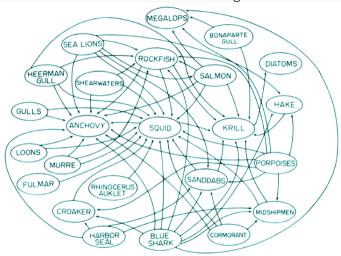
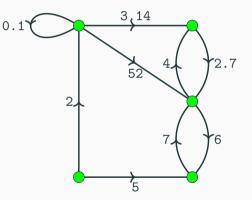
The Universal Property of the Algebraic Path Problem

EM-Cats - Jade Master - Aug 25 2021

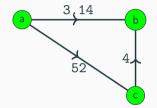


Overview

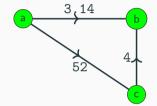
- A distance graph may represent the data of an enriched category.
- This allows us to generalize "distance" to something else.
- Free enriched categories give a universal property for these generalizations.



- 1. The Algebraic Path Problem
- 2. Free Categories
- 3. Free Enriched Categories
- 4. Applications



The shortest path problem asks for the sequence of edges between a given pair of vertices with minimum total distance.



The shortest path problem asks for the sequence of edges between a given pair of vertices with minimum total distance.

path	total length
(a,b)	3.14
(a,c) (c,b)	52+4=56

shortest path = $\min_{\text{paths } p} \{ \text{length}(p) \}$

$$= \min\{3.14, 56\} = 3.14$$

What structure allows us to generalize this?

§1: Semirings

 A semiring (R, +, ·) is like a ring except + is only a monoid and need not have negatives.

Example

The natural numbers $\mathbb N$ form a semiring with the usual + and $\cdot.$

Motivating Example

 $[0,\infty]$ with min as the additive monoid and + as the multiplicative monoid.

§1: Semirings

 A semiring (R, +, ·) is like a ring except + is only a monoid and need not have negatives.

Example

The natural numbers $\mathbb N$ form a semiring with the usual + and $\cdot.$

Motivating Example

 $[0,\infty]$ with min as the additive monoid and + as the multiplicative monoid.

Warning!

This example can be very confusing

addition	min
multiplication	+
additive identity	∞
multiplicative identity	0

§1: Weighted Graphs Are Matrices

M(i,j) = x	(i,j) has weight x
M(i,j) = add. identity	no edge drawn
M(i,i) = x	node <i>i</i> has weight <i>x</i>

Definition

Let R be a semiring. An R-matrix is a set of vertices X along with a weighting function $M: X \times X \rightarrow R$.

$$\begin{bmatrix} .1 & 3.14 & 52 & \infty \\ \infty & \infty & 2.7 & \infty \\ \infty & 4 & \infty & 6 \\ \infty & \infty & 9 & \infty \end{bmatrix}$$

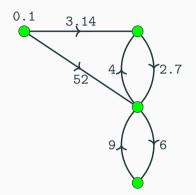
§1: Weighted Graphs Are Matrices

M(i,j) = x	(i,j) has weight x
M(i,j) = add. identity	no edge drawn
M(i,i) = x	node <i>i</i> has weight <i>x</i>

Definition

Let R be a semiring. An R-matrix is a set of vertices X along with a weighting function $M: X \times X \rightarrow R$.

$$\begin{bmatrix} .1 & 3.14 & 52 & \infty \\ \infty & \infty & 2.7 & \infty \\ \infty & 4 & \infty & 6 \\ \infty & \infty & 9 & \infty \end{bmatrix}$$



Now we can use matrix operations to study weighted graphs.

§1: The Algebraic Path Problem

Let X be a set of vertices. Let $M: X \times X \rightarrow R$ be an R-matrix.

Definition

An edge in M is a pair of vertices (a, b). A **path** in M is a sequence of edges

 $p = \{(i, a_1), (a_1, a_2), \dots, (a_n, j)\}.$

The weight w(p) of a path p is the product in R

 $M(i,a_1)M(a_1,a_2)\ldots M(a_n,j).$

§1: The Algebraic Path Problem

Let X be a set of vertices. Let $M: X \times X \rightarrow R$ be an R-matrix.

Definition

An **edge** in M is a pair of vertices (a, b). A **path** in M is a sequence of edges

 $p = \{(i, a_1), (a_1, a_2), \dots, (a_n, j)\}.$

The weight w(p) of a path p is the product in R

 $M(i,a_1)M(a_1,a_2)\ldots M(a_n,j).$

For $i, j \in X$, Let

 $P_{ij} = \{ \text{paths } p \text{ from } i \text{ to } j \}$

The shortest path is

 $\min_{p\in P_{ij}}\{\operatorname{length}(p)\}$

The **algebraic path problem** asks for

$$\sum_{p\in P_{ij}}w(p).$$

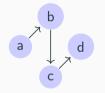
§1: Example: Connectivity

Let \mathbb{B} be the semiring $(\{T, F\}, \lor, \land)$. The APP for \mathbb{B} detects connectivity.

M(i,j) = T	directed edge from i to j
M(i,j)=F	no edge drawn

§1: Example: Connectivity

Let \mathbb{B} be the semiring $(\{T, F\}, \lor, \land)$. The APP for \mathbb{B} detects connectivity.



M(i,j) = T	directed edge from i to j
M(i,j)=F	no edge drawn

path p	weight w(p)
(a,b) (b,c) (c,d)	$T \wedge T \wedge T = T$
(a,c) (c,d)	$F \wedge T = F$
all other paths	F

$$\sum_{p\in P_{ad}}w(p)=\bigvee_{p\in P_{ad}}w(p)$$

$$= T \lor F \lor F \cdots = T$$

$$\sum_{p \in P_{da}} w(p) = \bigvee_{p \in P_{da}} w(p)$$
$$= F \lor F \lor F \cdots = F$$

8

There are lots of other examples!

semiring	sum	product	solution of path problem
$[0,\infty]$	inf	+	shortest paths in a weighted graph
$[0,\infty]$	sup	inf	maximum capacity in the tunnel problem
[0, 1]	sup	×	most likely paths in a Markov process
$\{T,F\}$	or	and	transitive closure of a directed graph
$(\mathcal{P}(\Sigma^*),\subseteq)$	U	concatenation	decidable language of a NFA

Idea

 M^n has entries $M^n(i,j)$ given by the length of the shortest path from i to jwith exactly *n*-steps.

When $R = [0,\infty]$,

$$M^{2}(i,j) = \sum_{k \in X} M(i,k)M(k,j)$$

=
$$\min_{k \in X} \{M(i,k) + M(k,j)\}$$

Idea

 M^n has entries $M^n(i,j)$ given by the length of the shortest path from *i* to *j* with exactly *n*-steps.

When $R = [0,\infty]$,

$$M^{2}(i,j) = \sum_{k \in X} M(i,k)M(k,j)$$

=
$$\min_{k \in X} \{M(i,k) + M(k,j)\}$$

The pointwise minimum

$$F(M)(i,j) = \min_{n \ge 0} \{M^n(i,j)\}$$

gives solutions to the algebraic path problem.

For an arbitrary R

$$F(M)(i,j) = \sum_{n \ge 0} M^n(i,j)$$

Next will see how this is the formula for the "free R-enriched category on M".

§2: Free Categories

Idea

Paths of length n in G are given by iterated pullbacks of G with itself.

A graph is a diagram of sets and functions

$$E \xrightarrow[t]{s} V$$

take the pullback with itself



§2: Free Categories

Idea

Paths of length n in G are given by iterated pullbacks of G with itself.

A graph is a diagram of sets and functions

$$E \xrightarrow[t]{s} V$$

take the pullback with itself



Edges of $G^2 = \{(e, e') \in E \times E \mid t(e) = s(e)\}$

taking the *n*-fold pulback gives G^n with

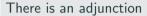
Edges of $G^n = \{ \text{paths of length } n \text{ in } G \}.$

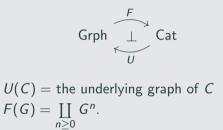
The coproduct

 $F(G) = \coprod_{n \ge 0} G^n$

is the free category.

Proposition





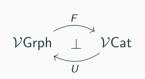
Proposition

There is an adjunction

 $\operatorname{Grph} \underbrace{\overset{}{\underset{\bigcup}{\overset{}}}}_{U} \operatorname{Cat}$

U(C) = the underlying graph of C $F(G) = \coprod_{n \ge 0} G^n.$ Next we'll see \ldots

- You can enrich in any monoidal category (\mathcal{V},\otimes)
- This adjunction generalizes to



when ${\mathcal V}$ has countable coproducts preserved by \otimes

• Nice semirings *R* will be an example of such *V*.

§3: Enriched Categories

Idea:

Instead of a set of morphisms, a \mathcal{V} -category has an object of \mathcal{V} .

A \mathcal{V} -category C is a set of objects Xalong with for all $x, y, z \in X$

- a \mathcal{V} -object C(x, y),
- $\bullet\,$ a $\mathcal V\text{-morphism}$

 $C(x,y)\otimes C(y,z) \rightarrow C(x,z)$

• and a \mathcal{V} -morphism $I \to C(x, x)$.

Plus axioms.

§3: Enriched Categories

Idea:

Instead of a set of morphisms, a \mathcal{V} -category has an object of \mathcal{V} .

A \mathcal{V} -category C is a set of objects Xalong with for all $x, y, z \in X$

- a \mathcal{V} -object C(x, y),
- $\bullet\,$ a $\mathcal V\text{-morphism}$

 $C(x,y)\otimes C(y,z) \rightarrow C(x,z)$

• and a \mathcal{V} -morphism $I \to C(x, x)$.

Plus axioms.

Examples:

- A category enriched in Set is an ordinary category.
- A category enriched in Cat is a 2-category.
- A category enriched in abelian groups is an pre-additive category.

A semiring $(R, +, \cdot)$ becomes a poset with $a \le b \iff \exists c \text{ s.t. } a + c = b$

V	R
objects	elements
morphisms	\leq
Ш	\sum
\otimes	•
distr. of \coprod over \otimes	distr. of + over \cdot

§3: Nice Posets

A semiring $(R, +, \cdot)$ becomes a poset with $a \le b \iff \exists c \text{ s.t. } a + c = b$

V	R
objects	elements
morphisms	\leq
Ш	\sum
\otimes	•
distr. of \coprod over \otimes	distr. of $+$ over \cdot

Warning!

This gives $\left[0,\infty\right]$ the reverse of the usual ordering.

Quantales are posets nice enough for us.

Definition

A **quantale** is a monoidal closed poset with all coproducts.

Idea

Enriched category theory gets easier when enriching in a poset.

Definition

For a quantale R, an R-category is a matrix $C: X \times X \rightarrow R$ such that

- $1 \leq C$ (identities)
- $C^2 \leq C$ (composition)

For a monoidal closed category $\ensuremath{\mathcal{V}}$ with all coproducts

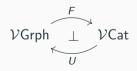
$$\mathcal{V}\mathsf{Grph}$$

Definition

For a quantale R, an R-category is a matrix $C: X \times X \rightarrow R$ such that

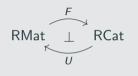
- $1 \leq C$ (identities)
- $C^2 \leq C$ (composition)

For a monoidal closed category $\ensuremath{\mathcal{V}}$ with all coproducts



Proposition

For a quantale R, there is an adjunction



Realization!

The left adjoint F gives solutions to the algebraic path problem.

Big Idea

Let $M: X \times X \rightarrow R$ be an *R*-matrix and let $i, j \in X$. The entry of the free *R*-category on *M*

$$F(M)(i,j) = \sum_{n \ge 0} M^n(i,j)$$

is the solution to the algebraic path problem on M from i to j.

Big Idea

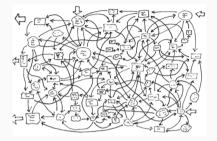
Let $M: X \times X \rightarrow R$ be an *R*-matrix and let $i, j \in X$. The entry of the free *R*-category on *M*

$$F(M)(i,j) = \sum_{n \ge 0} M^n(i,j)$$

is the solution to the algebraic path problem on M from i to j.

- *R*-matrices may be joined together using colimits
- Left adjoints preserve colimits
- Can this help us glue together solutions?

§4: Compositionality

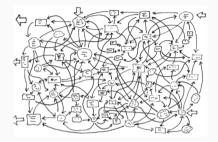


Algorithms for the algebraic path problem have $O(V^3)$ complexity.

Question

Can solutions to the APP be built up from smaller components?

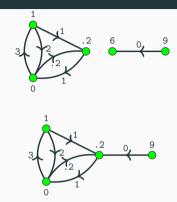
§4: Compositionality



Algorithms for the algebraic path problem have $O(V^3)$ complexity.

Question

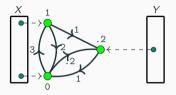
Can solutions to the APP be built up from smaller components?



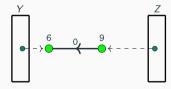
Idea

To glue graphs together first designate some of the vertices as inputs or outputs.

§4: Building Graphs with Composition

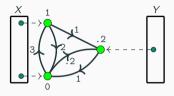


$$G: X \to Y$$

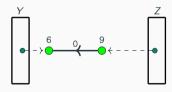


 $H: Y \rightarrow Z$

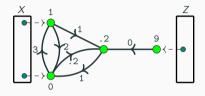
§4: Building Graphs with Composition



$$G: X \to Y$$



 $H\colon Y\to Z$



$$H \circ G \colon X \to Z$$

- "Open *R*-matrices" are cospans in RMat
- They are glued together with pushouts
- For overlapping weights we use min

The Good News

Left adjoints preserve pushouts so

 $F(H \circ_{Mat} G) \cong F(H) \circ_{Cat} F(G)$

where \circ_{Mat} is the pushout of *R*-matrices and \circ_{Cat} is the pushout of *R*-categories.

The Bad News

Pushouts of categories are hard.

The Good News Again

Under certain circumstances they get easier.

The Good News

Left adjoints preserve pushouts so

 $F(H \circ_{Mat} G) \cong F(H) \circ_{Cat} F(G)$

where \circ_{Mat} is the pushout of *R*-matrices and \circ_{Cat} is the pushout of *R*-categories.

The Bad News

Pushouts of categories are hard.

The Good News Again

Under certain circumstances they get easier.

Theorem (JEM)

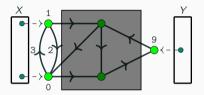
For "functional open *R*-matrices" $G: X \rightarrow Y$ and $H: Y \rightarrow Z$, there is an equality

$$\blacksquare(H \circ_{Mat} G) = \blacksquare(H)\blacksquare(G)$$

where the product on the right hand is matrix multiplication.

- What is a functional open *R*-matrix?
- What does mean?

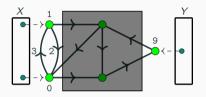
§3: Black-boxing



Idea

Focus on the inputs and outputs and forget about the rest.

§3: Black-boxing



For an open *R*-matrix $G: X \to Y$ its **black-boxing** is the *R*-matrix

 $\blacksquare(G)\colon X\times Y\to R$

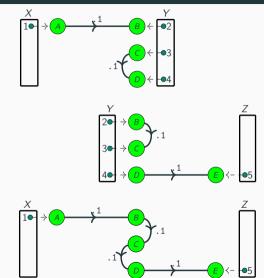
with values

Idea

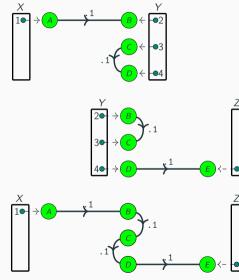
Focus on the inputs and outputs and forget about the rest.

 $\blacksquare(G)(x,y) = \text{ solution of APP from } x \text{ to } y$

§3: Matrix Multiplication does not Preserve Gluing



§3: Matrix Multiplication does not Preserve Gluing



$$\blacksquare (G: X \to Y) = \begin{bmatrix} .1 & \infty & \infty \end{bmatrix}^T$$
$$\blacksquare (H: Y \to Z) = \begin{bmatrix} \infty & \infty & .1 \end{bmatrix}$$
$$\blacksquare (G) \blacksquare (H) = \begin{bmatrix} \infty \end{bmatrix}$$

On the other hand...

$$\blacksquare(H \circ_{Mat} G) = \begin{bmatrix} 0.4 \end{bmatrix}$$

Idea

A functional open *R*-matrix has no edges going into its inputs and no edges going out of its outputs.

Further Questions

Theorem

For functional open *R*-matrices $G: X \to Y$ and $H: Y \to Z$, there is an equality

 $\blacksquare(H \circ G) = \blacksquare(H)\blacksquare(G).$

For more see..

- The Open Algebraic Path Problem arXiv:2005.06682
- Open Petri Nets, with John Baez
- Composing Behaviors of Networks, Ph.D. Thesis.

Further Questions

Theorem

For functional open *R*-matrices $G: X \to Y$ and $H: Y \to Z$, there is an equality

 $\blacksquare(H \circ G) = \blacksquare(H)\blacksquare(G).$

For more see..

- The Open Algebraic Path Problem arXiv:2005.06682
- Open Petri Nets, with John Baez
- Composing Behaviors of Networks, Ph.D. Thesis.

- Can we refine functional matrices?
- Does Van-Kampen's theorem relate to the compositionality results?
- Are there non-posets V that have interesting free V-categories?
- Can this be turned into useful code?