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Computability Theory

Objective: Study the complexity of countably infinite mathematical objects.

The tools come from:

e For finite objects: Computer Science.

e For countably infinite objects: Computability Theory.
e For uncountable objects: Set Theory.

Definition: A function f: N — N is computable
if there is a computer program that, on input n, calculates f (n)J
Definition: A set A C N is computable
if its characteristic funciton xa: N — {0,1} is computable.J

First idea: =~ Computable is easy —vs— Not computable is hard

(Every finite object can be coded by a natural number.)
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Examples: not computable sets

HT: 10" Hilbert’s problem: Polynomials in Z[z1, s, ...] with integer roots.
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Examples: not computable sets

HT: 10" Hilbert’s problem: Polynomials in Z[z1, s, ...] with integer roots.

K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations ((a1, ..., ax), (R1, ...., Re)) of torsion free groups.

COF': Polynomials in Z[z, yo, y1, y2, ...] with integer roots for almost every = € N.
TA: True first-order sentences about (N;0,1,+, X)

WEF: Programs p for which there is a (an)nen C N such that p(ai+1) = a;.
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Summary of the talk

Objetive: Find a ruler to measure complexity

K HT TF COF TA WF.
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(1) We define an order <7 in P(N) to compare the complexity of sets.

(2) Properties of (P(N): <9

chaos!

Wikimed/a Cammans:

(3) The structure underneath the chaos: Martin’s conjecture
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Definition: Let A C N. A function f: N — N is computable in A
if there exists a program that calculates f using x4 as primitive function.
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Relative computability

Idea: To define an order relation <7 such that:

B <rA if A contains enough information to calculate B (A is complicated as B)

Definition: Let A C N. A function f: N — N is computable in A
if there exists a program that calculates f using x4 as primitive function.

(xa: N — {0,1} is the characteristic function of A)
We write f <rA.
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Proof: Given a polynomial p(z1, ...,zx) € Z[z1, 22, ...] write a program q,, that enumerates all
k-tuples (a1, ...,ar) € Z* and checks if they are roots of p(z1, ..., Tx).
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Relative computability

Idea: To define an order relation <7 such that:

B <rA if A contains enough information to calculate B (A is complicated as B)

Definition: Let A C N. A function f: N — N is computable in A
if there exists a program that calculates f using x4 as primitive function.

(xa: N — {0,1} is the characteristic function of A)
We write f <rA.

Example: HT <7rK

HT: Hilbert’s 10'": Polynomials in Z[z1, z2, ...] with integer roots.
K: The halting problem: The set of programs that do not run forever.

4

Proof: Given a polynomial p(z1, ...,zx) € Z[z1, 22, ...] write a program q,, that enumerates all
k-tuples (a1, ...,ar) € Z* and checks if they are roots of p(z1, ..., zx). If it finds one, the
program stops.
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Relative computability

Idea: To define an order relation <7 such that:

B <rA if A contains enough information to calculate B (A is complicated as B)

Definition: Let A C N. A function f: N — N is computable in A
if there exists a program that calculates f using x4 as primitive function.

(xa: N — {0,1} is the characteristic function of A)
We write f <rA.

Example: HT <7rK

HT: Hilbert’s 10'": Polynomials in Z[z1, z2, ...] with integer roots.
K: The halting problem: The set of programs that do not run forever.

.

Proof: Given a polynomial p(z1, ...,zx) € Z[z1, 22, ...] write a program q,, that enumerates all
k-tuples (a1, ...,ar) € Z* and checks if they are roots of p(z1, ..., zx). If it finds one, the
program stops. To know if p(x1, ..., zx) has integer roots, ask K if this program q,, ever halts
or not.
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HT: 10" Hilbert’s problem: Polynomials in Z[z1, s, ...] with integer roots.

K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations ((a1, ..., ax), (R1, ...., Re)) of torsion free groups.

COF: Polynomials in Z[z, yo, Y1, Y2, ...] with integer roots for almost every =z € N.
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Turing degrees

Definition: Let A C N. A function f: N — N is computable in A
if there exists a program that calculates f using x4 as a primitive function.

(xa: N — {0,1} is the characteristic function ofA)
We write f <rA.

v

Definition: A and B are Turing-equivalent (A =r B) if A <rB and B <rA.

A Turing degrees is a =r-equivalence class.

<r is a partial order in P(N)/ =T7. (transitive and anti-symmetic)

Basic observations:
@ A and N\ A are Turing-equivalent.
@ if A is computable, A <rB for every B C N.
@ Given B, the set {A C N: A <rpB} is countable.
@ P(N)/ =r is uncountable.
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Theorem: [kicene, Post) There are A, B C N such that A £7B and B £rA.
Even worst, there are uncountable <p- antichains.
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Every countable partial ordering can be embedded in the Turing degrees.
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Chaos

Until now, all examples are linearly ordered...

BUT...
Theorem: [kicene, Post) There are A, B C N such that A LrB and B £rA.
Even worst, there are uncountable <p- antichains. J

Theorem: [Kicene, Post][Lachlan Shore, Nerode]
Every countable partial ordering can be embedded in the Turing degrees.

Even worst, it can be embedded below K.

There are many more results showing that (P(N); <) is extremely complex.
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Natural examples

All the sets =
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Natural examples

& <r *
4 < Natural examples
All the sets =

Mathematically, we don’t have a
definition of “natural example”.

r HTP <y TF <y COF <y TA <r WF.

v WP =

0 <r K
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Natural examples

F <r ®
k4 < Natural examples
All the sets =

Mathematically, we don’t have a
definition of “natural example”.

r HTP <y TF <y COF <y TA <r WF.

- ‘We know that

S all natural examples are:
i e constructible
¢ Feor e relativizable
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Natural examples

WF.

5 ST "

s < Natural examples

: All the sets =

8

: - Mathematically, we don’t have a

; E definition of “natural example”.

TF We know that

& all natural examples are:

i e constructible

5 Fo e relativizable

Plan:  relativizable functions P(N) — P(N)

examples <— =r-invariants

ordered by < <= Ordered by <7.
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Relativization

Observacién:
The functions that are computable in A behave “like” the computable functions. J
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Relativization

Observacién:
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Example of relativization in algebra

(all rings are countable, commutative, and with unity)

Theorem: Every ring (D;0, 1,4, X) has a maximal ideal. J
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Invariant functions

Definition: F': P(N) — P(N) is =¢ -invariant if A =r B = F(A) =r F(B). )
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Martin’s conjecture
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Martin’s conjecture
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F is increasing if F'(A) >1 A for every A.

=r-invariants increasing
Functions

< ordered by <r
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Definition: F <} G if there exists A such that,
for every B >7 A, F(B) <rG(B).
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Recall that F <7 KF'.

Conjectura of Martin: (ZF+AD+DC)

Q@ Ever _—T-invariant function is __V -equivalent to one that is constant or
T
increasing.

Q if F,G are =r-invariant increasing functions = G <} F o K <} G.
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Recall that F <7 K.

Conjectura of Martin: (ZF+AD+DC)

@ Ever _—T-invariant function is __V -equivalent to one that is constant or
T
increasing.

Q if F,G are =r-invariant increasing functions = G <} F o K <} G.

Thm:[Steel 82][Slaman-Steel 88] It’s true for the uniformly =p-invariant functions.
Thm:[Kihara-Montalban 18]: Connect natural many-one degrees and Wadge degrees.

The conjecture is still open for the general case.
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Wadge degrees

Consider the Baire Space: N = {f: N — N} with the product topology.
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Wadge degrees

Consider the Baire Space: NN = {f: N — N} with the product topology.

Obs: NV is homeomorphic to RT \ Q via f — £(0) + W
(e C) R

Definition: For A, B C NV, A is Wadge reducible to B, A <,, B if there is a
continuous f: NV — NV st. (VX €2V), X € 4 <= f(X) € B.

Theorem: [Wadge 83](AD) The Wadge degrees are almost linearly ordered:
e For every A, B C NV, either A <,, B or B <,, A°.
e For every A, B C NV if A <,, B, then A <,, B.

Theorem: (AD) [Martin] The Wadge degrees are well founded. J
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Natural many-one degrees <—=- Wadge degrees
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Natural many-one degrees <—=- Wadge degrees

Definition: A set A C N is many-one reducible to B C N (A <,,, B),
if there is a computable f: N — N such that n € A < f(n) € B (Vn). J
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Natural many-one degrees <—=- Wadge degrees

Definition: A set A C N is many-one reducible to B C N (A <,,, B),
if there is a computable f: N — N such that n € A < f(n) € B (Vn).

Definition: A function f: 2V — 2N is (=1, =, )-uniformly invariant (UI) if
X=rY = f(X)=n f(Y) and

there is u: N> — N2, s.t., if X =p Y via ®; and &, then f(X) =m f(Y) via Do (i) and Do (i)

Def: For A, B C N, A is many-one reducible? to B, written A <Z B, if
there is a Z-computable f: N - Ns.t. (Vz €N), 2 € A < f(z) € B.

Def: f <Y g if (3C € 2N) such that f(X) <& g(X) for every X > C.

Theorem: [Kihara, M.] There is a one-to-one correspondence between (=1, =, )-Ul
functions ordered by <f, and P(2Y) ordered by Wadge reducibility.J
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