UF

Combinatorial representations
for scientific knowledge

Kris Brown

4/28/22

Hi, I'm a postdoc working with James Fairbanks for the past 8 months. Prior to that
| was working as a computational chemist where | struggled a lot with issues
that | think we’re making great progress towards addressing. | hope if you're a
computational scientist that this talk convinces you that these techniques are
worth looking more into. This will be an applied category theory talk, so I'll
focus on the applications rather than the theory.

2UF

wnw

2 H, + 0, &> 2 H,0. Mass-action kinetics. Compare to experimental data and plot.

def main(): ‘
real_data = [0.0101, 0. : 7 5 5 .069,

0.076, 0.083, 0.089, 0. : .108, 0. ; .130, 0.135,
0.140, 0.145, 0.150, 0. 0. : : 5 .179, 0.183,
0.186, 0.190, ©0.193, 0. . . : ; .215, 0.218,
0.221, 0.224, 0.227,

H2,02, H20 = 1.0, 2.0, 0.0

dt = 0.01

results = []

for step in range(1,50):
print("Step ", step) 7
rate = 0.5 % H2x*2 * 02 * Knowledge informally
H2 -= 2xratexdt represented in publications.
02 -= ratexdt

T e rreerh * Often the only formal
results.append(H20) representation is code.

plot(results, real_data)

| want to start by providing contrast with a very pervasive form of scientific
knowledge, which seemed almost necessary to me while doing computational
research.

This is a small Python script which takes some data and compares it to a small
simulation of a chemical reaction. This one is self-contained, but in general
they live in a filesystem and can refer to each other. The big idea behind such a
script is sometimes mentioned informally in a publication, and that is an
important form of scientific knowledge but one we’ll ignore for this talk
because it is informal and can’t be manipulated by tools (short of NLP).

wnw

2 H, + 0, &> 2 H,0. Mass-action kinetics. Compare to experimental data and plot.

def main():

real_data = [0.0101, 0. : 7 5 5 .069,

0.076, 0.083, 0.089, 0. ; .10¢ :) .130, 0.135,
0.140, 0.145, 0.150, 0. 0. . . ; .179, 0.183,
0.186, 0.190, 0.193, 0. 0. . ; 4 .215,0.218)
0.221, 0.224, 0.227,

H2,02, H20 = 1.0, 2.0, 0.0

dt = 0.01

results = []

for step in range(1,50):
print("Step ", step) 7
rate = 0.5 % H2x*2 * 02 * Knowledge informally
128 uAtesct represented in publications.
02 -= ratexdt

T e rreerh * Often the only formal
results.append(H20) representation is code.

plot(results, real_data)

If you point to a figure in the paper and ask the author “What does this mean?”
and demand a rigorously defined object, you’ll get pointed to this piece of code
(though you’d also need to know lots of details about their computer
environment: versions of libraries, environment variables, etc.).

You could ask what are the downsides of this being the reality for many scientists.

wnw

2 H, + 0, &> 2 H,0. Mass-action kinetics. Compare to experimental data and plot.

def main():

real_data = [0.0101, 0. : 7 5 5 .069,

0.076, 0.083, 0.089, 0. ; .10¢ :) .130, 0.135,
0.140, 0.145, 0.150, 0. 0. . . ; .179, 0.183,
0.186, 0.190, 0.193, 0. 0. . ; 4 .215,0.218)
0.221, 0.224, 0.227,

H2,02, H20 = 1.0, 2.0, 0.0

dt = 0.01

results = []

for step in range(1,50):
print("Step ", step)
rate = 0.5 * H2x*x2 * 02

H2 -= 2xratexdt
02 -= ratexdt

* Many tasks we’d like to do

H20 += ratexdt that cannot be done with
results.append(H20) arbit_rary code (nor
plot(results, real_data) mathematical expressions).

The abstract critique of this style is that it mixes together data, structure, and
semantics, which all should be kept apart.

The corresponding practical critique is lose the opportunity to do some cool things
with our models if we make this mistake.

2UF

wnw

. _ * Update code when
2 H, + 0, =& 2 H,0. Mass-action kinetics. Compare to experimental data and plot. ;
wan assumptions change

def main():

real_data = [0.0101,
0.076, 0.083, 0.089,

.069,
.130, 0.135,

0.186, 0.190, 0.193,
0.221, 0.224, 0.227,

.215, 0.218,

0
0

0.140, 0.145, 0.150, 0. 0. : . ; .179, 0.183,
0
0

H2,02, H20 = 1.0, 2.0,

dt = 0.01

results = []

for step in range(1,50):
print("Step ", step)
rate = 0.5 *x H2%x2 * 02
H2 -= 2xratexdt
02 -= ratexdt

* Many tasks we’d like to do

H20 += ratexdt that cannot be done with
results.append(H20) arbit_rary code (nor
plot(results, real_data) mathematical expressions).

We'd like to have a language for declaring our assumptions and how they’ve
changed, and when we do so, it’s as if our code gets updated into the new
framework.

2UF

* Update code when

wnw

2 H, + 0, &> 2 H,0. Mass-action kinetics. Compare to experimental data and plot.

assumptions change
def main():

* Explore alternate reaction

real_data = [0.0101, 0. : : : .069, networks to fit the data
0.076, 0.083, 0.089, 0. : : : .130, 0.135,

0.140, 0.145, 0.150, 0. 0 : : 5 .179, 0.183,
0.186, 0.190, ©0.193, 0. ‘ . : ; .215, 0.218,
0.221, 0.224, 0.227,

H2,02, H20 = 1.0, 2.

dt = 0.01

results = []

for step in range(1,50):
print("Step ", step)
rate = 0.5 * H2%%x2 * 02
Zﬁ e * Many tasks we’d like to do

= ratexdt

H20 += ratexdt that cannot be done with
results.append(H20)

arbitrary code (nor
plot(results, real_data) mathematical expressions).

There’s a process that we all do of tweaking parameters and testing hypotheses
until we get something that matches our experimental result — this process
isn’t made explicit or at all automated with this paradigm, even though there
are certain mechanical and tedious aspects of it that beg to be automated.

2UF

. _ * Update code when
2 H, + 0, =& 2 H,0. Mass-action kinetics. Compare to experimental data and plot. ;
assumptions change

def main():

wnw

* Explore alternate reaction

.069, netwotrks to fit the data
0.076, 0.083, 0.089, .130, 0.135,

)
)

0.140, 0.145, 0.150, 0. 2. 2 . ; EVCRREEN ¢ (Generate the entire code from
)
)

0.186, 0.190, 0.193, .215, 0.218, : . ;
N just declaring the reaction

real_data = [0.0101,

H2,02, H20 = 1.0, 2.0,

dt = 0.01

results = []

for step in range(1,50):
print("Step ", step)
rate = 0.5 *x H2%x2 * 02
H2 -= 2xratexdt
02 -= ratexdt

* Many tasks we’d like to do

H20 += ratexdt that cannot be done with
results.append(H20) arbit_rary code (nor
plot(results, real_data) mathematical expressions).

In some sense writing the code at all seems like an undesirable, error-prone task. If

you look at the description at the top of the function, we ought to be able to
just declare that information and get the whole simulator for free.

2UF

. _ * Update code when
2 H, + 0, =& 2 H,0. Mass-action kinetics. Compare to experimental data and plot. ;
assumptions change

def main():

wnw

* Explore alternate reaction

.069, netwotrks to fit the data
0.076, 0.083, 0.089, .130, 0.135,

)
)

0.140, 0.145, 0.150, 0. 2. 2 . ; EVCRREEN ¢ (Generate the entire code from
)
)

0.186, 0.190, 0.193, .215, 0.218, : . ;
N just declaring the reaction

real_data = [0.0101,

* Check if another model is
H2,02, H20 = 1.0, 2.0,
dt = 0.01 the same / a submodel

results = []

for step in range(1,50):
print("Step ", step)
rate = 0.5 *x H2%x2 * 02
H2 -= 2xratexdt
02 -= ratexdt

* Many tasks we’d like to do

H20 += ratexdt that cannot be done with
results.append(H20) arbit_rary code (nor
plot(results, real_data) mathematical expressions).

We have many informal notions of when models are equivalent or submodels of
each other in some sense, and regardless of what we pick we cannot actually
compute that without a better formal representation of the model.

wnw

2 H, + 0, & 2 H,0. Mass-action

wow

def

main():

real_data = [0.0101,
0.076, 0.083, 0.089,
0.140, 0.145, 0.150, ©
0.186, 0.190, 0.193,
0.221, 0.224, 0.227,

H2,02, H20 = 1.0, 2.

dt = 0.01

results = []

for step in range(1,50):
print("Step ", step)

rate = 0.5 *x H2%x2 * 02

H2 -= 2xratexdt

02 -= ratexdt

H20 += ratexdt
results.append(H20)

plot(results, real_data)

kinetics.

Compare to

experimental data and plot.

.069,
.130,
.179,
.215,

0.135,
0.183,
0.218,

2UF

Update code when
assumptions change

Explore alternate reaction
networks to fit the data

Generate the entire code from
just declaring the reaction

Check if another model is
the same / a submodel

Easily alter semantics (e.g.
stochastic-based simulation)

Many tasks we’d like to do
that cannot be done with
arbitrary code (nor
mathematical expressions).

Lastly, once you make some syntax-semantics distinction, it becomes clear that we
should be able to give the same syntax a different semantics, such as taking
this chemical reaction and instead running a stochastic individual-based
simulation rather than the analytical, aggregate ODE simulation that you see

here.

Overall, there are many tasks that we’d like to do that can’t be done with arbitrary
code. We'll see even giving a thorough specification of our system in the
language of differential equations does not help us towards these goals.

Outline :
5 2 Combinatonial E ; Epidemiology
EB Data Structures :d, I Case Studies

=

-

UF

So | want to this talk in two parts, at first giving a bird’s eye view with a lot of
breadth, and then picking a particular type of scientific model and going in
depth.

10

Outline *°UF

3NN 0 Combinatorial § § Epidemiology
creveneer] Data Structures : : Case Studies

Applications: Where?

So I'll first say where are real world domains in which we’ll apply combinatorial
structures

11

Outline

Applications: Where?
0
5 Structures: What?

Combinatorial
Data Structures

SUF

Epidemiology

Case Studies

Then I'll get more into examples of what they are.

12

Outline

Applications: Where?
0

5 Structures: What?
@ Algorithms: How?

Combinatorial
Data Structures

SUF

Epidemiology

Case Studies

I’ll highlight some algorithms that can operate on them.

13

Outline

Applications: Where?
0
5 Structures: What?

@ Algorithms: How?
O Virtues: Why?

Combinatorial

Data Structures

SUF

Epidemiology

Case Studies

And then try to summarize what are the virtues of using them over some standard

alternatives.

14

Outline

Applications: Where?
0
5 Structures: What?

@ Algorithms: How?
(> Virtues: Why?

Combinatorial

Data Structures

>

® & @ |

2UF

Epidemiology

Case Studies

Specification

Exploration

Simulation

The second part will focus on Petri Net models in epidemiology and talk about
declaring, exploring, and simulating them all in a transparent way.

First half I'll make a lot of claims and you'll have to take my word for it... But in the
second half I'll give more evidence for the claims | make... though a rigorous
understanding of why this works requires some category theory.

15

Where: model specification +2UF

How to represent the data of a scientific model?

S+1°2r

-0+ ,,

(informal diagram) (formal expression tree)

So to begin with this question, note that a standard solution is to use some sort of
informal diagram along with natural language to convey intuition, and then
provide some mathematical equations or code which are unambiguous and
precise.

As an example which will be featured many times in this presentation, here is a
very simple kind of model used in epidemiology called the SIR model. The
intuition is that people start out susceptible to some disease, such as COVID.
They then can become infected with some probability, and then they transition
to recovered with some probability. The expressions that make this precise
actually say that there exist two transition events: one susceptible person and
one infected person combine to make two infected people, and one infected
person becomes one recovered person.

16

Where: model specification +2UF
@

How to represent the data of a scientific model?

S+1°F21 B

00 ,

(informal diagram) (symbolic expressions) (Petri Net —a kind

of formal diagram)

Petri nets: a rigorous, diagrammatic syntax for
the structure of chemical reaction networks.

An improvement that we would propose is that there exists a type of diagram
which is well defined and intuitive like a graph, but it actually can be
unambiguously converted into those formal reaction expressions. This is called
a Petri net, and you can see how the multiple arrows are keeping track of the
data in the formal expression. | will give a formal definition for it later in the
talk.

That might seem like a superficial difference from the equation formalism, but
consider now the addition of constraints to some class of reactions we want to
consider.

17

Where: model specification +2UF

How to represent constraints associated with chemical reaction networks?

No more than two reactants per reaction

(formal expression trees) (formal diagrams)

Ve

—)N2+2H20

2H, + NO H,+20, - 2H,0 . ;‘.3.

Standard syntax for reaction networks can’t enforce constraints by construction,
but a variant of Petri Nets can. More details in Part 2 of the talk.

In the case of chemistry, we often want to exclude from consideration reactions
that contain three things that react at the same time. And you can ask: What
data structure do you represent your reactions in such that you automatically
enforce this constraint?

18

Where: model specification +2UF

How to represent constraints associated with gas-phase chemistry?
* No more than two reactants per reaction
* All species are either Reactive or Inert (Inert species do not react)

(formal expression trees) (formal diagrams)

Ve

2H, + NO H, +20, > 2H,0 B ®
- N, + 2 H,0 f

4
CO, + Ne 2>(CNeO2 Xe+6F - XeF, .. o,

é‘h

Standard syntax for reaction networks can’t enforce constraints by construction,

but a variant of Petri Nets can. More details in Part 2 of the talk.

| give another more sophisticated kind of constraint below, saying that all species
must be tagged as either inert or reactive and furthermore you can’t have a
reaction between two inert species.

The punchline will come in the second half of the talk, where | describe something
very closely related to the petri net you see here that IS able to represent these
constraints purely by construction, meaning all possible diagrams you can draw
correspond precisely to the subset of reactions which satisfy these logical
constraints.

So this is something you can do working in this alternative syntax to the syntax of
mathematical expression trees. It's less powerful in what it can represent, but
more powerful in what we can do with it. (that's a recurring theme)

19

Where: model comparison <UF

* When are two models structurally the same, in some sense?

* When are two models behaviorally the same, in some sense?

C:Q?L>(i’:9?(id</>:£~2;°’W "
i T | — (c:ng%;c:ug

| 4C:Q} > ¢: Q2 J

kx

(Two formal graphical presentations of heat diffusion)

VDiagrammatic representation of multiphysics allows us to check
behavioral equivalence, unlike working with the raw PDEs

Patterson et al. “A diagrammatic view of differential equations in physics” (2022)

Another application of combinatorial data structures is to compare whether two
models are the same, structurally or behaviorally.

In the example here I’'m showing, a different kind of formal, graphical
representations for differential equations is used to reperesent the heat
equations in two different ways (things can be named differently and
structured differently).

But in virtue of how they are represented, we have a decidable algorithm which
computes behavioral similarity by determining whether or not the solutions of
one system of equations are all solutions of the other. This is not something
you can do if just handed a bunch of PDEs, because again raw mathematical
expressions have way too much expressive power, so in general it’s rare for
decidable algorithms that do useful things with them.

20

Where: model exploration +2UF

* How to combine basic ideas for models into complex models?

* How to efficiently use experimental data to pick the best model?

-0
= x{.\ = ?
® m

Another place we want to deploy these representations is the model exploration
problem. I'll go more into detail about this later, but as a teaser, consider what
it would mean to combine two Petri net models, one of which is the SIR model
and another which we call a “two city model”, where people live in United
States and Europe and can move between them.

21

Where: model exploration 2UF

* How to combine basic ideas for models into complex models?

* How to efficiently use experimental data to pick the best model?

"0 = _ boé..scd
g < »= 12220,

High-level operations on Petri nets like products a/\o

do the ‘right’ thing’ for reaction networks, unlike \—/.

for symbolic syntax or raw ODEs.

The intuitive answer can be elegantly using these Petri net representations
(category theory tells us what the right notion of product is for them), whereas

taking the product of the literal differential equations wouldn’t yield anything
useful.

22

Where: model inference :IUF

How to apply a model to a concrete problem?

500
n s
R

400 F

o
Q
B
=
< 200
100
Specifying a reaction network as a
Petri Net allows for automatically ol
generating a simulator program. 0 25 50 75 100
Time

The last application area | want to highlight is the problem of model inference. If
you were handed this petri net on the left, could you automatically generate a
simulator which accepts initial conditions and reaction rates and produces a
plot on the right? This is a useful feature because scientists really shouldn’t be
writing code — we envision a future where they can work purely in their true
domain, and with the right representations of their models the solvers should
be automatically generated.

23

Outline

000 O0OGOGEOSOSOS Combinatorial
E E Data Structures

Applications: Where?
0
5 Structures: What?

@ Algorithms: How?
(> Virtues: Why?

>

® & @ |

2UF

Epidemiology

Case Studies

Specification

Exploration

Simulation

Alright that was whirlwind of applications, but it’s good to know the motivation for
why we’re doing this. Now I'll say more about what these combinatorial

structures are.

Now the next slide has a lot of examples of the data structures that make those
applications possible. CAVEAT: it will be abstract and you don't actually need to
fully grasp them in order to use them or understand the applications. What I'll
show is what makes the math behind the picture

24

@ What: combinatorial data structures :zUF

Datatype Set
Structure A Sets, Functions, and Graphs are
P all simple examples of
Visualized ([® g combinatorial data structures.
example \ ®
p \,,(f, 7

So combinatorial data structures | think of as elements that are connected. Here are
some basic examples. Starting with a set which is just a bunch of unconnected
elements, no structure

25

@ What: combinatorial data structures

Datatype Set Function
Structure A A, —Fs B
m O =0
Visualized [@ \)
) '. @) |o O
example \ ® /
\C:/ O-==-=- Ne)

+iUF

Sets, Functions, and Graphs are
all simple examples of
combinatorial data structures.

Functions then allow us to connect elements living in different sets.

26

@ What: combinatorial data structures

Datatype

Structure

Visualized

example

Function Graph

SUF

Sets, Functions, and Graphs are
all simple examples of
combinatorial data structures.

Directed graphs are really just a pair of functions, where the edges themselves are a
set and the functions say where their source and target are.

As you can see, each of these examples is going up a level of abstraction. The next
level of abstraction requires us to think of the structure itself as a variable parameter.

27

@ What: combinatorial data structures

Datatype Set Function Graph

Structure A A -~ B EZ

Visualized
example

Datatype Class

Example is o 0
Structure 1 ol
6C9 it ot

Visualized
example
(with above
structure)

+iUF

These are C-Sets, too.

The “C” is the Structure.

C-Sets are a powerful abstraction.
Each “C” gives a new datatype.
Instance is network of sets+functions.
C-Sets can represent anything you
would put in a database

C-Sets are both expressive and easy to
compute with.

Call this parameter "C" (it turns out it's something called a category, but think of it as a
graph).That’s to say, we’re now working with data structures, where the shape of the
structure is itself a parameter. This is really powerful because it means if you write a C-
set algorithm to work with arbitrary C, it’s like you’ve implemented an algorithm for a

massive variety of very different looking datatypes.

28

D

What: combinatorial data structures

Datatype

Structure

Visualized
example

Datatype Class

Example
Structure
‘ C b

Visualized
example
(with above
structure)

Set

I

Function
f
A -~ B
O O
o~ O
Or===-- O
C-Set
S
1S 0s
s
(0]
it ot
T

Graph

sre

—a

EZ¥———>V
gt

o

=|-|-[s

+iUF

C-Set
Slice
Span
Structured cospan
Diagram
Sketch

Attributed C-Set

We’ll use many other structures
that build upon C-Sets.

On my list of structures on the right, C-sets are just the starting point, and all the ones
below it actually build more abstractly upon C-sets. But we'll introduce those as
needed once we start talking about the key projects I'd like to showcase.

29

Outline

‘..........‘ Combinatorial

Applications: Where?
O
o Structures: What?

@ Algorithms: How?
O Virtues: Why?

Data Structures

>

® & @ |

SUF

Epidemiology

Case Studies

Specification

Exploration

Simulation

| wanted to give a quick overview of some algorithms that operate on these
combinatorial structures but that gets a bit technical and it’s probably best to
show applications of those algorithms, so I'll leave skip those slides for now.

30

@How: sl Calie 2:UF

HIDDEN
Limits and colimits respectively, loosely correspond to the ideas of solving
equations and gluing structures together.

31

@How: The Chase :::UF

Satisfies X

-]

[-»]

HIDDEN

The chase is an algorithm which takes a model, call it ”I” there at the center of this
cartoon, and it tries to make it satisfy some constraints which we’ll call sigma.

It doesn’t want just any model that satisfies this though. If you imagine these
arrows as adding assumptions to a model, then the algorithm is finding the
best possible way to make | satisfy the equations, by adding the least possible
assumptions. This shows up in a surprising number of contexts.

4 |H

32

@How: Canonical isomorph of C-Sets

SUF

HIDDEN

Lastly, there is this notion of symmetry where two models really are morally the

even though they’ve been labeled differently. This is isomorphism.
This algorithm finds a specific labelling that is equal for all isomorphic C-Sets.

33

@How: Canonical isomorph of C-Sets

CC X

www.ccdc.cam.ac.uk

PubQhem

HIDDEN

This is relevant for scientists who, for example, might have a molecule and want to
check if it exists in some massive databases. If we don’t compute a canonical
representation of ordering all the atoms and bonds, then it can be very
inefficient to check, for each molecule in all these databases, whether or not
there exists an isomorphism.

34

Outline

000 O0OGOGEOSOSOS Combinatorial
E E Data Structures

Applications: Where?
O
o Structures: What?

@ Algorithms: How?
O Virtues: Why?

>

® & @ |

SUF

Epidemiology

Case Studies

Specification

Exploration

Simulation

I’d rather focus on why these combinatorial structures are a healthier way of

representing knowledge.

The theme of these virtues is that there are really nice things you want to do with
models but cannot do them if models are code or math. You can only do them
when you represent your model as these (rigorous) pictures.

35

’ Why: Transparency / predictability < UF

is
it

|1

(model does not incorporate any
concepts other than S-T connectivity)

0s

ot

B

Analyzing the behavior of combinatorial
data structures is easier than arbitrary code

* See what assumptions were made immediately

* Model is data, rather than code. Can be analyzed,

So what are these benefits? The first one | call transparency or predictability.

By separating the structure of the model from its behavior, you can see
assumptions that have been made.

Without even looking at a particular Petri Net, by knowing the structure of it’s
schema we can see what sorts of concepts it could possibly contain.

36

’ Why: Transparency / predictability < UF

is . 08 * See what assumptions were made immediately
lI < > OT * Model is data, rather than code. Can be analyzed,
it ot
el & ,

500

(model does not incorporate any R

concepts other than S-T connectivity) - ‘ 400

300

Number

N
°
=3

(rate does not depend on
of recovered people) ’ n::

(strictly increases over time)

0 25 50 75 100
Time

Analyzing the behavior of combinatorial
data structures is easier than arbitrary code (for all possible simulations)

Then, looking at the structure of the Petri net, even a simple computer algorithm
can deduce that the number of recovered people will strictly increase for all

possible simulations.

This is pretty simple stuff here, but when | talk later about encoding constraints
into the structure, you’ll see this is a powerful point.

In general, analyzing behavior is easier than with arbitrary code or arbitrary math.

37

‘ Why: Generality of scope +2UF

* Many different applications share the same syntax

* E.g. these are all applications of wiring diagrams
(a particular kind of C-Set)

General processes

prepare lemon meringue pie
prepared crust
fill crust
= lemon unbaked
buter make | Ging femon pie
sugar lemon dd urbaked
pic
yolk filling :
g |separate | — mernngue
S8BT
N+ make meringue
— meringue
Explicit distinction between syntax and

semantics makes it easy to generalize models

Fong and Spivak. “Seven Sketches in Compositionality” (2018)

So this slide visualizes a directed wiring diagram, which is actually a specific type of
C-Set. You can see here it represents general processes such as making a pie.

' Why: Generality of scope :2UF

* Many different applications share the same syntax

* E.g. these are all applications of wiring diagrams
(a particular kind of C-Set)

Inequality reasoning

General processes

v prepare lemon meringue pie
y
: S Y S - prepared crust
w X
| |7 fill crust
< femon o]
” = s b make | G s
e lf‘:]';Ton ~ Y add m*::‘d
yolk in A
t<v+wandw+u SX+ZaﬂdV+XSy g5 | separate | — 6 meringue
impliest+u <y +z il -~
N+ make meringue
— meringue
Explicit distinction between syntax and
semantics makes it easy to generalize models

Fong and Spivak. “Seven Sketches in Compositionality” (2018)

But this same syntax allows us to represent mathematical proofs of a certain kind.

39

‘ Why: Generality of scope Lincar algchia s2UF

* Many different applications share the same syntax

* E.g. these are all applications of wiring diagrams
(a particular kind of C-Set)

Pawel Sobocinski (http://graphicallinearalgebra.net)
Inequality reasoning

General processes
0 prepare lemon meringue pie
t y
S w X S prepared crust
__4]_/— fill crust \
< femon . oo L
- ke bemon u nbaked
m > butter ma filling temon pie
— e ’f‘i?]'l“f’“ = A s |7
yolk in; 2
t<v+wandw+u <x+zandv+x<y s | separate | — | ; rnernEYe
impliest+u <y +z il -~
N+ make meringue
— meringue
Explicit distinction between syntax and —
semantics makes it easy to generalize models

Fong and Spivak. “Seven Sketches in Compositionality” (2018)

And furthermore we can even represent linear algebra with these diagrams, which
becomes a lot less mysterious when it is visual. (THERE'S A LEARNING CURVE.)

When you write code for wiring diagrams in general, it becomes applicable in a

wide variety of circumstances (obviously, also code for C-Sets in general has
wide applications).

Basically, syntax and semantics are two independent knobs we often want to

tweak, so keeping them separate makes it very easy to do the kinds of
generalizations that we naturally want to do.

40

' Why: Transferability +2UF

Brown, Spivak, Wi ky. “Computational Data integration for Computational Science” (2019).

Migrate / merge data in different schemas g

from

Data Integrity Constraints :
A rev. from = from :
A,: rds . from = idRxNet
Asirev.rev =idpy,

different structures when our models change.
A tedious and error-prone process otherwise.

\ Data can be automatically moved between

v o)

RxNet

4 net

5 ,,.,V solv
M . I Simulation l >

Generality is also related to transferability. If one's model of the world updates and
you want to migrate your infrastructure from the old to the new, it’s possible
to do this knowing just from declaring the relationship of the structure of the
old data to the new data. This can’t be done when the model is a uniform block
of arbitrary programming language code.

41

+iUF

“Find all catalysts and the reactions they catalyze”

>

SELECT state2.id

FROM S AS statel, S AS state2, SELECT tranl.id, statel.id
T AS tranl, T AS tran2, FROM S AS statel, T AS tranl,
Ty SR Angy I AS inl, 0 AS outl
QRS oUey O A ouE WHERE inl.is = statel.id,

WHERE inl.is = statel.id, inl.i _ 1.id
inl.it = tranl.id Aot 5 BEahklc
outl.os = state2.id outl.os = statel.id
outl.ot = tranl.id outl.ot = tranl.id

| want to highlight the hierarchical design virtue by considering querying a
database. If you’re not familiar with this problem, just imagine that, if have a
gigantic petri net, we need to use a special language that can efficiently extract
data from it. This language, SQL, is at the bottom here.

But we also have a special graphical syntax which corresponds to SQL queries, and
this representation has an important advantage.

42

Why: Hierarchical design +2UF

D?.tabase.q-uene.s can be built hierarchlcally “Find all catalysts (that are the product of two reactions)
using a wiring diagram syntax. Raw SQL and the reactions they catalyze”
queries are not composable this way.

Ll
—-— ~

- ~
- ~
’f ~

5 B N]
—_——— --55‘
SELECT state2.id ws™=™

FROM S AS statel, S AS state2, SELECT tranl.id, statel.id
T AS tranl, T AS tran2, FROM S AS statel, T AS tranl,
L.AS dal, IS 62, I AS inl, 0 AS outl
QS ontl, O AN oute WHERE inl.is = statel.id,

WHERE inl.is = statel.id, inl.i _ 1.id
inl.it = tranl.id Silzat = franlalc
outl.os = state2.id outl.os = statel.id
outl.ot = tranl.id outl.ot = tranl.id

The picture form has a special advantage in that it is is compositional — you could
take the query on the left and substitute it into the query on the right.

SQL code in contrast, doesn’t let you do this kind of substitution (you’d have to
write a special purpose algorithm to handle all the edge cases)

43

Outline

000 O0OGOGEOSOSOS Combinatorial
E E Data Structures

Applications: Where?

Structures: What?

Algorithms: How?

Virtues: Why?

QL LS

<

® & @ |

SSUF
Epidemiology
Case Studies
Specification

Exploration

Simulation

So that was very broad and very fast.

RECAP: lots of things you can't do with models as code that we highlighted

But I'll switch focus to some specific projects

44

Structures

Applications
Model Specification Model Comparison Model Exploration Model Inference
EPIDEMIOLOGY DATABASES MULTIPHYSICS
X
C-Set - .
di e Transparent /
) isease dynamics Predictable
Slice | ;% | Diagrammatic <
Data migration e —¥
theories General -
Span Stratified disease 3 g
models 7]
Structured cospan
Transferable
. | DECAPODES
Diagram Agent-based models \
Hierarchical
Sketch
Automorphism The Chase Limits /
Search Colimits
Algorithms

| want to show three categories of projects with examples in each. | think of each
of these projects as intersecting with each of the four topics | overviewed

previously.

45

Structures

Model Specification

Structured cospan

Diagram ‘—“1 Agent-based models K

Sketch

Model Comparison

Applications

NMIOL DA

Human vector
disease dynamics

Model Exploration

MULTIPHYSICS

Stratified disease
models

Automorphism
Search

X g
Data migration

Ologs

%
/

e

=

—>

; .

Diagrammatic
theories

+iUF

Model Inference

Transparent /
Predictable
<
=g
General
g
172}

— Transferable

=| DECAPODES |

N

The Chase

Algorithms

/

\

Limits /
Colimits

Hierarchical

Looking at all the projects | want to talk about, we could draw all the connections.

46

I’'ve been strongly advised to not show all the connections at once.

47

Structures

Applications
Model Specification Model Comparison Model Exploration Model Inference
EPIDEMIOLOGY DATABASES MULTIPHYSICS
X
C-Set
Human vector
. . Transparent /
disease dynamics :
Slice Disgr _— Predictable <
| Data migration | : =
theories o §
Span Stratified disease Genceal g
models w»
Structured cospan
Transferable
. | DECAPODES
Diagram Agent-based models |
Hierarchical
Sketch
Automorphism The Chase Limits /
Search Colimits
Algorithms

In fact, we will just focus on epidemiology.

48

Model specification o
Applications

Model Specification Model Comparison Model Exploration

C-Set
T Human vector

disease dynamics

Slice
7]
@
Bt
= Span Stratified disease
~—
@ models
E Structured cospan
N
7]
Diagram Agent-based models
Sketch
Automorphism The Chase Limits /
Search Colimits

Algorithms

Model Inference

Transparent /

" Predictable

General

Transferable

Hierarchical

Q?UF

SomjaiA

The first thing | will talk about is modeling disease dynamics.

49

@Speciﬁcation: Structure and semantics :zUF

Petri
‘SV
Schema: 3 0
\@/
Instance:

Now I'll reintroduce the concept of a Petri Net as a C-Set. A petri net is a nice way
to separate the syntax (a kind of graph showing what reacts with what) from
the semantics (which are dynamical systems).

We use a C-set with this shape of sets and functions to encode the fact that there
are possibly many species flowing into and out of transitions.

50

@Speciﬁcation: Structure and semantics

Schema:

[Input | LS |
1 S

Instance: 2 1

3 1

Petri
‘S
(1] 0]
g
7
Out |O_T|0O_S 1 "

p
B
Y

1 B
2 B
3 Y

w»-qb—4|

2UF

51

Here’s SIR as an example on the bottom, with the equations that are represented

by this model

51

@Speciﬁcation: Structure and semantics

+iUF

Petri Nets are C-Sets, can be
given the semantics of mass-
action kinetics

Petri
bV
Schema: 7] 0
T
Ciopuc | L5 | L7 Oue | 0.7 05
1 SIINE 1 8 I -
Instance:| 2 1 s 2 5 1 H—@
3 1 Y 3 Y R

S&dE 21
rg = kg * [S] * [I]

I¥YR
r, =k, * [I]

52

We can assume mass-action kinetics, where reaction rates are given by a constant

times the product of reactant concentrations.

So we could stop here and say we’re done defining our class of models, but this is
pretty unrestricted. There’s not much scientific knowledge encoded here other

than mass action kinetics.

52

0=

C-Set Transformation Example
(or ‘homomorphism’) lfetﬂ homomorphisgn

Mosquito Mediated SIR Model

iy * C-Set morphisms are
Domain C-Set o o combinatorial data structures.
STIO . } * They map elements of one C-
vecP rachl Set onto elements of another.

* They must satisfy some laws

e 0 (i.e. ‘preserve the structure’

l of the domain)

Host-Vector Model

STTIO
Codomain C-Set 0 | Codomain =
Constraints on

domain

MMMM@W ’
et “ i 22)

(o— Specification: Combinatorial constraints :IUF

53

Now | want to return to those constraints | talked about earlier.

Just like a C-set is a combinatorial data structure, the transformations between C-
sets are also combinatorial data structures. A C-Set transformation is like a
meta-level function which maps C-sets (which are networks of sets and
functions) in a way that respects structure.

Suppose we have a particular petri net which encodes very high level information
about the kind of petri nets we’re interested in. This one is an example taken
from a recent paper of Sophie / Evan / James.

By restricting our petri nets to those which have homomorphisms into this one,
we’re in effect demanding that anyone who provides us a Petri also must
declare that their species are kinds of either Humans or Vectors, and that all
transitions are either two humans interacting, two vectors interacting, or a
human and a vector interacting.

53

/

Model extended with extra transition

‘

Mosquito Mediated SIR Model

Demanding that a C-Set Host:Vector Model
morphism exists into some fixed

model is a constraint. i I ! i
REing et a ;.,-.n. Al ewors 0 sipuciureg epigem Noge “ 22‘

v—=)Specification: Combinatorial constraints nUF

54

Why do | call this a constraint? Well not every petri net has a homomorphism into
it. The constraint can be efficiently checked, so it’s not possible for someone to
submit a new model that has a transition converting a human into a vector. We
rule out that (and many more nonsensical Petri nets) merely by changing our
model type from Petri net to this homomorphism type (which is called a slice in
category theory lingo).

54

(¥=")Specification: Combinatorial constraints

Mosquito Mediated SIR Mod

* Homomorphisms effectively

assign “types” to elements of ,\

the domain model. - ./-

o
V|

Demanding that a C-Set Host:Vector Model
morphism exists into some fixed

model is a constraint. hl i!

+IUF

Model extended with extra transition

55

Not only have we constrained our models, but we obtain a notion of typed
elements that is completely transparent in the model: we know which states

are humans and which are vectors.

55

(52 Specification: Combinatorial constraints nUF

Model extended with extra transition

Mosquito Mediated SIR Mod

* Homomorphisms effectively

assign “types” to elements of ,\

the domain model. - ./-

* Homomorphism search is

type inference . ‘

Vi X

Dema.n.d.ing that a C-Set Host-Vector Model

morphism exists into some fixed l
model is a constraint. i ’
REING €1 3 Al ldeora LAMCeWOrK 10 Struciureg epigem Noge “ 22‘

56

And one useful feature of having homomorphism search implemented generically
(for all C-sets) is that we get for free an algorithm which takes a partially
labeled Petri net and tries to find whether zero, one, or many type type
assignments. This is good because it can be tedious to specify all this data
manually.

Human vector Transparent /
—1 disease dynamics pdeap 'ebl
STioe redictable <
. 5
%]
S -~
a Span Stratified disease General g
g models n
% Structured cospan Transferable
Diagram Agent-based models
Hierarchical
Sketch
Automorphism The Chase Limits /
Search Colimits
Algorithms

Model Specification

AN

Model Comparison

C-Set \

Applications

Model Exploration Model Inference

*21IF

So in summary, we enable the representation of models encoding precise domain
knowledge by using the combinatorial structure of slices.

| actually could use this story to demonstrate all four of the virtues here, but the
key one to stress is the fact that model has become transparent and
predictable from representing it combinatorially.

57

Structures

Model Specification Model Comparison

C-Set
Human vector
disease dynamics
Slice
Span Stratified disease
models
Structured COSEV \
Diagram | Agent-based models
Sketch
Automorphism
Search

. Model exploration
Applications

Model Exploration Model Inference
Transparent /
Predictable
st
-
General =t
-]
w
Transferable
Hierarchical
The Chase Limits /
Colimits
Algorithms

SUF

Now | want to return to the model exploration problem.
The key structure we’ll be invoking is a diagram. In particular, we’ll look at

diagrams in the category of Petri Nets. (22:30)

58

Exploration: Problem statement +2UF

‘Given #his class of models and #bis data ...what model best represents the data?”

We must impose some structure
(implicit or explicit) on the space
of models in order to navigate.

% 5 @ »
. % ot .Qv“. \
oo * ”* Y ® o
. \
»® e o, "
A I DY, 9
o e o ¥ L
s gt 0N
° = B ? .".
. 2 ® w0 v 7 "9
9 @ 1 o o . Y »
A ‘.;. 1 3 ‘,‘.,"", '. ‘e
[.‘I“ .o."t,O
a = ® []
. o a® @
. -] : ; X
® 1 «*, .._. i a"
* .. £ X}
c: “ * ®® ‘e .,:_'.
. -
0‘-: *® .. X o -
..'o $ ‘g e 0 ¢ o ~
L S N w 5 59

But first, what is our goal? Whatever problem we’re trying to solve with the model,
a scientist is confronted with the fact that there are too many possible models

to do any kind of naive search.

And it’s hard to explore if we don’t have an actual structure through which allows
us to visualize a space of Petri nets (rather than this big grab bag soup that
comes from considering Petri nets as living in a big Set rather than something

with more structure).

So I'll now introduce the category theoretic notion of diagrams as a potential
solution to creating a space of models rather than a bag of models.

Diagrams give us a tool for cutting through this space in a meaningful (not brute
force) way.

59

Exploration: diagrams as explicit model spaces

Diagram
Datatype in Petri
Structure Shape—2- Petri
Visualized
Example >

Diagrams in Petri formalize a network

of Petri Nets with a shape
A C-Set is a diagram in Set.

SUF

A diagram in Petri is a combinatorial data structure built on top of C-Sets. In

essence, we have a shape which is a schema just like “C” was a schema for C-
sets (it’s like a directed graph with equations). And instead of the values we put
on that structure being Sets and Functions, we put Petri Nets and Petri net

morphisms.

Note, given this definition, a C-set is itself tantamount to a diagram in Set.

60

Exploration: diagrams as explicit model spaces :3UF

D_]gm A particular
Datatype in Petri diagram in Petri
Va
Structure Shape . Petr £, .
Vi Ve
Visualized
Example » = s =
] J
) ; : 1 @ @
* Diagrams in Petri formalize a network
of Petri Nets with a shape -
* A C-Setis a diagram in Set. E_ ﬁ.{

Here’s an example defining a triangle-pair-shaped network of Petri nets.

Exploration: diagrams as explicit model spaces :QUF

. : Diagram
Disgram Apartiolar Morphism
Datatype in Petri diagram in Petri in Petri
D I Vs ShapeMap :
Structure Shape— Petri = & Shape: —— Shape:
\ DiagMap
Vi V2 D \ %3
Visualized
— E: Es Petri
Example v
|
°
; ; : 10 O
* Diagrams in Petri formalize a network -
of Petri Nets with a shape Sl
* A C-Setis a diagram in Set. | P

That’s a very obvious generalization to make, but the subtlety lies in what the right
choice of morphisms are between these objects. For C-sets, we only ever look
at morphisms where C is fixed, but now this category of diagrams can have
changing structure and changing data at the same time!

Exploration: diagrams as explicit model spaces :-’»UF

; Diagram
Diggram Apatiouar Morphism
Datatype in Petri diagram in Petri in Petri
D Vs ShapeMap
Structure Shape— Petri . . Shapei——* Shape:
’ g \ E&lap
Vi Vo D: \ D:
Visualized
* E2 Es 1
Example 05 Petri
g |
9
® ® Don’t worry!
* Diagrams in Petri formalize a network b
of Petri Nets with a shape N
* A C-Setis a diagram in Set. e e

It’s a bit too much data to visualize, but trust me that this is the right notion of
morphism for our purposes.

But now | want to address the question of why it was actually useful to recast our
vague notion of a “model space” into something precise like this - what did we
gain? Well, category theory has a lot to say about things you can do with
diagrams, and it turns out some of those are useful at recasting our other
vague notions into concrete algorithms that can be implemented.

Exploration: product model space +2UF

“City dimension”

Products of diagrams take
different ‘dimensions’ and yield a
product model for each
combination of elements from
each dimension.

“Disease dimension”

One thing we get is a way of combining small model spaces into larger ones. This is
a reasonable problem to have, where the scientist has a few ideas of
“dimensions” so to speak that they want to explore along, and they want their
models to take features from each of these dimensions.

Here’s an example of a pullback in the category of diagrams (though because
pullbacks are a kind of generalization of products, | also call it a product of
model spaces).

On the vertical axis, we have a 1-city model, a 2-city model, and so on. And on the
horizontal axis we have some sequence of disease dynamics.

64

A

Exploration: product model space :2UF
.f.. .;.
A3+B3~...

P

A2»B2~ ...

P

Al B s

“City dimension”

Products of diagrams take
different ‘dimensions’ and yield a
product model for each
combination of elements from
each dimension.

“Disease dimension”

65

The resulting model space would look like this at the shape level. We'll pick one of
these models to see what element of Petri that vertex got mapped to.

Exploration: product model space +2UF

“City dimension”

Products of diagrams take
different ‘dimensions’ and yield a
product model for each
combination of elements from
each dimension.

“Disease dimension”

66

You see here we have the same disease dynamics occuring in two cities that
interact with each other.

If this process were coded up in a script, it would look like a nested for-loop for
each dimension. That works for a one off product, but it doesn’t compose well
with other ways of combining model spaces and the resulting product models
do not have provenance.

66

Exploration: model space provenance 2UF

/ z: — —l—— ::!

Products of diagrams leave a record of where -
elements of a product Petri Net came from, | &=
which can be used for parameter estimation.

67

Computation of pullbacks gives a complete account of where features in a composite
model come from. This can be useful in many ways .The one I will highlight is
making initial guesses for parameters.

67

Exploration: model space provenance

Products of diagrams leave a record of where
elements of a product Petri Net came from,
which can be used for parameter estimation.

2UF

68

Suppose we fit SIR to our data and determine iniitially 9/10 people are Susceptible,

and we collect some demographic data that 1/3 of people are in City X.

We really ought to deduce that, initially, 3/10 people are susceptible in City X in

the product model.

68

Exploration: model space provenance
-
7

a Y
Ty \ \
e _ 0=
= N
‘ (=@ Ty : .
3@, @ T il f :
\i; __________________ ‘B ‘ ‘
3/10? . B

Products of diagrams leave a record of where
elements of a product Petri Net came from,
which can be used for parameter estimation.

9/10

2UF

69

And you'll see that the data of a pullback actually tells us where that state was

derived from, so we can compute this value!

These types of computations assume a kind of statistical independence of the

dimensions, but it is still useful as an initial guess for iterative algorithms.

69

Exploration: pushout model space +2UF

:

A