()

(Σ𝑦 : A.B) [𝑎/𝑥] = Σ𝑦 : A[𝑎/𝑥] .B[𝑎/𝑥]
(𝑏, 𝑐) [𝑎/𝑥] = (𝑏[𝑎/𝑥], 𝑐 [𝑎/𝑥])
π1( 𝑝) [𝑎/𝑥] = π1( 𝑝[𝑎/𝑥])
π2( 𝑝) [𝑎/𝑥] = π2( 𝑝[𝑎/𝑥])

(Π𝑦 : A.B) [𝑎/𝑥] = Π𝑦 : A[𝑎/𝑥] .B[𝑎/𝑥]
(λ𝑦.𝑓 ) [𝑎/𝑥] = λ𝑦.𝑓 [𝑎/𝑥]
𝑓 (𝑏) [𝑎/𝑥] = 𝑓 [𝑎/𝑥] (𝑏[𝑎/𝑥])

Although contexts may seem rather trivial from a syntactic perspective, they are key to un-
derstanding the categorical semantics of dependent type theory. In particular, when modeling a
dependent type theory as a category, it is the contextswhich form the objects of this category, with
morphisms between contexts being substitutions of terms in the domain context for the variables
of the codomain context. A type A dependent upon variables in a context Γ is then interpreted
as a morphism (i.e. substitution) Γ, 𝑥 : A → Γ, called a display map, whose domain represents
the context Γ extended with a variable of typeA. We then interpret a term 𝑎 of typeA in context
Γ as a section of the display map representing A, i.e.

Γ Γ, 𝑥 : A

Γ

𝑎

A

Hence for each context Γ, there is a category Ty[Γ], which is the full subcategory of the slice
category C/Γ consisting of all display maps, wherein objects correspond to types in context Γ,
and morphisms correspond to terms.

In typical categorical semantics, given a substitution 𝑓 : Γ → Δ, and a display map A :
Δ, 𝑥 : A→ Δ, we then interpret the action of applying the substitution 𝑓 to A as a pullback:

Γ, 𝑥 : A[ 𝑓 ] Δ, 𝑥 : A

Γ Δ

A[ 𝑓 ]
⌟

A

𝑓

In particular, then, any display mapA : Γ, 𝑥 : A→ Γ induces a functorTy[Γ] → Ty[Γ, 𝑥 : A]
by substitution along A, which corresponds to weakening a context by adding a variable of type
A. The left and right adjoints to the weakening functor (if they exist) then correspond to Σ and
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Π types, respectively.
Ty[Γ, 𝑥 : A]

Ty[Γ]

ΣA ΠAA∗⊣ ⊣

In order for the operation of forming Σ and Π types to be stable under substitution (i.e. pull-
back), these must additionally satisfy the Beck-Chevalley condition:

Γ, 𝑥 : A[ 𝑓 ] Δ, 𝑥 : A

Γ Δ

𝑔

A[ 𝑓 ]
⌟

A
𝑓

=⇒ (ΣA(B)) [ 𝑓 ]
≃←− ΣA[ 𝑓 ] (B[ 𝑔])

So far, we have told a pleasingly straightforward story of how to interpret the syntax of dependent
type theory categorically. Unfortunately, this story is a fantasy, and the interpretation of type-
theoretic syntax into categorical semantics sketched above is unsound, as it stands. The problem
in essentials is that, in the syntax of type theory, substitution is strictly associative, and strictly
satisfies the Beck-Chevalley condition. However, in the above categorical semantics, substitution
by pullback, which is in general only associative up to isomorphism, and likewise for the Beck-
Chevalley condition. It is precisely this problem which natural models exist to solve.

As mentioned previously, the key insight in formulating the notion of a natural model is that
the problem of strictness in the semantics of type theory has, in a sense, already been solved by
the notion of type universes. A universe is a typeU whose elements can themselves be regarded
as types, as follows:

Γ ⊢ U Type

Γ ⊢ A : U
Γ ⊢ U•(A) Type

In categorical semantics, we interpret such a universe as a display map 𝑢 : U• → U. A type in
context Γ may then be instead represented as a morphism A : Γ → U, whereby we obtain the
corresponding display map for A as the pullback:

Γ, 𝑥 : A U•

Γ U

⌟
𝑢

A

Conversely, we say that a display map Γ, 𝑥 : A → Γ is classified byU if there are morphisms
forming a pullback square as above.

Hence given a universe of types U, rather than representing substitution as pullback, we
can simply represent the action of applying a substitution 𝑓 : Γ → Δ to a family of types
A : Δ→ U as the precomposition A ◦ 𝑓 : Γ → U, which is automatically strictly associative,
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and strictly satisfies the Beck-Chevalley condition for Σ types/Π types if U is suitably closed
under Σ types / Π types, respectively.

To interpret the syntax of dependent type theory in a category C of contexts and substitu-
tions, it therefore suffices to embed C into a category whose type-theoretic internal language pos-
sesses such a universe whose types correspond to those of C. And what better embedding of a
categoryC into a larger category with a well-understood type-theoretic language than the Yoneda
embedding y : C → SetC𝑜 𝑝?

Hence we can work in the category of presheaves SetC𝑜 𝑝 , whose type-theoretic internal lan-
guage is already well-understood, to study that of C. The universeU is then given by:

1. an object of SetC𝑜 𝑝 , i.e. a contravariant functorial assignment, to each context Γ, of a set
U(Γ) of types in context Γ, together with

2. an object 𝑢 ∈ SetC𝑜 𝑝/U, i.e. a natural transformation 𝑢 : U• → U, where for each
context Γ,U•(Γ) is the set of terms in context Γ, and 𝑢Γ : U•(Γ) → U(Γ) assigns each
term to its type.

The condition that all types inU “belong to C” can then be expressed by requiring 𝑢 to be
representable in the following sense: for any representable γ ∈ SetC𝑜 𝑝 with α : γ → U, the
pullback

γ.α U•

γ U

⌟
𝑢

α

is representable. In particular, this says that, given a context Γ and a type A ∈ U[Γ], there is
a context Γ,A together with a substitution Γ,A → A that corresponds to the above pullback
under the Yoneda embedding. Type-theoretically, this corresponds to the operation of context
extension.

The question, then, is how to express that C has Σ types, Π types, etc., in terms of the struc-
ture of 𝑢. Toward answering this question, we may note that 𝑢 gives rise to an endofunctor
(indeed, a polynomial endofunctor) P𝑢 : SetC

𝑜 𝑝 → SetC𝑜 𝑝 , defined by

X ↦→
∑︁
A:U

XU• [A]

(This notation will be made precise momentarily). As it turns out, much of the type-theoretic
structure of 𝑢 (and by extension C) can be accounted for in terms of this functor. For instance, 𝑢
is closed under unit and Σ types if and only if 𝑢 carries the structure of a Cartesian pseudomonad
on SetC𝑜 𝑝 . To see why this is the case, and to expand this account to other type-formers, such as
Π types, we will need the theory of polynomial functors on a Locally Cartesian Closed category.
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2 Polynomial Arithmetic & Dependent Types

2.1 Polynomial Functors
Recall that a category C is Locally Cartesian Closed (LCC) if C, and all slices of C are Cartesian
closed.

Example: For any category C, SetC𝑜 𝑝 is Locally Cartesian Closed.

In particular, if C is Locally Cartesian Closed, then C has all pullbacks, and the pullback
functors 𝑓 ∗ : C/A → C/B for any 𝑓 : B → A have both left and right adjoints Σ𝑓 and Π𝑓 .
Hence (up to strictness issues) every LCCC has a form of Martin-Löf Type Theory as its internal
type-theoretic language. In what follows, it will therefore be productive to consider polynomial
functors and related constructions both as structures on an LCCC C, and as structures in the
internal type-theoretic language of C.

Given any morphism 𝑓 : B → A ∈ C, we may define the corresponding polynomial endo-
functor P𝑓 as the composite

C ≃ C/1
!∗B−→ C/B

Π𝑓

−−→ C/A
Σ!A−−→ C/1 ≃ C

Type-theoretically, we think of 𝑓 : B → A as an A-indexed family B[𝑎] for all 𝑎 : A. Then, in
the internal language of C, P𝑓 maps a type 𝑦 to the type

Σ𝑥 : A.𝑦B[𝑥]

In general, polynomial functors P𝑓 can be characterized by the following universal property:

Theorem:
H𝑜𝑚C (C, P𝑓 (D)) �

∑︁
𝑔:C→A

(B[ 𝑔] → D)

Proof:
H𝑜𝑚C (C, P𝑓 (D))

= H𝑜𝑚C (C,Σ!AΠ𝑓 (!∗B(D)))
�

∑
𝑔:C→AH𝑜𝑚C/A( 𝑔,Π𝑓 (!∗B(D)))

�
∑

𝑔:C→AH𝑜𝑚C/B( 𝑓 ∗( 𝑔), !∗B(D))
�

∑
𝑔:C→A(B[ 𝑔] → D)

In particular, we obtain natural transformations

𝑝 𝑓 : P𝑓 (−) ⇒ A and app𝑓 : B[ 𝑝 𝑓(−)] ⇒ Id(−)
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by plugging in idP𝑓 (X) on the right hand side for each X ∈ C, yielding following diagram:

X B[ 𝑝𝑓 ] B

P𝑓 (X) A

app
𝑓

X

⌟
𝑓

𝑝
𝑓

X

2.1.1 Morphisms of Polynomial Functors

For 𝑓 : B→ A and 𝑔 : D→ C, a diagram as below

B D[ϕ] D

A C
𝑓

ϕ♯

⌟
𝑔

ϕ1

induces a natural transformation ϕ : P𝑓 ⇒ P𝑔 whose components ϕX : P𝑓 (X) → P𝑔 (X) are
derived by the above equivalence from the following data

X D[ϕ] [ 𝑝 𝑓X] D[ϕ1] D

B[ 𝑝 𝑓X] B

P𝑓 (X) A C

⌟
ϕ♯

⌟

𝑔

app
𝑓

X

⌟
𝑓

𝑝
𝑓

X
ϕ1

One may then wonder: are all natural transformations P𝑓 ⇒ P𝑔 induced in this way? Gambino
& Kock (2009) answer this question in the affirmative for strength-preserving natural transfor-
mations, where polynomial functors are canonically regarded as strong functors in a particular
way.

Hence for any locally cartesian closed categoryC, we have a categoryPolyC whose objects are
families 𝑓 : B → A ∈ C, regarded as polynomial functors, and whose morphisms are diagrams
as above, regarded as (strength-preserving) natural transformations.

Cartesian morphisms of polynomial endofunctors: a morphism of polynomial functors
ϕ : P𝑓 ⇒ P𝑔 as above is called cartesian if ϕ♯ is an isomorphism. Equivalently, a Cartesian
morphism P𝑓 ⇒ P𝑔 consists of a pullback square

B D

A C

𝑓
⌟

𝑔
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Hence there is a wide subcategory PolyCartC ↩→ PolyC consisting of polynomial functors and
Cartesian morphisms between them.

Type theoretically, thinking of 𝑓 and 𝑔 as families of types, the existence of a Cartesian mor-
phismϕ : P𝑓 ⇒ P𝑔 essentially shows that, for each 𝑎 : A there is an elementϕ1(𝑎) : C such that
B[𝑎] ≃ D[ϕ1(𝑎)], i.e. every type in the family B[𝑎] corresponds to a type in the family D[𝑐].
So in particular, a Cartesian morphism in SetC𝑜 𝑝 from a family 𝑓 : B→ A into a representable
family 𝑢 : U• → U suffices to show that types in the internal language of C are closed under
those types encoded by 𝑓 . Hence to show that C is closed under Σ types, Π types, etc., we need
only find polynomial functors that suitably represent these types, and ask that there be Cartesian
morphisms from these polynomials to 𝑢.

2.2 Composition of Polynomials & Σ Types
Theorem: Polynomial functors are closed under composition.
Proof: By the universal property of polynomial functors, to show that P𝑓 ◦ P𝑔 – for 𝑓 : B→ A
and 𝑔 : D→ C – is polynomial, it suffices to find 𝑓 ⊳ 𝑔 : F→ E such that∑

𝑘:X→E (F[𝑘] → Y)
� H𝑜𝑚(X, P𝑓 ⊳ 𝑔 (Y))
� H𝑜𝑚(X, P𝑓 (P𝑔 (Y)))
�

∑
𝑘:X→A

(
B[𝑘] → P𝑔 (Y)

)
�

∑
𝑘:X→A

∑
𝑘′:B×𝑓 ,𝑘X→C (D[𝑘′] → Y)

�
∑

𝑘:X→A, 𝑘′:B×𝑓 ,𝑘X→C(D[𝑘′] → Y)

�
∑

𝑘:X→P𝑓 (C)

(
(ΣB[ 𝑝 𝑓C]

D[app𝑓C]) [𝑘] → Y
)

Hence we can satisfy this by taking 𝑓 ⊳ 𝑔 to be the following

D D[app𝑓C]

C B[ 𝑝 𝑓C] B

P𝑓 (C) A

𝑔

⌟

app
𝑓

C ⌟
𝑓

𝑝
𝑓

C

It follows that the composition defines a monoidal product onPolyC , whose unit is the iden-
tity functor, represented by the identity morphism id1 : 1→ 1 on the terminal object 1.

Type-theoretically, given an A-indexed family of types B[𝑎] for all 𝑎 : A and a C-indexed
family of types D[𝑐] for all 𝑐 : C, the family representing the composition of B and D, thought
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of as polynomial functors, is the Σ𝑥 : A.CB[𝑥] -indexed family that maps a pair (𝑎, 𝑓 ) : Σ𝑥 :
A.CB[𝑥] to the type

Σ𝑦 : B[𝑎] .D[ 𝑓 (𝑦)]
From this follows straightforwardly the universal property of 𝑓 ⊳ 𝑔 as an object of PolyC :

H𝑜𝑚PolyC ( 𝑓 ⊳ 𝑔, ℎ) �
∑︁

ϕ1:P𝑓 (C)→E
H𝑜𝑚C/P𝑓 (C) (F[ϕ1],ΣB[ 𝑝 𝑓C]

D[app𝑓C])

and moreover as an object of PolyCartC :

H𝑜𝑚PolyCartC
( 𝑓 ⊳ 𝑔, ℎ) �

∑︁
ϕ1:P𝑓 (C)→E

(
F[ϕ1] �C/P𝑓 (C) ΣB[ 𝑝 𝑓C]

D[app𝑓C]
)

So in particular, if we takeC to beSetC𝑜 𝑝 and 𝑓 = 𝑔 = ℎ = 𝑢, we have that a Cartesian morphism
P𝑢⊳𝑢 ⇒ P𝑢 consists of:

• A natural transformation σ :
(∑

A:UUU• [A]
)
→ U, which assigns to each pair A,B

consisting of a type A : U and a family of types B[𝑎] : U for all 𝑎 : U• [A], a type
σ(A,B) : U representing the dependent pair type.

• For each (A,B) : ∑
A:UUU• [A] , a natural transformation ψA,B : U• [σ(A,B)] →∑

𝑎:U• [A]U• [B[𝑎]]which maps an element 𝑝 : U•(σ(A,B)) to elementsπ1( 𝑝) : U• [A]
and π2( 𝑝) : U• [B[π1( 𝑝)]], corresponding to the first and second projections out of 𝑝,
respectively.

• For eachA,B as above, a natural transformationψ−1A,B :
(∑

𝑎:U• [A]U• [B[𝑎]]
)
→U• [σ(A,B)],

which maps a pair consisting of 𝑎 : U• [A] and 𝑏 : U• [B[𝑎]] to an element ⟨𝑎, 𝑏⟩ :
U• [σ(A,B)], corresponding to the pairing of 𝑎 and 𝑏.

• Such that ψA,B and ψ−1A,B are mutually inverse.

By inspection, we see that these data correspond precisely to the rules for theΣ type in Martin-Löf
type theory. Similarly, 𝑢 classifies the unit type iff there is a Cartesian morphism IdC ≃ Pid1 ⇒
P𝑢. Hence an object 𝑢 ∈ Poly, thought of as a universe of types, is closed under unit andΣ types
iff there are morphisms

id1 → 𝑢 𝑢 ⊳ 𝑢→ 𝑢

inPolyCart. One might notice, at this point, that these morphisms look suspiciously like the unit
and multiplication maps of a monad. Whether or not these operations do in fact define a monad
will be our topic for the final section of this post. For now, let us turn our attention to Π types.
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2.3 The⇈ functor &Π Types
We now wish to define an operation on polynomial functors that type-theoretically corresponds
to the formation ofΠ-types. I.e., in type-theoretic notation, given anA-indexed familyB[𝑎] for
all 𝑎 : A and a C-indexed family D[𝑐] for all 𝑐 : C – represented by the polynomial functors
P𝑓 and P𝑔 for 𝑓 : B → A and 𝑔 : B → C – we want to find a polynomial functor P𝑓⇈𝑔

for some 𝑓 ⇈ 𝑔 : F → E that corresponds to the Σ𝑥 : A.CB[𝑥] -indexed family that maps
(𝑎, 𝑓 ) : Σ𝑥 : A.CB[𝑥] to the type

Π𝑦 : B[𝑎] .D[ 𝑓 (𝑦)]

By analogy with the definition of composition in terms of Σ (i.e. 𝑓 ⊳ 𝑔 = ΣB[ 𝑝 𝑓C]
D[app𝑓C] ∈

C/P𝑓 (C)), this should be

𝑓 ⇈ 𝑔 = ΠB[ 𝑝 𝑓C]
D[app𝑓C] ∈ C/P𝑓 (C)

Unlike 𝑓 ⊳ 𝑔 , however, this definition does not straightforwardly define a functor ⇈ : Poly ×
Poly→ Poly. The problem is essentially due to the contravariance ofΠ in its first argument. If
we try to define in type-theoretic notation a functorial action of ⇈ in its first argument, we face
the following problem, given:

• An A-indexed family B[𝑎] for all 𝑎 : A

• An A′-indexed family B′[𝑎′] for all 𝑎′ : A′

• A C-indexed family D[𝑐] for all 𝑐 : C

• A function ϕ1 : A→ A′

• A function ϕ♯ : (𝑥 : A) → B′[ϕ1(𝑥)] → B[𝑥]

define a function

(ϕ ⇈ D)♯ : (𝑎 : A, 𝑓 : CB[𝑎]) → (Π𝑏′ : B′[ϕ1(𝑎)] .D[ 𝑓 (ϕ♯ (𝑎, 𝑏′))]) → Π𝑏 : B[𝑎] .D[ 𝑓 (𝑏)] .

And this is not generally possible, since given𝑏 : B[𝑎] and 𝑔 : Π𝑏′ : B′[ϕ1(𝑎)] .D[ 𝑓 (ϕ♯ (𝑎, 𝑏′))],
we have no given way of obtaining a value 𝑏′ : B′[ϕ1(𝑎)] from 𝑏 to supply as input to 𝑔 .

It is possible, however, if we additionally assume that ϕ♯ (𝑎,−) is invertible for all 𝑎 : A, i.e.
ϕ is Cartesian. Then we can define

(ϕ ⇈ D)♯ (𝑎, 𝑓 ) = λ𝑔.λ𝑏. 𝑔 (ϕ♯−1(𝑎, 𝑏))

Hence we can view ⇈ as a functor PolyCart × Poly→ Poly.

We can in fact define a more compact representation of 𝑓 ⇈ 𝑔 , due to the following theorem:
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Theorem:ΠB[ 𝑝 𝑓C]
D[app𝑓C] �C/P𝑓 (C) P𝑓 ( 𝑔)

Proof:

H𝑜𝑚C/P𝑓 (C) (ℎ, P𝑓 ( 𝑔))

�



𝑘1 : F→ A,
𝑘♯ : B[𝑘1] → D |

C

D B[𝑘1] B[ 𝑝 𝑓C] B

F P𝑓 (C) A

𝑔

𝑘♯ ⌟

app
𝑓

C

⌟
𝑓

ℎ

𝑘1

𝑝
𝑓

C


� H𝑜𝑚C/C(Σapp

𝑓

C
(B[ 𝑝 𝑓C] [ℎ]), 𝑔)

� H𝑜𝑚C/B[ 𝑝 𝑓C]
(B[ 𝑝 𝑓C] [ℎ],D[app

𝑓

C])

� H𝑜𝑚C/P𝑓 (C) (ℎ,ΠB[ 𝑝 𝑓C]
(D[app𝑓C]))

Using this, we can further characterize ⇈ as follows:
Definition: a (left-)action of a monoidal category (M, ⊗, I) on a category C is a functor

⊙ :M × C → C together with natural isomorphisms:

• ηA : I ⊙ A � A

• μ : (M ⊗ N) ⊙ A � M ⊙ (N ⊙ A)

• such that the triangles:

(I ⊗M) ⊙ A (M ⊗ I) ⊙ A

I ⊙ (M ⊙ A) M ⊙ A M ⊙ (I ⊙ A)

and the pentagon

(M ⊗ (N ⊗ K)) ⊙ A

((M ⊗ N) ⊗ K) ⊙ A M ⊙ ((N ⊗ K) ⊙ A)

(M ⊗ N) ⊙ (K ⊙ A) M ⊙ (N ⊙ (K ⊙ A))

formed from these and the associator and unitors ofM all commute.
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Theorem:⇈ : PolyCart×Poly→ Poly carries the structure of action of the monoidal category
(PolyCart, ⊳, id1) on Poly.

Proof sketch: since
𝑓 ⇈ 𝑔 � P𝑓 ( 𝑔)

we have

• id1 ⇈ 𝑔 � Pid1 ( 𝑔) � 𝑔

• ( 𝑓 ⊳ 𝑔) ⇈ ℎ � P𝑓 ⊳ 𝑔 (ℎ) � P𝑓 (P𝑔 (ℎ)) � 𝑓 ⇈ ( 𝑔 ⇈ ℎ)

and it is straightforward to verify that these satisfy the pentagon and triangle identities.

Finally, to see that ⇈ has the desired property of classifying Π types on natural models, we
first note that the definition of 𝑓 ⇈ 𝑔 asΠB[ 𝑝 𝑓C]

D[app𝑓C] straightforwardly yields the following
universal property of 𝑓 ⇈ 𝑔 as an object of Poly:

H𝑜𝑚PolyC ( 𝑓 ⇈ 𝑔, ℎ) �
∑︁

ϕ1:P𝑓 (C)→E
H𝑜𝑚C/P𝑓 (C) (F[ϕ1],ΠB[ 𝑝 𝑓C]

D[app𝑓C])

and moreover as an object of PolyCartC :

H𝑜𝑚PolyCartC
( 𝑓 ⇈ 𝑔, ℎ) �

∑︁
ϕ1:P𝑓 (C)→E

(
F[ϕ1] �C/P𝑓 (C) ΠB[ 𝑝 𝑓C]

D[app𝑓C]
)

Then as before, working over SetC𝑜 𝑝 with 𝑓 = 𝑔 = ℎ = 𝑢, a Cartesian morphism P𝑢⇈𝑢 ⇒ P𝑢
consists of:

• A natural transformation π :
(∑

A:UUU• [A]
)
→ U, which assigns to each pair (A,B)

consisting of a type A : U and a family of types B[𝑎] : U for each 𝑎 : U• [A], a type
π(A,B) : U, corresponding to the Π type of A and B.

• For each pairA,B as above, a natural transformationαA,B : U• [π(A,B)] →
∏

𝑎:U• [A]U• [B[𝑎]]
which, given 𝑓 : U• [π(A,B)] and 𝑎 : U• [A], produces α( 𝑓 ) (𝑎) : U• [B[𝑎]] corre-
sponding to the result of applying 𝑓 to 𝑎.

• For each pair A,B as above, a natural transformation λA,B :
(∏

𝑎:U• [A]U• [B[𝑎]]
)
→

U• [π(A,B)]which maps a function 𝑓 : ∏𝑎:U• [A]U• [B[𝑎]] to a termλ( 𝑓 ) : U• [π(A,B)]
representing the λ-abstraction of 𝑓 ,

• Such that αA,B and λA,B are mutually inverse.

Once again, by inspection we see that these data correspond precisely with the rules for Π types
in Martin-Löf type theory. Hence we can compactly represent a natural model of MLTT as a
representable natural transformation 𝑢 : U• →U equipped with morphisms

id1 → 𝑢 𝑢 ⊳ 𝑢→ 𝑢 𝑢 ⇈ 𝑢→ 𝑢
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in PolyCart. But what sort of structure do these morphisms define on 𝑢? Perhaps surprisingly,
answering this question satisfactorily requires us to leave the 1-dimensional universe of set theory,
and instead reformulate the notion of polynomial universes we have developed in the context of
Homotopy Type Theory (HoTT).

3 Polynomial Universes in HoTT
In order to understand the higher-dimensional identities and coherences of type formers in nat-
ural models, we now change our setting from the extensional internal language of SetC𝑜 𝑝 to the
intensional internal language of∞GrpdC

𝑜 𝑝

, which is a form of HoTT. All the constructions on
polynomial functors we considered previously carry over to this setting – mutatis mutandis – by
replacing the term “category” with “∞-category”, etc. Hence we now have ∞-categories Poly
and PolyCart, defined essentially the same as before.

For any polynomial 𝑢, we say that 𝑢 is univalent if it is a subterminal object inPolyCart, i.e. for
any other polynomial 𝑝, the (homotopy) type of Cartesian morphisms 𝑝 → 𝑢 is a mere propo-
sition in HoTT, i.e. it has at most one inhabitant, up to homotopy.

We call this property of polynomials univalence by analogy with the usual univalence axiom.
Indeed, the statement that an LCC∞-Category has enough univalent universes is equivalent to
the existence of a terminal family in PolyCart, i.e. a set of subterminal objects 𝑢𝑖 ∈ PolyCart
such that every 𝑝 ∈ PolyCart has a Cartesian morphism to some 𝑢𝑖 .

If𝑢 is univalent and has (e.g.) Cartesian morphisms η : id1 → 𝑢 andμ : 𝑢⊳𝑢→ 𝑢 exhibiting
that 𝑢 is closed under unit and Σ-types, then the following diagrams necessarily commute (up to
homotopy)

id1 ⊳ 𝑢 𝑢 ⊳ 𝑢 𝑢 ⊳ id1

𝑢

η⊳𝑢

⊳unitl μ

𝑢⊳η

⊳unitr

(𝑢 ⊳ 𝑢) ⊳ 𝑢 𝑢 ⊳ (𝑢 ⊳ 𝑢) 𝑢 ⊳ 𝑢

𝑢 ⊳ 𝑢 𝑢

⊳assoc

μ⊳𝑢

𝑢⊳μ

μ

μ

One may recognize these as the usual diagrams for a monoid in a monoidal category, hence (since
⊳ corresponds to composition of polynomial endofunctors) for a monad as typically defined.
Moreover, since the types of Cartesian morphisms into𝑢 are contractible, any higher-dimensional
diagram one may draw with these also commutes, ensuring that 𝑢 additionally satisfies all the co-
herences of an∞-monad.

For Π-types, the situation is somewhat more complex. What David and I established in our
work together is that closure of 𝑢 under Π-types (in addition to unit and Σ types) corresponds
to a special kind of distributive law of the above monad over itself.

The notion of a distributive law of one monad over another can be viewed as an answer to
the question “when is the composition of two monads also a monad?” Given monads 𝑚, 𝑛 (we
may assume, for present purposes, that 𝑚, 𝑛 are polynomial) with unit η𝑚 : id1 → 𝑚 and
η𝑛 : id1 → 𝑛 and multiplicationμ𝑚 : 𝑚⊳𝑚→ 𝑚 andμ𝑛 : 𝑛⊳𝑛→ 𝑛, we can straightforwardly
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define a putative unit for 𝑚 ⊳ 𝑛 as the composite

id1 ≃ id1 ⊳ id1
η𝑚⊳η𝑛−−−−→ 𝑚 ⊳ 𝑛

However, when we attempt to define a multiplication (𝑚 ⊳ 𝑛) ⊳ (𝑚 ⊳ 𝑛), we have no direct way
to apply μ𝑚 or μ𝑛, since neither of the two occurrences of 𝑚 and 𝑛 in the domain occur next to
each other. This difficulty could be resolved if we had an additional map

δ : 𝑛 ⊳𝑚→ 𝑚 ⊳ 𝑛

Then indeed, if one reverse-engineers what equations such a map δ must satisfy in order for 𝑚 ⊳

𝑛 to be a monad with the resulting unit and multiplication, this gives rise to the definition of
a distributive law. The (1-dimensional) diagrams required to commute in order for δ to be a
distributive law are then as follows:

𝑛 ⊳ (𝑚 ⊳𝑚) (𝑛 ⊳𝑚) ⊳𝑚 (𝑚 ⊳ 𝑛) ⊳𝑚 𝑚 ⊳ (𝑛 ⊳𝑚) 𝑚 ⊳ (𝑚 ⊳ 𝑛) (𝑚 ⊳𝑚) ⊳ 𝑛

𝑛 ⊳𝑚 𝑚 ⊳ 𝑛

≃

𝑛⊳μ𝑚

δ⊳𝑚 ≃ 𝑚⊳δ ≃

μ𝑚⊳𝑛
δ

(𝑛 ⊳ 𝑛) ⊳𝑚 𝑛 ⊳ (𝑛 ⊳𝑚) 𝑛 ⊳ (𝑚 ⊳ 𝑛) (𝑛 ⊳𝑚) ⊳ 𝑛 (𝑚 ⊳ 𝑛) ⊳ 𝑛 𝑚 ⊳ (𝑛 ⊳ 𝑛)

𝑛 ⊳𝑚 𝑚 ⊳ 𝑛

≃

μ𝑛⊳𝑛

𝑛⊳δ ≃ δ⊳𝑛 ≃

𝑚⊳μ𝑛
δ

𝑛 ⊳ 𝑦 𝑛 𝑦 ⊳ 𝑛

𝑛 ⊳𝑚 𝑚 ⊳ 𝑛

≃

𝑛⊳η𝑚

≃

η𝑚⊳𝑛
δ

𝑦 ⊳𝑚 𝑚 𝑚 ⊳ 𝑦

𝑛 ⊳𝑚 𝑚 ⊳ 𝑛

≃

η𝑛⊳𝑚

≃

𝑚⊳η𝑛
δ

Note that, in the case where 𝑚 = 𝑛 = 𝑢, the morphisms identified by these diagrams are not
morphisms into 𝑢 (nor are they generally Cartesian), so we cannot immediately apply univalence
to these as we did for the monad laws.

The solution is to define a class of morphisms δ as above that correspond to Cartesian mor-
phisms into 𝑢.

Definition: a jump-structure on a morphism in ϕ : 𝑓 ⊳ 𝑔 → ℎ ⊳ 𝑓 in Poly, given by ϕ1 :
P𝑓 (C) → Pℎ (A) andϕ♯ : (ΣF[ 𝑝ℎA]

B[appℎA]) [ϕ1] → ΣB[ 𝑝 𝑓C]
D[appf

C
], consists of paths making

the following diagrams commute

A

F[ 𝑝ℎA] [ϕ1] F[ 𝑝ℎA] F

P𝑓 (C) Pℎ (A) E

⌟

appℎA

⌟
ℎ𝑝

𝑓

C

ϕ1 𝑝ℎA

F[ 𝑝ℎA] [ϕ1] × B[ 𝑝
𝑓

C] ΣB[ 𝑝 𝑓C]
D[app𝑓C]

B[ 𝑝 𝑓C]

ϕ♯

π2
π1
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essentially, these state that the action of ϕ on its 𝑝-components is the identity. This sort of struc-
ture was previously considered by David in his blog post on ”jump monads,” whence the name.

We then leverage the following theorem:
Theorem:

H𝑜𝑚Poly( 𝑓 ⇈ 𝑔, ℎ) ≃ Jump( 𝑓 , 𝑔, ℎ)
where Jump( 𝑓 , 𝑔, ℎ) is the type of morphisms 𝑓 ⊳ 𝑔 → ℎ ⊳ 𝑔 equipped with jump structures.

We say that a jump structure is Cartesian if its corresponding morphism 𝑓 ⇈ 𝑔 → ℎ is
Cartesian. The proof that a morphism 𝑢 ⊳ 𝑢→ 𝑢 ⊳ 𝑢 equipped with a Cartesian jump structure
automatically satisfies the laws of a (∞-)distributive law then works essentially by showing that
Cartesian jump structures are closed under all of the constructions appearing in the diagrams for
a distributive law (though note that the definitions/theorems in our paper are a bit more general
than what is presented above, in order to accommodate all of the constructions appearing in these
diagrams).

Hence, just as a univalent polynomial is closed under Σ and unit types if and only if it pos-
sesses the structure of a Cartesian ∞-monad, so too is it closed under Π types if and only if
this∞-monad additionally possesses a distributive law over itself which carries a Cartesian jump
structure.

3.1 Examples of polynomial universes
For a univalent universeU, the corresponding polynomial functor looks like

X ↦→
∑︁
A:U

XA

If we specialize this to the case whereU = Prop, the type of propositions, this gives

X ↦→
∑︁
ϕ:Prop

Xϕ

This monad is well-known in type theory by another name – the partiality monad. Specifically,
this is the monadMwhose Kleisli morphismsA→M(B) correspond to partial functionsA ⇀

B, i.e. functions that associate to each element 𝑎 : A a proposition def 𝑓 (𝑎) stating whether 𝑓 is
defined at input 𝑎, such that if def 𝑓 (𝑎) is true, then one can obtain a value 𝑓 (𝑎) : B.

It follows that one can more generally consider the polynomial monads derived from poly-
nomial universes as proof-relevant partiality monads.

3.1.1 Rezk Completion

Additionally, we can show that any polynomial functor 𝑝 can be quotiented to a corresponding
univalent polynomial, using a familiar construct from the theory of categories in HoTT – the
Rezk Completion.

We obtain the Rezk completion of 𝑝 as the image factorization in PolyCart of the classifying
morphism 𝑝→ 𝑢𝑖 given by the subterminal family mentioned above.

𝑝 ↠ Rezk( 𝑝)↣ 𝑢𝑖
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and since Rezk( 𝑝) is a subobject of a subterminal object, it follows that it is itself subterminal.

Example: the polynomial functor determined by the function ((𝑚, 𝑛) ↦→ 𝑛) : {𝑚 < 𝑛 ∈
ℕ} → ℕ is

X ↦→
∑︁
𝑛∈ℕ

X{𝑚∈ℕ|𝑚<𝑛} � List(X)

This polynomial isn’t univalent, because ℕ is a set, whereas the types {𝑚 ∈ ℕ | 𝑚 < 𝑛} form a
groupoid. However, we can upgrade this to a univalent polynomial using the Rezk completion.

If we write out an explicit description of Rezk(List), we see that it is the subuniverse of types
X that are merely equivalent to some finite type {𝑚 ∈ ℕ | 𝑚 < 𝑛}. In constructive mathematics,
these types (they are necessarily sets) are known as Bishop finite sets. Hence the polynomial uni-
verse obtained by Rezk completion of the list monad is precisely the subuniverse of types spanned
by (Bishop) finite sets.

Question/Food forThought: BothList andRezk(List) are Cartesian monads, hence closed
under unit and Σ. However, although List does not have a self-distributive law corresponding
to Π types, Rezk(List) does by the above theorem relating Π types to self-distributive laws of
univalent polynomials, since finite sets are closed under finite products. Moreover, although
List doesn’t quite have such a distributive law, it almost does, where the pertinent morphism
List ⊳ List → List ⊳ List ∈ Poly is the “Cartesian Product” operation on lists that maps a
list-of-lists

𝑥𝑠𝑠 = [[𝑥11, . . . , 𝑥1𝑖1], . . . , [𝑥𝑗1, . . . , 𝑥𝑗 𝑖𝑗 ]]
to the list of all 𝑗 -element lists consisting of one element from each list in 𝑥𝑠𝑠, ordered lexico-
graphically by their occurrence in 𝑥𝑠𝑠. This operation fails to satisfy some of the equational laws
of a distributive law. However, passing to the Rezk completion of List essentially forces this op-
eration to satisfy these equations – up to homotopy. It is therefore interesting to consider what
structure on a base (non-univalent) polynomial suffices to guarantee that its Rezk completion
will be closed under Σ types / Π types.

A potentially related question concerns characterizing the monads of the form 𝑢 ⊳ 𝑢 for
𝑢 a polynomial universe with Π, Σ, and unit types. Discussions I’ve had with Steve Awodey,
Mathieu Anel & Reid Barton on this point upon my return to CMU this Fall lead me to believe
that Rezk(List) ⊳ Rezk(List) is a kind of higher-dimensional analgoue of the free commutative
ring monad – a surprising result, considering that the ordinary, set-based free commutative ring
monad is not polynomial, whereas Rezk(List) ⊳ Rezk(List) is. If this result holds, it serves as a
further indication that the sheer power of the language of polynomial functors can yet be carried
to even greater heights by interpreting this language in the context of HoTT.

4 Conclusion
This post has outlined some of the main results David and I were able to work out during my time
at Topos. However, in some sense, this summary barely scratches the surface of how rewarding
and intellectually stimulating my time at Topos this Summer truly was. I greatly appreciated the
opportunities I had to regularly exchange ideas with David and others at Topos, and to conduct
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research on topics of deep interest to me in such an environment. Since my return to CMU, I
have continued to build upon the research I conducted at Topos this summer, and I am excited
to continue exploring these and related topics further. In particular, I am interested in exploring
how the type-theoretic semantics outlined above can be developed and generalized to provide
internal languages for various notions of interacting processes and dynamical systems that arise
in programming, applied math, etc., and to develop a “logic of systems” around these. As this
goal seems closely aligned with the mission and interests of the Topos Institute, I anticipate that
pursuing it shall keep me in close contact with Topos well into the future, which, based on my
experience this Summer, I very much look forward to!

Lastly, I would like to thank David and all the others I had the pleasure of meeting and inter-
acting with on a daily basis at Topos for helping to make my time there so fulfilling!
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