
Hi, I’m a postdoc working with James Fairbanks for the past 8 months. Prior to that 
I was working as a computational chemist where I struggled a lot with issues 
that I think we’re making great progress towards addressing. I hope if you're a 
computational scientist that this talk convinces you that these techniques are 
worth looking more into. This will be an applied category theory talk, so I’ll 
focus on the applications rather than the theory.
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I want to start by providing contrast with a very pervasive form of scientific 
knowledge, which seemed almost necessary to me while doing computational 
research. 

This is a small Python script which takes some data and compares it to a small 
simulation of a chemical reaction. This one is self-contained, but in general 
they live in a filesystem and can refer to each other. The big idea behind such a 
script is sometimes mentioned informally in a publication, and that is an 
important form of scientific knowledge but one we’ll ignore for this talk 
because it is informal and can’t be manipulated by tools (short of NLP).
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If you point to a figure in the paper and ask the author ”What does this mean?” 
and demand a rigorously defined object, you’ll get pointed to this piece of code 
(though you’d also need to know lots of details about their computer 
environment: versions of libraries, environment variables, etc.).

You could ask what are the downsides of this being the reality for many scientists.
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The abstract critique of this style is that it mixes together data, structure, and 
semantics, which all should be kept apart. 

The corresponding practical critique is lose the opportunity to do some cool things 
with our models if we make this mistake.
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We’d like to have a language for declaring our assumptions and how they’ve 
changed, and when we do so, it’s as if our code gets updated into the new 
framework.
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There’s a process that we all do of tweaking parameters and testing hypotheses 
until we get something that matches our experimental result – this process 
isn’t made explicit or at all automated with this paradigm, even though there 
are certain mechanical and tedious aspects of it that beg to be automated.
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In some sense writing the code at all seems like an undesirable, error-prone task. If 
you look at the description at the top of the function, we ought to be able to 
just declare that information and get the whole simulator for free.
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We have many informal notions of when models are equivalent or submodels of 
each other in some sense, and regardless of what we pick we cannot actually 
compute that without a better formal representation of the model.
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Lastly, once you make some syntax-semantics distinction, it becomes clear that we 
should be able to give the same syntax a different semantics, such as taking 
this chemical reaction and instead running a stochastic individual-based 
simulation rather than the analytical, aggregate ODE simulation that you see 
here.

Overall, there are many tasks that we’d like to do that can’t be done with arbitrary 
code. We’ll see even giving a thorough specification of our system in the 
language of differential equations does not help us towards these goals.  
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So I want to this talk in two parts, at first giving a bird’s  eye view with a lot of 
breadth, and then picking a particular type of scientific model and going in 
depth.
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So I’ll first say where are real world domains in which we’ll apply combinatorial 
structures
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Then I’ll get more into examples of what they are.
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I’ll highlight some algorithms that can operate on them.
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And then try to summarize what are the virtues of using them over some standard 
alternatives.
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The second part will focus on Petri Net models in epidemiology and talk about 
declaring, exploring, and simulating them all in a transparent way.

First half I’ll make a lot of claims and you'll have to take my word for it... But in the 
second half I’ll give more evidence for the claims I make... though a rigorous 
understanding of why this works requires some category theory.
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So to begin with this question, note that a standard solution is to use some sort of 
informal diagram along with natural language to convey intuition, and then 
provide some mathematical equations or code which are unambiguous and 
precise.

As an example which will be featured many times in this presentation, here is a 
very simple kind of model used in epidemiology called the SIR model. The 
intuition is that people start out susceptible to some disease, such as COVID. 
They then can become infected with some probability, and then they transition 
to recovered with some probability. The expressions that make this precise 
actually say that there exist two transition events: one susceptible person and 
one infected person combine to make two infected people, and one infected 
person becomes one recovered person.
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An improvement that we would propose is that there exists a type of diagram 
which is well defined and intuitive like a graph, but it actually can be 
unambiguously converted into those formal reaction expressions. This is called 
a Petri net, and you can see how the multiple arrows are keeping track of the 
data in the formal expression. I will give a formal definition for it later in the 
talk.

That might seem like a superficial difference from the equation formalism, but
consider now the addition of constraints to some class of reactions we want to 
consider. 
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In the case of chemistry, we often want to exclude from consideration reactions 
that contain three things that react at the same time. And you can ask: What 
data structure do you represent your reactions in such that you automatically 
enforce this constraint?
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I give another more sophisticated kind of constraint below, saying that all species 
must be tagged as either inert or reactive and furthermore you can’t have a 
reaction between two inert species. 

The punchline will come in the second half of the talk, where I describe something 
very closely related to the petri net you see here that IS able to represent these 
constraints purely by construction, meaning all possible diagrams you can draw 
correspond precisely to the subset of reactions which satisfy these logical 
constraints.

So this is something you can do working in this alternative syntax to the syntax of 
mathematical expression trees. It's less powerful in what it can represent, but 
more powerful in what we can do with it. (that's a recurring theme)
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Another application of combinatorial data structures is to compare whether two 
models are the same, structurally or behaviorally. 

In the example here I’m showing, a different kind of formal, graphical 
representations for differential equations is used to reperesent the heat 
equations in two different ways (things can be named differently and 
structured differently). 

But in virtue of how they are represented, we have a decidable algorithm which 
computes behavioral similarity by determining whether or not the solutions of 
one system of equations are all solutions of the other. This is not something 
you can do if just handed a bunch of PDEs, because again raw mathematical 
expressions have way too much expressive power, so in general it’s rare for 
decidable algorithms that do useful things with them. 
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Another place we want to deploy these representations is the model exploration 
problem. I’ll go more into detail about this later, but as a teaser, consider what 
it would mean to combine two Petri net models, one of which is the SIR model 
and another which we call a “two city model”, where people live in United 
States and Europe and can move between them.
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The intuitive answer can be elegantly using these Petri net representations 
(category theory tells us what the right notion of product is for them), whereas 
taking the product of the literal differential equations wouldn’t yield anything 
useful.
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The last application area I want to highlight is the problem of model inference. If 
you were handed this petri net on the left, could you automatically generate a 
simulator which accepts initial conditions and reaction rates and produces a 
plot on the right? This is a useful feature because scientists really shouldn’t be 
writing code – we envision a future where they can work purely in their true 
domain, and with the right representations of their models the solvers should 
be automatically generated.
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Alright that was whirlwind of applications, but it’s good to know the motivation for 
why we’re doing this. Now I'll say more about what these combinatorial 
structures are. 

Now the next slide has a lot of examples of the data structures that make those 
applications possible. CAVEAT: it will be abstract and you don't actually need to 
fully grasp them in order to use them or understand the applications. What I'll 
show is what makes the math behind the picture  
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So combinatorial data structures I think of as elements that are connected. Here are 
some basic examples. Starting with a set which is just a bunch of unconnected 
elements, no structure
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Functions then allow us to connect elements living in different sets. 
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Directed graphs are really just a pair of functions, where the edges themselves are a 
set and the functions say where their source and target are. 

As you can see, each of these examples is going up a level of abstraction. The next 
level of abstraction requires us to think of the structure itself as a variable parameter.
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Call this parameter "C" (it turns out it's something called a category, but think of it as a 
graph).That’s to say, we’re now working with data structures, where the shape of the 
structure is itself a parameter. This is really powerful because it means if you write a C-
set algorithm to work with arbitrary C, it’s like you’ve implemented an algorithm for a 
massive variety of very different looking datatypes.
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On my list of structures on the right, C-sets are just the starting point, and all the ones 
below it actually build more abstractly upon C-sets. But we'll introduce those as 
needed once we start talking about the key projects I'd like to showcase.
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I wanted to give a quick overview of some algorithms that operate on these 
combinatorial structures but that gets a bit technical and it’s probably best to 
show applications of those algorithms, so I’ll leave skip those slides for now.
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HIDDEN 
Limits and colimits respectively, loosely correspond to the ideas of solving 

equations and gluing structures together. 
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HIDDEN 
The chase is an algorithm which takes a model, call it ”I” there at the center of this 

cartoon, and it tries to make it satisfy some constraints which we’ll call sigma. 
It doesn’t want just any model that satisfies this though. If you imagine these 

arrows as adding assumptions to a model, then the algorithm is finding the 
best possible way to make I satisfy the equations, by adding the least possible 
assumptions. This shows up in a surprising number of contexts.
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HIDDEN 
Lastly, there is this notion of symmetry where two models really are morally the 

even though they’ve been labeled differently.  This is isomorphism.
This algorithm finds a specific labelling that is equal for all isomorphic C-Sets.
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HIDDEN

This is relevant for scientists who, for example, might have a molecule and want to 
check if it exists in some massive databases. If we don’t compute a canonical 
representation of ordering all the atoms and bonds, then it can be very 
inefficient to check, for each molecule in all these databases, whether or not
there exists an isomorphism.
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I’d rather focus on why these combinatorial structures are a healthier way of 
representing knowledge. 

The theme of these virtues is that there are really nice things you want to do with 
models but cannot do them if models are code or math. You can only do them 
when you represent your model as these (rigorous) pictures.

35



So what are these benefits? The first one I call transparency or predictability. 

By separating the structure of the model from its behavior, you can see 
assumptions that have been made. 

Without even looking at a particular Petri Net, by knowing the structure of it’s
schema we can see what sorts of concepts it could possibly contain. 
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Then, looking at the structure of the Petri net, even a simple computer algorithm 
can deduce that the number of recovered people will strictly increase for all 
possible simulations.

This is pretty simple stuff here, but when I talk later about encoding constraints 
into the structure, you’ll see this is a powerful point.

In general, analyzing behavior is easier than with arbitrary code or arbitrary math. 
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So this slide visualizes a directed wiring diagram, which is actually a specific type of 
C-Set. You can see here it represents general processes such as making a pie.
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But this same syntax allows us to represent mathematical proofs of a certain kind.
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And furthermore we can even represent linear algebra with these diagrams, which 
becomes a lot less mysterious when it is visual. (THERE'S A LEARNING CURVE.)

When you write code for wiring diagrams in general, it becomes applicable in a 
wide variety of circumstances (obviously, also code for C-Sets in general has 
wide applications).

Basically, syntax and semantics are two independent knobs we often want to 
tweak, so keeping them separate makes it very easy to do the kinds of 
generalizations that we naturally want to do.
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Generality is also related to transferability. If one's model of the world updates and 
you want to migrate your infrastructure from the old to the new, it’s possible 
to do this knowing just from declaring the relationship of the structure of the 
old data to the new data. This can’t be done when the model is a uniform block 
of arbitrary programming language code.
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I want to highlight the hierarchical design virtue by considering querying a 
database. If you’re not familiar with this problem, just imagine that, if have a 
gigantic petri net, we need to use a special language that can efficiently extract 
data from it. This language, SQL, is at the bottom here. 

But we also have a special graphical syntax which corresponds to SQL queries, and 
this representation has an important advantage.
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The picture form has a special advantage in that it is is compositional – you could 
take the query on the left and substitute it into the query on the right. 

SQL code in contrast, doesn’t let you do this kind of substitution (you’d have to 
write a special purpose algorithm to handle all the edge cases)
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So that was very broad and very fast. 

RECAP: lots of things you can't do with models as code that we highlighted

But I'll switch focus to some specific projects
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I want to show three categories of projects with examples in each. I think of each 
of these projects as intersecting with each of the four topics I overviewed 
previously.
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Looking at all the projects I want to talk about, we could draw all the connections.
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I’ve been strongly advised to not show all the connections at once.
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In fact, we will just focus on epidemiology.

48



The first thing I will talk about is modeling disease dynamics.
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Now I’ll reintroduce the concept of a Petri Net as a C-Set. A petri net is a nice way 
to separate the syntax (a kind of graph showing what reacts with what) from 
the semantics (which are dynamical systems).

We use a C-set with this shape of sets and functions to encode the fact that there 
are possibly many species flowing into and out of transitions. 
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Here’s SIR as an example on the bottom, with the equations that are represented 
by this model
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We can assume mass-action kinetics, where reaction rates are given by a constant 
times the product of reactant concentrations.

So we could stop here and say we’re done defining our class of  models, but this is 
pretty unrestricted. There’s not much scientific knowledge encoded here other 
than mass action kinetics.
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Now I want to return to those constraints I talked about earlier. 
Just like a C-set is a combinatorial data structure, the transformations between C-

sets are also combinatorial data structures. A C-Set transformation is like a 
meta-level function which maps C-sets (which are networks of sets and 
functions) in a way that respects structure. 

Suppose we have a particular petri net which encodes very high level information 
about the kind of petri nets we’re interested in. This one is an example taken 
from a recent paper of Sophie / Evan / James. 

By restricting our petri nets to those which have homomorphisms into this one, 
we’re in effect demanding that anyone who provides us a Petri also must 
declare that their species are kinds of either Humans or Vectors, and that all 
transitions are either two humans interacting, two vectors interacting, or a 
human and a vector interacting. 
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Why do I call this a constraint? Well not every petri net has a homomorphism into 
it. The constraint can be efficiently checked, so it’s not possible for someone to 
submit a new model that has a transition converting a human into a vector. We 
rule out that (and many more nonsensical Petri nets) merely by changing our 
model type from Petri net to this homomorphism type (which is called a slice in 
category theory lingo).
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Not only have we constrained our models, but we obtain a notion of typed 
elements that is completely transparent in the model: we know which states 
are humans and which are vectors.
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And one useful feature of having homomorphism search implemented generically 
(for all C-sets) is that we get for free an algorithm which takes a partially 
labeled Petri net and tries to find whether zero, one, or many type type 
assignments. This is good because it can be tedious to specify all this data 
manually.
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So in summary, we enable the representation of models encoding precise domain 
knowledge by using the combinatorial structure of slices.

I actually could use this story to demonstrate all four of the virtues here, but the 
key one to stress is the fact that model has become transparent and 
predictable from representing it combinatorially.
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Now I want to return to the model exploration problem. 
The key structure we’ll be invoking is a diagram. In particular, we’ll look at 

diagrams in the category of Petri Nets. (22:30)
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But first, what is our goal? Whatever problem we’re trying to solve with the model, 
a scientist is confronted with the fact that there are too many possible models 
to do any kind of naive search.

And it’s hard to explore if we don’t have an actual structure through which allows 
us to visualize a space of Petri nets (rather than this big grab bag soup that 
comes from considering Petri nets as living in a big Set rather than something 
with more structure).

So I’ll now introduce the category theoretic notion of diagrams as a potential 
solution to creating a space of models rather than a bag of models.

Diagrams give us a tool for cutting through this space in a meaningful (not brute 
force) way.
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A diagram in Petri is a combinatorial data structure built on top of C-Sets. In 
essence, we have a shape which is a schema just like “C” was a schema for C-
sets (it’s like a directed graph with equations). And instead of the values we put 
on that structure being Sets and Functions, we put Petri Nets and Petri net 
morphisms.

Note, given this definition, a C-set is itself tantamount to a diagram in Set.
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Here’s an example defining a triangle-pair-shaped network of Petri nets.
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That’s a very obvious generalization to make, but the subtlety lies in what the right 
choice of morphisms are between these objects. For C-sets, we only ever look 
at morphisms where C is fixed, but now this category of diagrams can have 
changing structure and changing data at the same time! 
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It’s a bit too much data to visualize, but trust me that this is the right notion of 
morphism for our purposes.

But now I want to address the question of why it was actually useful to recast our 
vague notion of a “model space” into something precise like this - what did we 
gain? Well, category theory has a lot to say about things you can do with 
diagrams, and it turns out some of those are useful at recasting our other 
vague notions into concrete algorithms that can be implemented.
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One thing we get is a way of combining small model spaces into larger ones. This is 
a reasonable problem to have, where the scientist has a few ideas of 
“dimensions” so to speak that they want to explore along, and they want their 
models to take features from each of these dimensions. 

Here’s an example of a pullback in the category of diagrams (though because 
pullbacks are a kind of generalization of products, I also call it a product of 
model spaces).

On the vertical axis, we have a 1-city model, a 2-city model, and so on. And on the 
horizontal axis we have some sequence of disease dynamics. 
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The resulting model space would look like this at the shape level. We’ll pick one of 
these models to see what element of Petri that vertex got mapped to.
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You see here we have the same disease dynamics occuring in two cities that 
interact with each other. 

If this process were coded up in a script, it would look like a nested for-loop for 
each dimension. That works for a one off product, but it doesn’t compose well 
with other ways of combining model spaces and the resulting product models 
do not have provenance. 

66



Computation of pullbacks gives a complete account of where features in a composite 
model come from. This can be useful in many ways .The one I will highlight is 
making initial guesses for parameters.
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Suppose we fit SIR to our data and determine iniitially 9/10 people are Susceptible, 
and we collect some demographic data that 1/3 of people are in City X.

We really ought to deduce that, initially, 3/10 people are susceptible in City X in 
the product model.
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And you'll see that the data of a pullback actually tells us where that state was 
derived from, so we can compute this value! 

These types of computations assume a kind of statistical independence of the 
dimensions, but it is still useful as an initial guess for iterative algorithms.
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Just like we can take a product of two model spaces, we can also take a sum, 
which would produce more of a branching shape than a grid shape here.
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And this other example which I’ll gloss over is a an example of gluing together 
things at the Petri-net level, not the shape level. So we have an Infected to 
Death transition that we attach to a sequence of models in the bottom model 
space.
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And specializing this very basic CT idea of a pushout in the context of diagrams 
computes the correct thing for free.
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Ok, that was two very simple examples of two very basic ways to combine model 
spaces into larger ones. I want to switch focus to the problem of having defined 
the composite model space, you are now trying to select to pick which model is 
your favorite. Say you have a function that can give each model a score,.

These basic compositions introduce a geometry on the model space; we can also get a 
notion of gradient. We can navigate this space efficiently, rather than by brute 
force.
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So that was the second project I wanted to highlight.
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Lastly I want to talk about a model inference problem. Often the semantics of a 
scientific model are some kind of dynamical system. We’ll focus on a flavor of 
discrete dynamical systems called rewriting systems. 
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Main mechanism of discrete update in a simulation is applying a rewrite rule. 
The structure of a rule is to have a pattern match, a deletion, and an insertion. 
We break the rule down into a pattern that gets matched onto our model that we 

want to rewrite. We have a portion of the match that is preserved and we have 
a third structure which is what gets substituted into the location that was 
matched.
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So you see here how this process applies to the bottom left graph and yields as the 
final result the graph on the bottom right. The actual implementation is 
defined in terms of categorical operations that make sense for all ACSets.

This is a lot to throw at you very quickly, but the conceptual point here is that we 
were able to express this inherently DYNAMIC process of rewriting with a 
purely STATIC structure, which is those three structures there in the box. We 
did not need to write a function in code or a differential equation.
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What I just showed was double pushout rewriting (DPO). Single Pushout Rewriting 
is different from DPO because when you delete something, you implicitly 
delete everything that refers to it. This is like CASCADE DELETE in databases.

I shown an example of this using a different C-Set from Petri Nets just because it is 
easier to visualize. We delete the blue vertex, but the lavender triangle is 
referring to the blue vertex so it gets implicitly deleted, even though it’s far 
removed from the part of the model that got matched by the pattern.

Here is another example of the same syntax (the rewrite rule) being given multiple 
semantics.
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So taking the world state to be represented by a C-Set with just three objects and 
no morphisms, we can recapture the dynamics of SIR by these two rewrite 
rules. 

These could be generated automatically from the Petri Net representation.
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Moving beyond that toy example, we could add a numerical age to the schema. 
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We might have some function which takes two ages and computes the probability 
of that infection happening. 

One type of function would be to break down demographics into bins, and n^2 
numbers characterize each group’s propensity to infect another.
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Here there is an interesting tradeoff where having n2 rewrite rules is completely 
transparent to a computer, but one rewrite rule + 1 line of arbitrary code feels 
more human interpretable. 

But we’re in a position to pick which design makes the most sense.
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So we used a real contact matrix based on research in Taiwan, and Sean Wu at the 
institute of Health Metrics and Evaluation was able to reproduce earlier results 
from Individual.jl by using C-set rewriting as the core engine. 

In the plot on the right, the orange fraction of the bar of an age group shows what 
fraction got infected over the course of the simulated pandemic.

You can see the elderly and young are relatively insulated from the working age 
population which bears the brunt of infections.
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Here’s one reason why one might prefer the machine interpretable route. I’m 
going to demonstrate the transferribility virtue, which we obtain by having our 
algorithm itself expressed combinatorially.

Suppose we decide to update our schema like so, where we model the fact that 
susceptible and infected people each are assigned a doctor from some set of 
doctors.

84



This might be because we deliberately want to introduce an alternate mode of 
infection that only applies to people who share the same doctor (maybe in the 
waiting room, or the doctor is a vector), which could be written like this. 

But we might have a lot of infrastructure built around our old SIR model. How do 
we ”import” this into our new schema?
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It turns out there is a very obvious functor from the left category into the right 
one, and by pushing the old rewrite rule into the new schema, we obtain the 
correct interpretation of it, which freely assigns a doctor to each person in the 
rewrite rule. 

This is an example of migrating an algorithm, and likewise when we express 
queries combinatorially (e.g. by representing queries as homomorphisms), we 
can migrate our analysis as well.

This should be pretty mindblowing to people who think of algorithms as only 
expressible as general purpose code.
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So despite the variety of examples, I think there was a central thesis to this talk.  
We’re trying to present a different paradigm to scientists who think that math, 

code, or formal logic are the only ways to rigorously represent their domain 
knowledge. These are incredibly flexible and powerful tools, but that is a 
double edged sword because they are very difficult to reason about, for a 
human or especially a computer.
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On the other hand, combinatorial data is inherently visualizable, making the barrier 
to rigorous modeling lower.

We showed lots of examples of why it’s nice when computers can automatically 
reason about your knowledge, such has migrating information  and algorithms 
from one domain to another in an automated way.

We’re particularly interested in C-sets which have a low barrier to entry, wide 
generality, and many powerful abstractions and algorithms to use with them. 
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I’d like to thank all these people for welcoming me and being such fun 
collaborators!
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HIDDEN 
The REAL pullback (slightly more annoying to specify) 
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HIDDEN

Here’s another DPO example using the C-set of triangles I showed near the 
beginning of the talk, where we flip a quadrilateral.
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HIDDEN 
Example of scientific knowledge encoded by finite (co)limit sketches
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HIDDEN 
In some sense it's the most general but least interpretable way to explore models.

I think sometimes we do want this - it can find structures we weren't consciously 
expecting. 

And you might learn there's something wrong with your framework if this 
procedure produces models that seem fundamentally wrong. I'll show an 
example of that soon.

But the search space is huge, and unlike the other base-level ways of introducing 
generators, when your model has contents that get ultimately traced back to 
originaiting from enumeration, there's not much you can say about them, 
semantically.

Computationally, things were actually pretty easy when enumerating graphs 
because every valid C-set was a valid graph. 

What about something with just a bit more structure, like a semigroup (which is an 
associative binary function).

It turns out that a naïve enumeration algorithm will be useless for finding 
semigroups of a reasonable size.

So we want to constrain our search by something that has some structure that we 
can use to efficiently prune the space. It turns out there’s a category-theoretic 
notion of a “sketch” which is a very expressive constraint language while still 
being computationally tractable.
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HIDDEN 
Example of some constraints encoded by C-set homomorphisms

For example, if I want to say the output relation of a Petri net is surjective, then I 
want to say, for every state "B", there exists a transition "A" that has "B" as its 
output. For injectivity, I want to say, for every two transitions which output to 
the same state, those two transitions are actually the same. Together these 
would allow us to enforce that each species has a unique transition that 
produces it, if we wanted to do that for some reason.

You're specifying this complicated constraint specification and repair process, not 
with 1000 lines of opaque code, but just elegantly with these few structures.
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HIDDEN 

it's possible to have models which we feel ought be considered to be equivalent 
actually seen as distinct. This makes our model space MUCH larger than it 
ought to be. 

For example, to the computer, these two Petri Nets look completely different.
For a given pair, we can use a CSP algorithm to detect the existence of an 

isomorphism. But what if we have seen 1,000 models so far and want to check 
whether a freshly generated model is new? Rather than do 1000 pairwise tests, 
instead the solution is to just always work with a canonical permutation of the 
ACSet, which takes some effort to compute.

I have a blog post specifically about this problem and the generalization of a graph 
algorithm to ACSets, but the takeaway here is that when we explore models we are 
going to consider them only up to isomorphism.
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HIDDEN 
If we pick our structure of our models and our loss function in a compatible way, 

then our loss profile will look smooth and predictable like this. That means we 
know when to stop exploring, once loss starts going up agan.

This is a nice property to have, though not all loss functions will satisfy it.
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HIDDEN 

Sesqui pushout rewriting adds a similar ability to SPO where you can add things 
which implicitly add other things.

We can define one rewrite rule, which is a syntax, and freely give it any of these 
semantics.
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HIDDEN 
The data of a very basic agent-based model is captured in the following C-Set. It 

has multiple rewrite rules, each which has the data of a C-set homomorphism.
Note we could have any type of  C-set instead of this SIR C-Set by substituting a 

different C-set in the dotted box.

(We also want to add attributes to the rules to help us schedule them when 
running a simulation.)
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HIDDEN
Here’s an example of an agent based model with the state of world being 

represented with a typed graph.
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