Applications of category theory to automated planning
and program compilation in robotics

Angeline Aguinaldo

University of Maryland, College Park
Johns Hopkins University Applied Physics Laboratory

Topos Institute, Berkeley Seminar
August 22,2022

Contents

A. Research motivations: denotational semantics for context

B. Categorical semantics for robotics
Categories for Al planning
[I. Functors for program compilation

[II. Lenses and C-Sets for knowledge representation and
contextual reasoning

C. Using category theory in practice

Contents

A. Research motivations: denotational semantics for context

Making use of context in robotics

Context awareness - mechanism that allows an agent to adjust its behavior in response to dynamic
context information such as location and resources; traditionally for mobile and IoT devices

Position and proximity sensors in robots

~ v AutomationForum.Co

D Camera I]‘))) RADAR

Target object Blind spot detection|

surround view Navigation

WV Ultrasound * LIDAR

Detect transparent 7

objects Collision avoi idance
Emergency brakin, g

WV Force

Detect contact . Camera
Collision warniny 9

. Object detection
W Capacitive Surround view
Detect proximil ity

A general framework for determining what is contextually important (contextual attention)

4

Terminology

4 \
Definition (Context). Context is a description of the characteristics of the environment an
agent must act in.
\ J
4 N
Definition (Action). An action is an operation that changes the state of some or all
characteristics of the environment.
\ J
[Definition (Task plan). A task plan is sequence of actions that achieves a specified goal.]
4)

Definition (Contextual attention). Contextual attention is the identification of context entities
that are most important in achieving the task. Importance means that some property of
achievable tasks exceeds a given threshold when the context entity is removed or modified.

G J

Related methods for contextual attention

In perception and sensor fusion Limitations
* Filling in gaps in images based on context .

* Representation learning (find most concise
state representation)

» Value of information (VOI) analysis * Focused on inferring high-level
context from low-level context

Data-driven, requires learning

* Requires attention criteria a priori

In knowledge representation and
planning
» Case-based reasoning (Schank 1982)

 Recommender systems
* Bayesian network, POMDPs, MDPs

* No denotational semantics

* Not tied to capability

Example Scenario

26

hasStreetName

hasAddress
Home Address
hasStreet
has
Home
adjacentTo
hasKitchenCountertop

Granite

Disaster relief (path planning)

] #
= 1 . \
i) |
) &
e A ’l} | {
l v' '
-~ ‘ 1 1
: | \
| LA z 7 !xr‘}v V7 . ’
Y- g o
- @ R
/ . b,
A N R

Task: Go to injured civilian

1. Move forward until you University Ave
2. Move right at the Dunkin Donuts

3. Locate civilian on street

Example Scenario

26

University Ave

4

Street

\msStreet

Geolocation

/1djacentTo

Dunkin Donuts

hasStreetName

at

hasAddress

hasKitchenCountertop

Home renovation (demolition)

Task: Replace granite with ceramic in kitchen

1.

2.
3.
4

Identify surfaces with granite
Measure surface
Remove surface
Add ceramic slate of correct size
8

Informally speaking...

[/’ ,)/’3'
J .

'_/

Some system tracking context Some system tracking achievable tasks

Synchronization within robot architectures

All robotic architectures involve some synchronization of knowledge, plan, and control

Context

(knowledge model)

Task Plan
(plan, actions)

Description

Environment refers to knowledge about the
world such as what objects are present and
where they are located

Task plans describe how the robot will achieve a
goal by identifying a sequence of actions that
symbolically update the state of the world.

Example syntax

ontologies, description logics, first-order
predicate logic

hierarchical task nets (HTN), bi-partite directed
acyclic graphs (DAGs), Markov decision
processes (MDP)

Example semantics

URDEF, SDF, KNOWROB

STRIPS, PDDL

Formal semantic framework requirements

(a) The ability to encode both procedural, such as task plans, and declarative, namely
context, data.
The ability to encode structure-preserving relationships between task plans and

(b) context.

(©) The ability to describe composite (parts of a whole, decomposition, traceability)
relationships and composition (merging, gluing, synthesis) behaviors.

(d) The ability to encode binary relations such as equivalence and inclusion.

(e) The ability to describe constraints demanded by the semantics of knowledge, plans,
and control.

If successful, we can use this formal system to simulate the effect changes in context have on
a robot’s task capabilities.

Related work

e MBSE & Robotics

* Platform independent model (PIM) and/or platform specific
model (PSM) with model-to-model and model-to-text
transformation methods to synthesize robotic implementations
(Heinzemann 2018, Bocciarelli 2019, Brugali 2016, Ruscio 2016,
Bruyninckx 2013, Ringert 2015, Nordmann 2015, Wigand 2017,
Steck 2011, Schlegel 2010, Hochgeschwender 2016)

 MBSE & Category theory

 Bidirectional model synchronization, state-based and delta-
based lenses (Diskin 2008, Diskin 2011, Diskin 2012)

* Model transformations with constraints (Rutle 2010, Rutle 2012)
* Program synthesis using metamodels (Batory 2008)

* Robotics & Category theory

* Symmetric monoidal categories for modeling robot program
abstractions (Aguinaldo 2020)

* Co-design applied to autonomous system design (Zardini 2021
ECC, Zardini 2021 IROS)

Model-based
systems
engineering
(MBSE)

Robotics

* Knowledge
Category representation

theory e Software
architectures
e Al reasoning

12

Contents

B. Categorical semantics for robotics

What is category theory?

Category theory is a branch of mathematics that provides mathematical structures whose properties are

attentive to composition of relationships.

A category (C) is:

« Asetofobjects {4,B,C, ...} m

A T
* A set of morphisms {f, g, h, ... } that map objects to objects Q S N
* Where every object has an identity morphism, id,

Composition operator, o, between morphisms that is associative and
has identity morphisms as units

14

What is category theory?

Category theory is a branch of mathematics that provides mathematical structures whose properties are

attentive to composition of relationships.

A category (C) is:

: h=gof
« Asetofobjects {4,B,C, ...} A—
* A set of morphisms {f, g, h, ... } that map objects to objects ,dgj ! 5? @
* Where every object has an identity morphism, id, idp e

* Composition operator, o, between morphisms that is associative and
has identity morphisms as units

h/ — gl o f/
A symmetric monoidal category (M), adds: A@B /J“\‘Béy/_g/\; (C ® A) ® B)
+ Tensor product, ®, which is a product on M (objects and morphisms) ¢~ idpgy i
that has associator and unitor isomorphisms

A B

+ Braiding isomorphism where By y1: X Q Y > Y Q@ X ./
f/ (ldc ® ldB ® I,dA) o
g e
A string diagram is the graphical syntax for symmetric monoidal B Y (idg ® idy) o
categories, where boxes are morphisms and strings are objects. (id f®°id)
A B

15

Contents

[. Categories for Al planning

String Diagrams from Category Theory

clear b ontable b handempty clear a

I More than just a picture ‘
° pick-up

holding b — ontable b | — clear b\ — handempty

stack

CTLAD

handempty clear b onb a — holding b — clear a — ontable b — clear b — handempty

String Diagrams for PDDL

(Pre-condition) Literal

@r b \ onta@ handempty

— «— Action
pick-up

—
holding b — c‘)nta} — clear b7 — handempty

(Effect) Litera

Categorification of Planning Solution
* Objects are literals
 Morphisms are actions
* Composition (¢) chains actions
* Tensor product (®) implies parallel
actions or conjunction of literals

PDDL - Planning Domain Definition Language (McDermott 1998) =

String Diagrams for Resource Tracking

t°]

t move

t2 S— = l

t3 ple

ts move

t; drop

ts ERRREN

String diagram with arbitrary time slices (t, - tg) overlayed. At every time slice, we have complete knowledge of the data
resources and/or function(s) running. Each slice can be re-interpreted in a linear mathematical syntax (not shown). Note, this
is only one sample, discovered by the PDDL solver, from the larger valid solution space.

19

Visualize Classical Al Planning Solutions

Domain file

(define (domain BLOCKS)
(:requirements :strips)
(:predicates (on ?x ?y)

(ontable ?x)
(clear ?x)
(handempty)
(holding ?x)
)

(:action pick-up
:parameters (?x)
:precondition (and

Problem file

(:init (clear c)

(ontable c)

(handempty))

(:goal (AND (on c b)

)

(clear ?x)

(ontable ?x) (handempty))

:effect

(and (not (ontable
(not (clear ?x))
(not (handempty))
(holding ?x)))

?x))

clear b

holding ¢

| stack

clear ¢ handempty ﬁj b \

—'m —clear b

clear ¢

(define (problem BLOCKS
(:domain BLOCKS)
(:objects a b c)

)

(clear a) (clear b)

(ontable a)

(ontable b)

Solution

pick-up
stack b
pick-up
stack c

— ontable ¢

(on b a)))
ontable ¢
handempty
—clear ¢ — handempty

onba

— holding b

b
a
c
b

Angeline Aguinaldo and William Regli. Encoding
Compositionality in Classical Planning Solutions.
International Joint Conference for Artificial Intelligence
(IJCAI) Generalization in Planning Workshop. 2021.

H
(-

ontable b |handempty %

ontable a

— ontable b —clear b — handempty

/

20

—cleara

Contents

[I. Functors for program compilation

Example

Wh at i S a fu n CtO r? X and Y are categories where,

Objects(X) =
{A,B,C,D}
C. Translating Using Functors Arrows(X) =

The ability to translate the context from one abstraction {f:4-B,g:B->Ch:B - D}

level to another is a necessary step when compiling goal-

: L. : S Objects(Y) =
oriented description to motion primitives. Category theory {dog, cat, mouse, rabbit}
permits this concept via functors. Functors map objects and Arr ows(Y3 _ '

arrows between pairs of categories. If X and Y are categories,

o) {f':dog — cat, g": cat - mouse, h': cat — rabbit}
a functor, F : X — Y maps an object in X to some object

in Y and maps each arrow between two objects in X to an A possible functor, F, could be
arrow in Y, such that (9) and (10) are satisfied: _ _ "
objects arrows identities
F(idx) = idrx ©) A +— dog f—f idy > idg,g
F(gof)=FgoFf (10) B > cat g —g |idg —id
‘ C —mouse |h — h' |[id¢ = idouse
where f and g are composable arrows in X. D > rabbit idp — id i
Check

Structure-preserving map between categories F(gof)=FgoeFf =g of'

22

Goal-Oriented Robot Programming

User

writes

Same program
interoperability

B

hinge

Goal-oriented Functional Program

is compiled by

Functional Interoperable Compiler

composes functional program

Canonical Robot Command
Language (CRCL)

downward maps to

upward maps to

Robot vendor A

downward maps to

Same program
interoperability

upward maps to

Robot vendor N

Same behavior
interoperability

23

Goal-Oriented Robot Programming

Physical Software
|dentify types of physical resources |dentify skills necessary to complete the
needed to execute program. Name desired action. ldentify informational inputs
the program. and outputs for each skill.
Door Gripper
N/
MoveToDoor
AttachToDoor
F
MoveToOpen

ReleaseDoor

MoveHome

/

Door Gripper

Specification

|dentify available command types and
their possible parameters according to
target robot command specification.

MoveToType(...)

SetEndEffectorParameterType(...)

MoveToType(...)

SetEndEffectorParameterType(...)

MoveToType(...)

24

Goal-Oriented Robot Programming

CRCL Message Broker Motion planning

\ | |

Door Gripper Home .

MoveToDoor ‘ MoveThroughToType(...) ‘

o

AttachToDoor SetEndEffectorParameterType(...) ‘

Door Gripper
. . F G
OpenDoorUsingGripper — MoveToOpen —_— MoveThroughToType(...)

\

N

Door Gripper
ReleaseDoor SetEndEffectorParameterType(...) ‘
‘ MoveThroughToType(...) ‘
N
Door Gripper Home d
€Oy €0y €Cs

Invoking skill library Robot specific controller

ARM

ADVANCED ROBOTICS
FOR MANUFACTURING

A. Aguinaldo,]. Bunker, B. Pollard, A. Canedo, G. Quiros, W. Regli. RoboCat: A category theoretic framework for robotic
interoperability using goal-oriented programming. IEEE Transactions for Automated Science and Engineering. 2022.

25

Contents

[II. Lenses and C-Sets for knowledge representation and
contextual reasoning

Contextual Attention Categorical Model

.[/’ ')/)'
/

4
’_/7

Some system tracking context Some system tracking achievable tasks

Contextual Attention Categorical Model
Y 4
N. o
- [Y -
YA I
) /
o_/7'

1 ~

Some system tracking context Some system tracking achievable tasks

28

Contextual Attention Categorical Model

“Space of task plans”

“Context data” l :
N o “Change in space of
® /) ’ task plans”
“Change in context data” ‘[/ o
.)
[

0
“Composition of 4
changes...” / I \
o “Composition of

> _— “Synchronization map” changes...”

Some system tracking context Some system tracking achievable tasks

29

Contextual Attention Categorical Model

“Space of task plans”

“Context data” l :
N o “Change in space of
® /) ’ task plans”
“Change in context data” ‘[/ o
.)
[

0
“Composition of 4
changes...” / I \
o “Composition of

> _— “Synchronization map” changes...”

Some system tracking context Some system tracking achievable tasks

30

Contextual Attention Categorical Model

Delta lenses (Diskin 2011)

Morphism in the category of small categories, Cat Within each category, (A, B)
* Discrete opfibration functor, G * Objects are models
5 * Arrows, f, are model updates (deltas)
w,A
Task plans A A (w.4) \ ¢(w,A) (A)
A = Shared(L, R)
la
w . _ Diff(4, L) Diff(4, R)
Context B GA » B fil=R B
Such that, L

L.G(pawa) = w
2. Lifting, ¢, respects composition and identities

Modeling capabilities

« Traceability is instantiated via functor, G

« Change information is captured via the span, or delta, construction for arrows

» Synthesis of spaces of task plans is provided by the lifting property of discrete opfibrations.

Aguinaldo A., Regli W. Modeling traceability, change information, and synthesis in autonomous system design using symmetric delta lenses. ICRA Compositional
Robotics Workshop 2022.

Category of Context

D is an Olog category (Spivak 2012), the syntactic category for databases, where objects
are types and arrows are is-a relations and properties.

Objects Arrows
I: D — Set f:I—J
J: D — Set
K: D — Set K
' © a: K 7 {‘K —J
where I, /, ... K € D — Inst map to sets with the empty I J
element. Otherwise known as copresheaves.
where,
composition is the pullback

Category of Context (Example)

agent

hasParticipant

action

a

isParticipantIn hasParticipant

\ 4

object

hasLocation

entity

Based on KNOWROB ontology (Tenorth 2015)

2

MyRobo

hasParticipant

FE?Ekup

isParticipantIn hasParticipant

cup

hasLocation

sink

MyRobo

hasParticipant

FE?Ekup

isParticipantIn

cup

hasParticipant

picEEEW

isParticipantlIn hasParticipant

cup

hasLocation

taéle

MyRobo

33

Category of Achievable Tasks

T is the category of monoidal categories. Functors between monoidal categories

preserve the monoidal structure.

Objects
Monoidal(X{,A;, ®)
Monoidal(X,, A,, ®)

Monoidal(X,, A, ®)

where,
X; € Generating set of logical predicates
and
A; € Generating set of actions
and
® is the conjunction of predicates and actions

Arrows

f : Monoidal(X;, A;, ®) — Monoidal(X;, 4;, ®)

Monoidal(Xy, Az, ®)

Monoidal(X;, 4;, ®) Monoidal(X;, 4, ®)

where,
composition is the pullback of a span of functors

Future Work

L What functor, G, can be defined between the proposed categories?

* Does G meet the requirements of delta lenses?

[Are all items in the formal semantic framework requirements met in this framework?

1 What other properties does this framework afford us? What other properties should we be
modeling?

* Can we make a statement about whether an automated decision-maker is more capable
than another given the same information using this framework?

1 How might we implement this framework on a computer? What is the computational
complexity of these queries?

Contents

C. Using category theory in practice

Flexible and adaptable formal semantics

Category theory as conceptual stem-cell

Category theory (CT) can differentiate into many forms:

All forms of pure math... (we'll briefly discuss this)

Databases and knowledge representation (categories and functors)
Functional programming languages (cartesian closed categories)
Universal algebra (finite-product categories)

Dynamical systems and fractals (operad-algebras, co-algebras)
Hierarchical planning (lenses and monads)

Shannon Entropy (operad of simplices)

Partially-ordered sets and metric spaces (enriched categories)
Higher order logic (toposes = categories of sheaves)
Measurements of diversity in populations (magnitude of categories)
Collaborative design (enriched categories and profunctors)

Petri nets and chemical reaction networks (monoidal categories)
Quantum processes and NLP (compact closed categories)

2/32

37

Tooling in development

Autogenerate PDDL String Diagrams

String diagrams are a graphical language used to describe symmetric monoidal categories (SMCs) from category theory. They can be seen as mathematical
rigorous expressions to describe processes and their dependencies. In this notebook, we use string diagrams to express the solutions to Planning Domain
Definition Language (PDDL) problems. More specifically, we seek to observe if the string diagram representation can elucidate interesting properties of robot
manipulator program plans in a manufacturing work cell. This code uses the WiringDiagram Catlab Julia library to construct the string diagrams. In these
examples, the objects are considered to be Boolean expressions and the arrows, or morphisms, are the PDDL actions.

In [1305]: # SOFTWARE PRE-REQ
4 ™) .) 4 ™)
Julia 1.3.1
Catlab 0.5.3 — ‘ : t —
Latex
—— N——
using Catlab.WiringDiagrams
using Catlab.Doctrines a
using Catlab))
using Catlab.Graphics
import Catlab.Graphics: Graphviz
import TikzPictures 8 - 8 J 8 >
using Catlab.Graphics . . .
https://github.com/AlgebraicJulia/Catlab.jl

In [1306]: EXAMPLE = "blocksworld";

Process PDDL Files and PDDL solution

To run this notebook, you must provide the name of directory (in examples/) containing domain.pddl, problem.pddl, and solution.txt in the EXAMPLE
variable (above), then run all cells. The composed string diagram is shown as the output of the last cell. It can also be seen as an SVG in smc.dot.svg .

About files
The domain.pddl and problem.pddl files must adhere to PDDL specifications following the :strips requirement.
The solution.txt file should be a newline for each action with parameters provided by a PDDL planner of choice. An example is shown below:

move lochome locbox2 [N
pick boxa locbox2 grippera
drop boxa locbox2 grippera

One possible way to obtain a PDDL solution is to run PDDL4| solver, using

38

Thank you for listening!

