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The untyped A-calculus

Representing the natural numbers with Church numerals
Use the coding function v : N — A where:
v(n) = Af. Ax. f7(x)
Representing numerical functions
A (closed) term F \S3-represents f : N — N iff:

f(m)=n = A3+ Fy(m) =~(n)
f(m)yt = F(y(m)) has no s-normal form

Theorem (Church, Kleene, Turing)

The following coincide:
@ The \B-representable functions
© The Gdbdel-Herbrand partial recursive functions
© The functions computable by a Turing machine




The typed \-calculus

Representing the natural numbers

Numeral type:
N=(o—0)—(0—0)

Coding function v : N — Ay where:
v(n) = Xf:0— 0.2x:0.f"(x)

Defining functions

Aterm F : N — Nrepresents f : N — N iff:

f(m)=n = X\gnk Fy(m)=~(n)

Theorem (Schwichtenberg, Statman)
The representable functions are the extended polynomials.




The extended polynomials

The class of extended polynomials is the smallest class of
numerical functions closed under composition which contains:

1. the constant functions: 0 and 1,
2. the projections,

3. addition,

4. multiplication, and

5. the function

‘ m (I=0)
ifzero(/, m,n) = { n (1#0)



Uniform and non-uniform representations

More general numeral types

Non-uniform representation
F:NU1 —>...—>Nak—>NU

Uniform representation

—+...—» N, =N,

t =0

Fact (Fortune, Leivant, and O’'Donnell): Predecessor is

non-uniformly representable.

Theorem (Zakrzewski): Predecessor is not uniformly
representable.



Representable functions and schemas

Zakrzewski’s conjecture

The class of uniformly representable numerical functions is the
smallest class of numerical functions closed under composition
which contains 1-5, as before, plus:

6. Forany / > 2, the function
film, no,...,Ni—1) = n;
where i = m mod /

7. For any /, the function

less-than,(m) = {



Algebraic datatypes

Example T: the set of binary trees with leafs labelled by 0 or 1.
Need two constants and a binary “cons" function. So set:

T=0—-0—(0—-0—0)—0

Represent
0=XM:0,y:0,f:(0—>0—0).%
1=XM:0,y:0,f:(0—>0—0).y

cons=MAt:B,u:B,x:0,y:0,f:(0— 0— 0).f(txyf)(uxyf)

Define v : T — Qr by:

~(0)

v(1)
v(cons(t, u))

= o

consy(t)y(u)

Zaionc proved Schwichtenberg-Statman-type results for
algebraic datatypes.



Representable functions and automata

Booleans
B=0o—0—0
v(0) = AxAy.x
(1) = AxAy.y

Binary words

Theorem (Hillebrand and Kanellakis)

The representable predicates W, — B (varying «) correspond
exactly to the regular languages.

There is current work on automata and typed A-calculi by Lé
Thanh Ding Nguyén, Camille NoUs, and Pierre Pradic.



A-representable functions in general

@ Fix an extension A\ of the typed A\3n-calculus.
@ Afunction v : X — A, is AT-injective if

X EA(X) =(y) = x=y

@ For non-empty sets Xj, ..., Xk, X choose representing
types X; and X, and A*-injective coding functions
fy,-:X,-—>/\& (i=1,k) v X = Nx

@ Then a A-term
F:Xi—...=>X—X

represents
F:Xyx...xXe—X

f(X1, .., XK) ~ Xk <= AT E Fy(x) .. k(X)) = 7(x)



Our extensions of the typed A-calculus

@ \Q This is \fn extended with a constant
Q:o0

and no conversions.

@ \Q* This is \3n extended with constants
Q,:0

and no conversions.

@ \Y Thisis Agn extended with recursion combinators, ie
constants
Y,: (0 > 0)—0

It has conversions

Y. F = F(Y,F)
and reduction rules

Y, = M.f(Y,f)



Recursion does not help

Suppose ATt extends AT.

Then A\t is conservative over \* for a class of functions
Xi x ... x Xk — X and coding scheme if such functions are
At T-representable iff they are A*-representable.

Theorem (Total functions)

XY is conservative over Afn for total functions Xi x ... x X — X
and any coding scheme.

Theorem (Partial functions)

MY is conservative over ) for all functions X; x ... x Xy —= X
and any coding scheme.




A corollary

Corollary

@ (Zakrzewski) Predecessor is not uniformly representable

© (Statman) Equality and inequality (<) are not uniformly
representable.

Proof.

Fixing N, the three functions are interdefinable in Y via
suitable recursions.

So if one of them were uniformly definable, so would be every
total recursive function in \Y.

This contradicts the conservativity of AY over A5n. O

v




Going up is easy

An extension AT C M\t is conservative, if, for all A\t terms M
and N we have:

AMEM=N < \NTEFM=N

The extensions A\3n C AQ C A\Q™ are conservative (use CR).

Lemma

If \* C A\t s conservative, then every \* -representable
function is X\ -representable.

Proof. For a defining A™-term F and codes ~;(x;) we have

AR Fy(xa) . o(xi) = (%) <= AT Fyi(xa) . ov(xe) = v(x)

So F also \*-represents. O

v




Going up is easy (cntnd)

Every XQ+ -representable function is \Y -representable

If M AQ+*-represents a function then M \Y-represents it too,
where M is obtained from M by replacing every Q. by

Y, (AX : 0. X).

Note the reduction sequence

Y(Ax.x) = (MLF(YE)Ax.x = (Ax.x)(Y(Ax.x)) = Y(Ax.x)

Ol




The Sierpinski type hierarchy and recursion depth

@ Set

mon

OOZ(O):{J_S —I—} OO—_>7-:OO——>O7—
@ Obtain semantics O|M|(p) for any of our A-calculi, taking

O[] =L OfY,] =M € 050 \/ (L)

@ Setting h(o) to be the height of O,, we have
OlY, [ = f7(L)

@ For any \Y-term M, let M be the AQ*-term obtained by
replacing every Y, in M by \f.f)(Q,_,,f).
Note that
a) O[M] = O[M]
b) AY M = M[Y, /0]
@ Then, as we shall see, M represents any function M does.



Detecting proper normal forms (pnfs)

Long Bn-normal AQ*+- forms.
AX{ 101 Xk O’k.X,'M1 ...M/
AXy D01 .. Xk O'k.QJM1 M/

of type oy — ... — o — o. (This type is written (o4, ..., 0x).)
They are proper if they contain no Q,, i.e. they are \-terms.

We can use the Sierpinski hierarchy to detect properness.

Foro = (o1,...,0k) and 7 = (7y,...,7;) define:
tG € 0(01,...,Uk)—>0 Sr € 0(7'1,...,77)
by
t,(f) = fsy, ... Ss, s:g1-.. 9=\ t;(9)
J
Setting ¢’ = (02, ...,0k) We have

oo f =1, f = 1S5, ... Sy, = t(fSy,)

More readably, we have: t,_,.f = t;(fs,).



The central lemma

Let
M:)\f1...fk.f,'oM1 ...Mk2(01,...,0'k)

be a long Bn-normal form in AQ™. Then:

M is proper <— t,(O|M]) =T

Proof.
Set Ojy = (7’1,.. c ,T/) and N; =gt Afy ... fx.M;.
For proper M we have:

t-(O[M])

So, (OIN1]So, - .. S5,) - .- (O] Nk[So, - . - S5,)

/\i tTf(Ol]Nf”SCH 000 Stfk)
Ni tri =7 (OINiSs, - . . S5,_,) (by remark above)

/\,‘ tU14)...4)0’k4)Ti(O|]Nil])
T  (by induction hypothesis)




Coming down: step 1

Every \Y -representable function is \Q* -representable.

Proof.

In one direction, assume M represents. If
A MA; . A=A
for A-terms A;, A, then:

AY E MA; .. Ay = M[Y,/Qso]Ar.. A=A

So M represents. O




Coming down:step1 (the other direction)

Suppose
AYEMA, ... A=A

Then as

and A has a pnf we have:
Ot(MA; ... A)] = OJt(MA; ... Ap)] = OJt(A)] = T

So MA; ... A, has a pnf say B. By the argument in the first part,
as we now have _
AT MA;...A,=B

we also have
AYHMA,...A,=B

But then we have A\ Y+ B=Aand so \QT - B= A and so
AT MA; .. A=A

as required.



From AQ" to \Q2

M[Q,]
represents a partial function f then so does

M[)\X1 101...Xp: O'n.Qo]

where o = (01,...,0p).



From \Q to \6n

Suppose we have a X2 term M representing a function f using
a coding scheme

Vi Xi—= N, v X =N,
with o = (74,...,7).
Choose x € X, and set E = ~(x) : (11,...,7).
Then M has a A\Q long normal form
AX{ 101 Xk Ok, Ay Ty Y 1N[Q)
Replacing Q by Ey; ...y, we obtain a A\-term
AXy 101 Xk Ok Ayt T YT N[Eyy Ll

representing f.
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Happy Birthday Danal



Thank You Danal



