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Overview

• A distance graph may represent the

data of an enriched category.

• This allows us to generalize

”distance” to something else.

• Free enriched categories give a

universal property for these

generalizations.
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§1: Shortest Paths

a

c

b
3.14

4
52

The shortest path problem asks for the

sequence of edges between a given pair of

vertices with minimum total distance.

path total length

(a,b) 3.14

(a,c) (c,b) 52+4=56

shortest path = min
paths p

{length(p)}

= min{3.14, 56} = 3.14

What structure allows us to generalize

this?
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§1: Semirings

• A semiring (R,+, ·) is like a ring

except + is only a monoid and need

not have negatives.

Example

The natural numbers N form a semiring

with the usual + and ·.

Motivating Example

[0,∞] with min as the additive monoid

and + as the multiplicative monoid.

Warning!

This example can be very confusing

addition min

multiplication +

additive identity ∞
multiplicative identity 0
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§1: Weighted Graphs Are Matrices

M(i,j) = x (i , j) has weight x

M(i,j) = add. identity no edge drawn

M(i , i) = x node i has weight x

Definition

Let R be a semiring. An R-matrix is a

set of vertices X along with a weighting

function M : X × X → R.
.1 3.14 52 ∞
∞ ∞ 2.7 ∞
∞ 4 ∞ 6

∞ ∞ 9 ∞



0.1 3.14

2.74

69

52

Now we can use matrix operations to

study weighted graphs.
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§1: The Algebraic Path Problem

Let X be a set of vertices.

Let M : X × X → R be an R-matrix.

Definition

An edge in M is a pair of vertices (a, b).

A path in M is a sequence of edges

p = {(i , a1), (a1, a2), . . . , (an, j)}.

The weight w(p) of a path p is the

product in R

M(i , a1)M(a1, a2) . . .M(an, j).

For i , j ∈ X , Let

Pij = {paths p from i to j}

The shortest path is

min
p∈Pij

{length(p)}

The algebraic path problem asks

for ∑
p∈Pij

w(p).
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§1: Example: Connectivity

Let B be the semiring ({T ,F},∨,∧).

The APP for B detects connectivity.

a

b

c

d

M(i,j) = T directed edge from i to j

M(i,j) = F no edge drawn

path p weight w(p)

(a,b) (b,c) (c,d) T ∧T ∧ T = T

(a,c) (c,d) F ∧T = F

all other paths F∑
p∈Pad

w(p) =
∨

p∈Pad

w(p)

= T ∨ F ∨ F · · · = T∑
p∈Pda

w(p) =
∨

p∈Pda

w(p)

= F ∨ F ∨ F · · · = F
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There are lots of other examples!

semiring sum product solution of path problem

[0,∞] inf + shortest paths in a weighted graph

[0,∞] sup inf maximum capacity in the tunnel problem

[0, 1] sup × most likely paths in a Markov process

{T ,F} or and transitive closure of a directed graph

(P(Σ∗),⊆)
⋃

concatenation decidable language of a NFA
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§2: Why Matrices?

Idea

Mn has entries Mn(i , j) given by the

length of the shortest path from i to j

with exactly n-steps.

When R = [0,∞],

M2(i , j) =
∑
k∈X

M(i , k)M(k , j)

= min
k∈X
{M(i , k) + M(k , j)}

The pointwise minimum

F (M)(i , j) = min
n≥0
{Mn(i , j)}

gives solutions to the algebraic path

problem.

For an arbitrary R

F (M)(i , j) =
∑
n≥0

Mn(i , j)

Next will see how this is the formula for

the ”free R-enriched category on M”.
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§2: Free Categories

Idea

Paths of length n in G are given by

iterated pullbacks of G with itself.

A graph is a diagram of sets and functions

E V
s

t

take the pullback with itself

G 2 =

E ×V E

E E

V V V .

ts s t

Edges of G 2 = {(e, e ′) ∈ E×E | t(e) = s(e)}

taking the n-fold pulback gives Gn with

Edges of Gn = {paths of length n in G}.

The coproduct

F (G ) =
∐
n≥0

Gn

is the free category.
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Proposition

There is an adjunction

Grph Cat

F

⊥
U

U(C ) = the underlying graph of C

F (G ) =
∐
n≥0

Gn.

Next we’ll see . . .

• You can enrich in any monoidal

category (V,⊗)

• This adjunction generalizes to

VGrph VCat

F

⊥
U

when V has countable coproducts

preserved by ⊗

• Nice semirings R will be an example

of such V.
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§3: Enriched Categories

Idea:

Instead of a set of morphisms, a

V-category has an object of V.

A V-category C is a set of objects X

along with for all x , y , z ∈ X

• a V-object C (x , y),

• a V-morphism

C (x , y)⊗ C (y , z)→ C (x , z)

• and a V-morphism I → C (x , x).

Plus axioms.

Examples:

• A category enriched in Set is an

ordinary category.

• A category enriched in Cat is a

2-category.

• A category enriched in abelian groups

is an pre-additive category.
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§3: Nice Posets

A semiring (R,+, ·) becomes a poset with

a ≤ b ⇐⇒ ∃c s.t. a + c = b

V R

objects elements

morphisms ≤∐ ∑
⊗ ·

distr. of
∐

over ⊗ distr. of + over ·

Warning!

This gives [0,∞] the reverse of the usual

ordering.

Quantales are posets nice enough for us.

Definition

A quantale is a monoidal closed poset

with all coproducts.

Idea

Enriched category theory gets easier

when enriching in a poset.
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Definition

For a quantale R, an R-category is a

matrix C : X × X → R such that

• 1 ≤ C (identities)

• C 2 ≤ C (composition)

For a monoidal closed category V with all

coproducts

VGrph VCat

F

⊥
U

Proposition

For a quantale R, there is an adjunction

RMat RCat

F

⊥
U

Realization!

The left adjoint F gives solutions to the

algebraic path problem.
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§3: Now We’re in Business

Big Idea

Let M : X × X → R be an R-matrix and

let i , j ∈ X . The entry of the free

R-category on M

F (M)(i , j) =
∑
n≥0

Mn(i , j)

is the solution to the algebraic path

problem on M from i to j .

• R-matrices may be joined together

using colimits

• Left adjoints preserve colimits

• Can this help us glue together

solutions?
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§4: Compositionality

Algorithms for the algebraic path problem

have O(V 3) complexity.

Question

Can solutions to the APP be built up

from smaller components?

23

.1

1

.2

0

1

0

.2 6 9

23

.1

1

.2

0

1

0

.2 9

Idea

To glue graphs together first designate

some of the vertices as inputs or outputs.
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§4: Building Graphs with Composition

23

.1

1

.2

X Y1

0

.2

G : X → Y

0

Y Z

96

H : Y → Z

23

.1

1

.2

0

X Z1

0

.2 9

H ◦ G : X → Z

• “Open R-matrices” are cospans in

RMat

• They are glued together with

pushouts

• For overlapping weights we use min

18



§4: Building Graphs with Composition

23

.1

1

.2

X Y1

0

.2

G : X → Y

0

Y Z

96

H : Y → Z

23

.1

1

.2

0

X Z1

0

.2 9

H ◦ G : X → Z

• “Open R-matrices” are cospans in

RMat

• They are glued together with

pushouts

• For overlapping weights we use min

18



The Good News

Left adjoints preserve pushouts so

F (H ◦Mat G ) ∼= F (H) ◦Cat F (G )

where ◦Mat is the pushout of R-matrices

and ◦Cat is the pushout of R-categories.

The Bad News

Pushouts of categories are hard.

The Good News Again

Under certain circumstances they get

easier.

Theorem (JEM)

For “functional open R-matrices”

G : X → Y and H : Y → Z , there is an

equality

�(H ◦Mat G ) = �(H)�(G )

where the product on the right hand is

matrix multiplication.

• What is a functional open R-matrix?

• What does � mean?

19



The Good News

Left adjoints preserve pushouts so

F (H ◦Mat G ) ∼= F (H) ◦Cat F (G )

where ◦Mat is the pushout of R-matrices

and ◦Cat is the pushout of R-categories.

The Bad News

Pushouts of categories are hard.

The Good News Again

Under certain circumstances they get

easier.

Theorem (JEM)

For “functional open R-matrices”

G : X → Y and H : Y → Z , there is an

equality

�(H ◦Mat G ) = �(H)�(G )

where the product on the right hand is

matrix multiplication.

• What is a functional open R-matrix?

• What does � mean?

19



§3: Black-boxing

23

X Y1

0

9

Idea

Focus on the inputs and outputs and

forget about the rest.

For an open R-matrix G : X → Y its

black-boxing is the R-matrix

�(G ) : X × Y → R

with values

�(G )(x , y) = solution of APP from x to y

20



§3: Black-boxing

23

X Y1

0

9

Idea

Focus on the inputs and outputs and

forget about the rest.

For an open R-matrix G : X → Y its

black-boxing is the R-matrix

�(G ) : X × Y → R

with values

�(G )(x , y) = solution of APP from x to y

20



§3: Matrix Multiplication does not Preserve Gluing

A B

C

D

.1

.1

X

1

Y

2

3

4

B

C

D E
.1

.1

Z

5

Y

2

3

4

A B

C

D

.1

.1

X

1 B

C

D E
.1

.1

Z

5

�(G : X → Y ) =
[
.1 ∞ ∞

]T
�(H : Y → Z ) =

[
∞ ∞ .1

]
�(G )�(H) =

[
∞

]
On the other hand. . .

�(H ◦Mat G ) =
[
0.4

]
Idea

A functional open R-matrix has no edges

going into its inputs and no edges going

out of its outputs.

.
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Further Questions

Theorem

For functional open R-matrices

G : X → Y and H : Y → Z , there is an

equality

�(H ◦ G ) = �(H)�(G ).

For more see..

• The Open Algebraic Path Problem

arXiv:2005.06682

• Open Petri Nets, with John Baez

• Composing Behaviors of Networks,

Ph.D. Thesis.

• Can we refine functional matrices?

• Does Van-Kampen’s theorem relate

to the compositionality results?

• Are there non-posets V that have

interesting free V-categories?

• Can this be turned into useful code?
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