
TowardsModularMathematics

Em-Cats
2022

Juan F. Meleiro
juan@juanmeleiro.mat.br

IME-USP
With support from CNPq

And advisorship by Hugo L. Mariano

Summary

1. Observations

2. Synthetic reasoning

3. Universal Logic

4. Formal framework

5. Uses

Observations

Some observations, values and desires:
– Assumption: Formalization is good.
– Observation: Everything is a model, and that is a good thing.
– Intuition: A model is a translation, and that simplifies stuff.
– Goal: Modularity; what? why?

§1. Observations [4/35]

Synthetic Reasoning
as a successful discipline

What is synthetic reasoning? (theory)

What ismeant by “synthetic” reasoning? […] It deals with space forms in therms of their struc-
ture, i.e. the basic geometric and conceptual constructions that can be performed on them.
(KockSynthetic1981)

Generally, investigating geometric and quantitative relationships brings along with it under-
standing of the logic appropriate for it. (KockSynthetic1981)

Structure& Logic

§2. Synthetic reasoning [6/35]

Example: SDG (1981)

Analytic vs. Synthetic: defining derivatives

– Do a bunch of set theory.

– Construct the real numbersR.
– Define limits of a functionR → R

f(x)
x→x0−−−−→ c ⇐⇒

∀ε > 0∃δ > 0∀y ∈ R(|x − x0| < δ =⇒ |f(x) − c| < ε)

– Define continuity of a functionR → R.

∀x0 ∈ R
(
f(x)

x→x0−−−−→ f(x0)
)

– Define differentiability for continuous functions.

∀x ∈ R∃c ∈ R
(f(x) − f(x + h)

h
h→0−−−→ c

)

– Do choice-woo to make that into a function.

– Declare signature: (R,+, ·, 0, 1) is a ring.
– Define: D := {x : R | x2 = 0}
– Postulate: Every f : D → R is of the form

f(d) = a+ b · d

(note that a = f(0))

– Given f : R → R and x : R, apply the axiom to
λd . f(x+ d):

f(x+ d) = f(x) + f ′(x) · d
Done! Then… Given a space (type)M, a tangent vector at
p : M is a curve t : D → Mwith t(0) = p. The tangent
bundle isMD with projection π, and the tangent space
TpM is the fiber over p of π, etc.

§2. Synthetic reasoning [7/35]

Example: SDG (1981)

Analytic vs. Synthetic: defining derivatives

– Do a bunch of set theory.

– Construct the real numbersR.
– Define limits of a functionR → R

f(x)
x→x0−−−−→ c ⇐⇒

∀ε > 0∃δ > 0∀y ∈ R(|x − x0| < δ =⇒ |f(x) − c| < ε)

– Define continuity of a functionR → R.

∀x0 ∈ R
(
f(x)

x→x0−−−−→ f(x0)
)

– Define differentiability for continuous functions.

∀x ∈ R∃c ∈ R
(f(x) − f(x + h)

h
h→0−−−→ c

)

– Do choice-woo to make that into a function.

– Declare signature: (R,+, ·, 0, 1) is a ring.
– Define: D := {x : R | x2 = 0}
– Postulate: Every f : D → R is of the form

f(d) = a+ b · d

(note that a = f(0))

– Given f : R → R and x : R, apply the axiom to
λd . f(x+ d):

f(x+ d) = f(x) + f ′(x) · d

Done! Then… Given a space (type)M, a tangent vector at
p : M is a curve t : D → Mwith t(0) = p. The tangent
bundle isMD with projection π, and the tangent space
TpM is the fiber over p of π, etc.

§2. Synthetic reasoning [7/35]

Example: SDG (1981)

Analytic vs. Synthetic: defining derivatives

– Do a bunch of set theory.

– Construct the real numbersR.
– Define limits of a functionR → R

f(x)
x→x0−−−−→ c ⇐⇒

∀ε > 0∃δ > 0∀y ∈ R(|x − x0| < δ =⇒ |f(x) − c| < ε)

– Define continuity of a functionR → R.

∀x0 ∈ R
(
f(x)

x→x0−−−−→ f(x0)
)

– Define differentiability for continuous functions.

∀x ∈ R∃c ∈ R
(f(x) − f(x + h)

h
h→0−−−→ c

)

– Do choice-woo to make that into a function.

– Declare signature: (R,+, ·, 0, 1) is a ring.
– Define: D := {x : R | x2 = 0}
– Postulate: Every f : D → R is of the form

f(d) = a+ b · d

(note that a = f(0))

– Given f : R → R and x : R, apply the axiom to
λd . f(x+ d):

f(x+ d) = f(x) + f ′(x) · d
Done! Then… Given a space (type)M, a tangent vector at
p : M is a curve t : D → Mwith t(0) = p. The tangent
bundle isMD with projection π, and the tangent space
TpM is the fiber over p of π, etc.

§2. Synthetic reasoning [7/35]

Synthetic theories are subject to revision

FromKockMethods2016,
– Every spaceM comes equipped with a reflexive symmetric relation∼M
(e.g.,∼ :

∏
M:U M×M→ U).

– x ∼k+1 y := ∃z . x ∼ z ∧ z ∼k y.
– Mk(x) := {y : M | y ∼k x}
– etc

It is not the intention of SDG to avoid using the wonderful tool of coordinates. […]
The reason we did not start there, is to stress that the “arithmetization” in terms of [a ring]

is a tool, not the subject matter, of geometry. […] in particular, [geometry] has a life without the
ring R of real numbers, who sometimes thinks of himself as being the owner and boss of the
company. (Kock 2017)

Many ways to synthesize a subject (up to critical discussion)

§2. Synthetic reasoning [8/35]

Other subjects can be synthesized

From Bauer (2006),
– A type theory with types 1, sums, products, subsets, etc.
– Assume natural numbersN.
– Define monotone binary sequences

N+ := { f : 2N | ∀n : N (f(n) = 1→ f(s(1)) = 1)}

– Define several types of truth-values:
▶ Standard: Ω := P(1)
▶ Decidable: 2 := {p : Ω | p ∨ ¬p}
▶ Classical: Ω¬¬ := {p : Ω | ¬¬p→ p}

– etc

§2. Synthetic reasoning [9/35]

In synthesis…

In sum:
– Synthetic reasoning involves structure and logic
– There is a rich field of possible “synthetizations” of an area

Issues:
– How can we combine and transform synthetic theories?

§2. Synthetic reasoning [10/35]

Universal Logic
as a conceptual framework

Motivation for UL

What logicians have to say:
Logic is often informally described as the study of sound reasoning. […] In an enormous

development beginning in the late 19th century, it has been found that awide variety of different
principles are needed for sound reasoning in different domains, and a “logic” has come tomean
a set of principles for some form of sound reasoning. But in a subject the essence of which
is formalization, it is embarrassing that there is no widely acceptable formal definition of
“a logic”. (Mossakowski et al. 2007, my emphasis)

§3. Universal Logic [12/35]

The central questions

How to identify, translate, and combine logics?

§3. Universal Logic [13/35]

Example: sketches, a possible framework

Categorical sketches

are given by a diagram (category) I , a set of conesL and a set of co-cones C.

A model of a sketch (I,L, C) in a category C is a functor F : I → C taking cones inL to limits
and co-cones in C to colimits.

§3. Universal Logic [14/35]

Example: sketches, a possible framework

Categorical sketches are given by a diagram (category) I , a set of conesL and a set of co-cones C.

A model of a sketch (I,L, C) in a category C is a functor F : I → C taking cones inL to limits
and co-cones in C to colimits.

§3. Universal Logic [14/35]

Example: sketches, a possible framework

Categorical sketches are given by a diagram (category) I , a set of conesL and a set of co-cones C.

A model of a sketch (I,L, C) in a category C is a functor F : I → C taking cones inL to limits
and co-cones in C to colimits.

§3. Universal Logic [14/35]

Example of a sketch

A sketch for unital magmas1 (nLab 2022) given by the category generated by

“1×M”

“1” M “M2”

“M× 1”

e m

πL

πR

πR

πL “e×1M”

πL

πR “1M×e”

under some relations…

m ◦ “e× 1M” = πR

m ◦ “1× e” = πL

e ◦ πL = πL ◦ “e× 1M”
πR ◦ “e× 1M” = πR

πL = “1M × e” ◦ πL
e ◦ πR = πR ◦ “1M × e”

and cones making the π’s into projections.

1Types with a binary operation with a unit.

§3. Universal Logic [15/35]

The point of the sketch

The models of the sketch of unital magmas in Set are the unital magmas.

Takeaways:

Mod(S,Mod(T ,C)) ' Mod(S ⊗ T ,C)

Models are functors/morphisms

Model-taking is monoidally closed

§3. Universal Logic [16/35]

The point of the sketch

The models of the sketch of unital magmas in Set are the unital magmas.
Takeaways:

Mod(S,Mod(T ,C)) ' Mod(S ⊗ T ,C)

Models are functors/morphisms

Model-taking is monoidally closed

§3. Universal Logic [16/35]

The point of the sketch

The models of the sketch of unital magmas in Set are the unital magmas.
Takeaways:

Mod(S,Mod(T ,C)) ' Mod(S ⊗ T ,C)

Models are functors/morphisms

Model-taking is monoidally closed

§3. Universal Logic [16/35]

The point of the sketch

The models of the sketch of unital magmas in Set are the unital magmas.
Takeaways:

Mod(S,Mod(T ,C)) ' Mod(S ⊗ T ,C)

Models are functors/morphisms

Model-taking is monoidally closed

§3. Universal Logic [16/35]

AnMMT-like theory
as a formal tool

Theories inMMT

A theory is a sequence of declarations. A declaration is an identifier and an expression built
from previous declarations and constructors.

For example:

theory Monoid
M : Type
· : M→M→M
e : M

assoc : (x, y, z : M)→ x · (y · z) = (x · y) · z
unitL : (x : M)→ x = e · x
unitR : x · e = x

With constructors→, Type,
dependent functions, and
application

§4. Formal framework [18/35]

Theories inMMT

A theory is a sequence of declarations. A declaration is an identifier and an expression built
from previous declarations and constructors.

For example:

theory Monoid
M : Type
· : M→M→M
e : M

assoc : (x, y, z : M)→ x · (y · z) = (x · y) · z
unitL : (x : M)→ x = e · x
unitR : x · e = x

With constructors→, Type,
dependent functions, and
application

§4. Formal framework [18/35]

MMTmorphisms

A morphism Σ → Γ takes every declared name in Σ to an expression in Γ in such a way as to
preserve types under translation.

For example, a morphismMonoid→ Set, for a set theory Set

M : Type 7→ XX : Type (X some set)
· : M→M→M 7→ λfλgλx . f(g(x)) : XX → XX → XX

e : M 7→ λx . x : XX

assoc :
∏

(x,y,z:M)

x · (y · z) = (x · y) · z 7→ [. . .] : [. . .] (proof of associativity)

unitL : (x : M)→ x = e · x 7→ [. . .] : [. . .] (proof of left unitality)
unitR : x · e = x 7→ [. . .] : [. . .] (proof of right unitality)

§4. Formal framework [19/35]

MMTmorphisms

A morphism Σ → Γ takes every declared name in Σ to an expression in Γ in such a way as to
preserve types under translation.

For example, a morphismMonoid→ Set, for a set theory Set

M : Type 7→ XX : Type (X some set)
· : M→M→M 7→ λfλgλx . f(g(x)) : XX → XX → XX

e : M 7→ λx . x : XX

assoc :
∏

(x,y,z:M)

x · (y · z) = (x · y) · z 7→ [. . .] : [. . .] (proof of associativity)

unitL : (x : M)→ x = e · x 7→ [. . .] : [. . .] (proof of left unitality)
unitR : x · e = x 7→ [. . .] : [. . .] (proof of right unitality)

§4. Formal framework [19/35]

MMTColimits

No definition, but an example:
theory Monoid theory Sets

M : Type

· : M→M→M
...

e : M (X some set)

assoc : (x, y, z : M)→ x · (y · z) = (x · y) · z
...

unitL : (x : M)→ x = e · x
unitR : x · e = x

←
↩

←

theory Group theory Something
(_)−1 : M→M (_)−1 : XX → XX

inverse : (x : M)→ x · x−1 = e inverse : (f : XX)→ f ◦ f−1 = IdX

§4. Formal framework [20/35]

MMT implements UL?

– Identification: definition, isomorphisms.
– Translation: morphisms.
– Combination: push-forwards, finite colimits in general.

§4. Formal framework [21/35]

The joys of modular mathematics

π1: basics

Grp
pt : Type
· : pt → pt → pt
e : pt

()−1 : pt → pt
assoc : (x, y, z : pt) → x · (y · z) = (x · y) · z

neutralL : (x : pt) → e · x = x
neutralR : (x : pt) → x = x · e

inverse : (x : pt) → x · x−1 = e

Top∗

pt : Type
open : P(P(pt))
base : pt

open⊤ : open(fullpt)
open⊥ : open(emptypt)

open∪ : (a : Type) →

(u : a → P(pt)) →
((i : a) → open(ui)) →

open

(∪
i

ui

)
open∩ : (u, v : P(pt)) → open(u) → open(v) → open(u ∩ v)

§5. Uses [23/35]

π1: categories

Cat
obj : Type
arr : obj→ obj→ Type
Id : (x : obj)→ arr x x
◦ : (x, y, z : obj)→ arr y z→ arr x y→ arr x z

assoc : (x, y, z,w : obj)→ (f : arr x y)→ (g : arr y z)→ (h : arr z w)→ f ◦ (g ◦ h) = (f ◦ g) ◦ h
IdL : (x, y : obj)→ (f : arr x y)→ Idx ◦ f = f
IdR : (x, y : obj)→ (f : arr x y)→ f ◦ Idy = f

§5. Uses [24/35]

Collectivization

Given a theory (ai : Ei)i, and given name C, its collectivization is

(ai : Ei)i 7→ C : Type, (ai : (c : C)→ ϕ(Ei))

where

ϕ(b) := b(c) b is an identifier
ϕ(K(Fj; (xjk)k)j) := K(ϕ(Fj); (xjk)k)j

§5. Uses [25/35]

Collectivization

For example, for C(Grp)we have

Grp C(Grp)
Grp : Type

pt : Type pt : (g : Grp) → Type
· : pt → pt → pt · : (g : Grp) → ptg → ptg → ptg
e : pt e : (g : Grp) → ptg

()−1 : pt → pt ()−1 : (g : Grp) → ptg → ptg
assoc : (x, y, z : pt) → x · (y · z) = (x · y) · z assoc : (g : Grp → (x, y, z : ptg) → x ·g (y ·g z) = (x ·g y) ·g z

neutralL : (x : pt) → e · x = x neutralL : (g : Grp) → (x : ptg) → eg ·g x = x

neutralR : (x : pt) → x = x · e neutralR : (g : Grp) → (x : ptg) → x = x ·g eg
inverse : (x : pt) → x · x−1 = e inverse : (g : Grp) → (x : ptg) → x ·g x−1g = eg

§5. Uses [26/35]

Categories inMMT

Define the category of groups by interpreting Cat in C(Grp) (syn. by implementing the Cat
interface in C(Grp).

Grp : Cat −→ C(Grp)

obj 7−→ Grp

arr G H 7−→
∑

f:ptG→ptH

∏
x,y:ptG

(f(x ·G y) = f(x) ·H f(y), f(eG) = eH)

g ◦ f 7−→ 〈fst g ◦ fst f, λxλy . ?〉

IdG 7−→ 〈IdptG , λxλy . Refl〉

assoc 7−→ proof that ◦ is associative

IdL 7−→ proof of left identity

IdR 7−→ proof of right identity

Do the same for Top∗
§5. Uses [27/35]

To implement π1, at least three options

1. Internal functor
2. Interpreted functor
3. Translation

§5. Uses [28/35]

Internal functor

•

• •

C(Grp) C(Cat),C : Cat C(Top∗)

Cat Cat

⌟ ⌟

⌟

§5. Uses [29/35]

Internal functor

•

• •

C(Grp) C(Cat),C : Cat C(Top∗)

Cat Cat

⌟ ⌟

⌟

§5. Uses [29/35]

Internal functor

Then,

In Grp+ Top∗

objπ1
: obj(Top∗)→ obj((Grp))

objπ1
:= λX

 ∑
γ:arr(I,X)

γ(0) = γ(1) = baseX


(Observe that obj(Top∗) reduces to Top)

π1 : Functor(Top,Grp)
π1 := 〈objπ1

, ?, ?〉

§5. Uses [30/35]

Interpreted functor

Functor over C(Cat)
src : Cat
tgt : Cat
fobj : obj(src)→ obj(tgt)
map : (x, y : objsrc)→ arrsrc(x, y)→ arrtrg(fobj(x), fobj(y))

coherence : (x, y, z : objsrc)
→ (f : arrsrc(x, y))
→ (g : arrsrc(y, z))
→ map(g ◦src f) = map(g) ◦trg map(f)

§5. Uses [31/35]

Interpreted functor

Functor over C(Cat)
src : Cat
tgt : Cat
fobj : obj(src)→ obj(tgt)
map : (x, y : objsrc)→ arrsrc(x, y)→ arrtrg(fobj(x), fobj(y))

coherence : (x, y, z : objsrc)
→ (f : arrsrc(x, y))
→ (g : arrsrc(y, z))
→ map(g ◦src f) = map(g) ◦trg map(f)

§5. Uses [31/35]

Interpreted functor

Functor→ Grp+ Top∗

src 7→ Top∗

trg 7→ Grp
fobj 7→ λX . π1(X)
map 7→ λf . [corresponding morphism]

coherence 7→ [proof of functoriality]

(Grp+ Top∗ is the co-product of Grp and Top∗ together with the vocabulary from Cat given
interpretation under the morphismsGrp andTop∗, respectively. That is realized as a suitable
colimit.)

§5. Uses [32/35]

Translation

Amorphism π1 : Grp→ (C(Top∗),X : Top∗):

Grp→ C(Top∗),C : Top

pt 7→
∏
γ:XI

(γ(0) = baseX, γ(1) = baseX)⧸∼

· 7→ λγ, δ, t . [. . .]
e 7→ JconstbaseXK

()−1 7→ [. . .]

assoc 7→ proof of associativity
neutralL 7→ proof of left neutrality
neutralR 7→ proof of right neutrality
inverse 7→ proof of inverseness

§5. Uses [33/35]

Translation

Amorphism π1 : Grp→ (C(Top∗),X : Top∗):

Grp→ C(Top∗),C : Top

pt 7→
∏
γ:XI

(γ(0) = baseX, γ(1) = baseX)⧸∼

· 7→ λγ, δ, t . [. . .]
e 7→ JconstbaseXK

()−1 7→ [. . .]

assoc 7→ proof of associativity
neutralL 7→ proof of left neutrality
neutralR 7→ proof of right neutrality
inverse 7→ proof of inverseness

§5. Uses [33/35]

Conclusions

– A framework for modular mathematics making possible to
▶ Do synthetic reasoning
▶ In the shape of Universal Logic

– Missing: categorical structure and justification to theories

§5. [34/35]

Bibliography

Bauer, Andrej (2006). “First Steps in Synthetic Computability Theory”. In: Electronic Notes
in Theoretical Computer Science 155. doi: 10.1016/j.entcs.2005.11.049.
Kock, Anders (2017).Newmethods for old spaces: synthetic differential geometry. arXiv. doi:
10.48550/ARXIV.1610.00286. url:
https://arxiv.org/abs/1610.00286.
Mossakowski, Till et al. (2007). “What is a Logic?” In: Logica Universalis. Birkhäuser Basel.
doi: 10.1007/978-3-7643-8354-1_7.
nLab (2022). Sketch. url: https://ncatlab.org/nlab/show/sketch (visited
on 04/25/2022).

§6. [35/35]

https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/10.48550/ARXIV.1610.00286
https://arxiv.org/abs/1610.00286
https://doi.org/10.1007/978-3-7643-8354-1_7
https://ncatlab.org/nlab/show/sketch

	Observations
	Synthetic reasoning
	Universal Logic
	Formal framework
	Uses
	References

