
Does recursion help?

Gordon Plotkin

Edinburgh University

Dana’s 90th Birthday Symposium

Topos Institute, Berkeley
October, 2022

Dana reading, with Monica

Dana 1968

Henk, Jan Willem, & Gordon ∼1977

The untyped λ-calculus

Representing the natural numbers with Church numerals

Use the coding function γ : N→ Λ where:

γ(n) = λf . λx . f n(x)

Representing numerical functions

A (closed) term F λβ-represents f : N⇀ N iff:

f (m) = n =⇒ λβ ` Fγ(m) = γ(n)

f (m)↑ =⇒ F (γ(m)) has no β-normal form

Theorem (Church, Kleene, Turing)

The following coincide:
1 The λβ-representable functions
2 The Gödel-Herbrand partial recursive functions
3 The functions computable by a Turing machine

The typed λ-calculus

Representing the natural numbers

Numeral type:
N = (o → o)→ (o → o)

Coding function γ : N→ ΛN where:

γ(n) = λf : o → o. λx : o. f n(x)

Defining functions

A term F : N→ N represents f : N→ N iff:

f (m) = n =⇒ λβη ` Fγ(m) = γ(n)

Theorem (Schwichtenberg, Statman)

The representable functions are the extended polynomials.

The extended polynomials

The class of extended polynomials is the smallest class of
numerical functions closed under composition which contains:

1. the constant functions: 0 and 1,

2. the projections,

3. addition,

4. multiplication, and

5. the function

ifzero(l ,m,n) =

{
m (l = 0)
n (l 6= 0)

Uniform and non-uniform representations

More general numeral types

Nσ = (σ → σ)→ (σ → σ)

Non-uniform representation

F : Nσ1
→ . . .→ Nσk

→ Nσ

Uniform representation

F : Nσ → . . .→ Nσ → Nσ

Fact (Fortune, Leivant, and O’Donnell): Predecessor is
non-uniformly representable.

Theorem (Zakrzewski): Predecessor is not uniformly
representable.

Representable functions and schemas

Zakrzewski’s conjecture
The class of uniformly representable numerical functions is the
smallest class of numerical functions closed under composition
which contains 1–5, as before, plus:

6. For any l ≥ 2, the function

fl(m,n0, . . . ,ni−1) = ni

where i = m mod l

7. For any l , the function

less-thanl(m) =

{
0 (m ≤ l)
1 (m 6≤ l)

Algebraic datatypes

Example T: the set of binary trees with leafs labelled by 0 or 1.
Need two constants and a binary “cons" function. So set:

T = o → o → (o → o → o)→ o

Represent
0 = λx : o, y : o, f : (o → o → o). x

1 = λx : o, y : o, f : (o → o → o). y

cons = λt : B,u : B, x : o, y : o, f : (o → o → o). f (txyf)(uxyf)

Define γ : T→ ΩT by:

γ(0) = 0
γ(1) = 1
γ(cons(t ,u)) = consγ(t)γ(u)

Zaionc proved Schwichtenberg-Statman-type results for
algebraic datatypes.

Representable functions and automata

Booleans
B = o → o → o

γ(0) = λxλy . x
γ(1) = λxλy . y

Binary words

Wα = α→ (α→ α)→ (α→ α)→ α

Theorem (Hillebrand and Kanellakis)
The representable predicates Wα → B (varying α) correspond
exactly to the regular languages.

There is current work on automata and typed λ-calculi by Lê
Thánh Düng Nguyên, Camille Noûs, and Pierre Pradic.

λ-representable functions in general

Fix an extension λ+ of the typed λβη-calculus.

A function γ : X → Λσ is λ+-injective if

λ+ ` γ(x) = γ(y) =⇒ x = y

For non-empty sets X1, . . . ,Xk ,X choose representing
types Xi and X , and λ+-injective coding functions

γi : Xi → ΛXi (i = 1, k) γ : X → ΛX

Then a λ-term

F : X1 → . . .→ Xk → X

represents
f : X1 × . . .× Xk ⇀ X

iff

f(x1, . . . , xk) ' xk ⇐⇒ λ+ ` Fγ1(x1) . . . γk (xk) = γ(x)

Our extensions of the typed λ-calculus

λΩ This is λβη extended with a constant

Ω : o

and no conversions.

λΩ+ This is λβη extended with constants

Ωσ : σ

and no conversions.

λY This is λβη extended with recursion combinators, ie
constants

Yσ : (σ → σ)→ σ

It has conversions

YσF = F (YσF)

and reduction rules

Yσ → λf .f (Yσf)

Recursion does not help

Suppose λ++ extends λ+.

Then λ++ is conservative over λ+ for a class of functions
X1 × . . .× Xk → X and coding scheme if such functions are
λ++-representable iff they are λ+-representable.

Theorem (Total functions)
λY is conservative over λβη for total functions X1 × . . .× Xk → X
and any coding scheme.

Theorem (Partial functions)
λY is conservative over λΩ for all functions X1 × . . .× Xk ⇀ X
and any coding scheme.

A corollary

Corollary
1 (Zakrzewski) Predecessor is not uniformly representable
2 (Statman) Equality and inequality (≤) are not uniformly

representable.

Proof.
Fixing Nα, the three functions are interdefinable in λY via
suitable recursions.
So if one of them were uniformly definable, so would be every
total recursive function in λY.
This contradicts the conservativity of λY over λβη.

Going up is easy

An extension λ+ ⊆ λ++ is conservative, if, for all λ+ terms M
and N we have:

λ+ ` M = N ⇐⇒ λ++ ` M = N

The extensions λβη ⊆ λΩ ⊆ λΩ+ are conservative (use CR).

Lemma
If λ+ ⊆ λ++ is conservative, then every λ+-representable
function is λ++-representable.

Proof.
Proof. For a defining λ+-term F and codes γi(xi) we have

λ+ ` Fγ1(x1) . . . γk (xk) = γ(x) ⇐⇒ λ++ ` Fγ1(x1) . . . γk (xk) = γ(x)

So F also λ+-represents.

Going up is easy (cntnd)

Lemma
Every λΩ++-representable function is λY-representable

Idea.

If M λΩ++-represents a function then M λY-represents it too,
where M is obtained from M by replacing every Ωσ by
Yσ(λx : σ. x).
Note the reduction sequence

Y (λx .x)→ (λf .f (Yf))λx .x → (λx .x)(Y (λx .x))→ Y (λx .x)

The Sierpiński type hierarchy and recursion depth

Set
Oo = O = {⊥≤ >} Oσ→τ = Oσ

mon−−→ Oτ

Obtain semantics O[|M|](ρ) for any of our λ-calculi, taking

O[|Ωσ|] =⊥ O[|Yσ|] = λf ∈ Oσ→σ.
∨
n

f n(⊥)

Setting h(σ) to be the height of Oσ, we have

O[|Yσ|] = f h(σ)(⊥)

For any λY-term M, let M̃ be the λΩ+-term obtained by
replacing every Yσ in M by λf .f h(σ)(Ωσ→σf).
Note that

a) O[|M|] = O[|M̃|]
b) λY ` M = M̃[Yσ/Ωσ→σ]

Then, as we shall see, M̃ represents any function M does.

Detecting proper normal forms (pnfs)
Long βη-normal λΩ++- forms.

λx1 : σ1 . . . xk : σk . xiM1 . . .Ml

λx1 : σ1 . . . xk : σk .ΩσM1 . . .Ml

of type σ1 → . . .→ σk → o. (This type is written (σ1, . . . , σk).)
They are proper if they contain no Ωσ, i.e. they are λ-terms.

We can use the Sierpiński hierarchy to detect properness.
For σ = (σ1, . . . , σk) and τ = (τ1, . . . , τl) define:

tσ ∈ O(σ1,...,σk)→o sτ ∈ O(τ1,...,τl)

by
tσ(f) = fsσ1 . . . sσk sτg1 . . . gl =

∧
j

tτj (gj)

Setting σ′ = (σ2, . . . , σk) we have

tσ1→σ′ f = tσf = fsσ1 . . . sσk = tσ′(fsσ1)

More readably, we have: tσ→τ f = tτ (fsσ).

The central lemma
Lemma

Let
M = λf1 . . . fk .fi0M1 . . .Mk : (σ1, . . . , σk)

be a long βη-normal form in λΩ+. Then:

M is proper ⇐⇒ tσ(O[|M|]) = >

Proof.
Set σi0 = (τ1, . . . , τl) and Ni =def λf1 . . . fk .Mi .
For proper M we have:

tσ(O[|M|]) = sσi0
(O[|N1|]sσ1 . . . sσn) . . . (O[|Nk |]sσ1 . . . sσk)

=
∧

i tτi (O[|Ni |]sσ1 . . . sσk)
=

∧
i tσk→τi (O[|Ni |]sσ1 . . . sσk−1) (by remark above)

= . . .
=

∧
i tσ1→...→σk→τi (O[|Ni |])

= > (by induction hypothesis)

Coming down: step 1

Lemma
Every λY-representable function is λΩ+-representable.

Proof.

In one direction, assume M̃ represents. If

λΩ+ ` M̃A1 . . .An = A

for λ-terms Ai ,A, then:

λY ` MA1 . . .An = M̃[Yσ/Ωσ→σ]A1 . . .An = A

So M represents.

Coming down:step1 (the other direction)

Suppose
λY ` MA1 . . .An = A

Then as
O[|M̃|] = O[|M|]

and A has a pnf we have:

O[|t(M̃A1 . . .An)|] = O[|t(MA1 . . .An)|] = O[|t(A)|] = >

So M̃A1 . . .An has a pnf say B. By the argument in the first part,
as we now have

λΩ+ ` M̃A1 . . .An = B

we also have
λY ` MA1 . . .An = B

But then we have λY ` B = A and so λΩ+ ` B = A and so

λΩ+ ` M̃A1 . . .An = A

as required.

From λΩ+ to λΩ

If
M[Ωσ]

represents a partial function f then so does

M[λx1 : σ1 . . . xn : σn.Ωo]

where σ = (σ1, . . . , σn).

From λΩ to λβη

Suppose we have a λΩ term M representing a function f using
a coding scheme

γi : Xi → Λσi γ : X → Λσ

with σ = (τ1, . . . , τl).

Choose x ∈ X , and set E = γ(x) : (τ1, . . . , τl).

Then M has a λΩ long normal form

λx1 : σ1 . . . xk : σk ., λy1 : τ1 . . . yl : τl .N[Ω]

Replacing Ω by Ey1 . . . yl we obtain a λ-term

λx1 : σ1 . . . xk : σk ., λy1 : τ1 . . . yl : τl .N[Ey1 . . . yl]

representing f .

Acknowledgement

Thanks to Paweł Urzyczyn!

Happy Birthday Dana!

Thank You Dana!

