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Observations



Some observations, values and desires:
– Assumption: Formalization is good.
– Observation: Everything is a model, and that is a good thing.
– Intuition: A model is a translation, and that simplifies stuff.
– Goal: Modularity; what? why?
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Synthetic Reasoning
as a successful discipline



What is synthetic reasoning? (theory)

What ismeant by “synthetic” reasoning? […] It deals with space forms in therms of their struc-
ture, i.e. the basic geometric and conceptual constructions that can be performed on them.
(KockSynthetic1981)

Generally, investigating geometric and quantitative relationships brings along with it under-
standing of the logic appropriate for it. (KockSynthetic1981)

Structure& Logic
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Example: SDG (1981)

Analytic vs. Synthetic: defining derivatives

– Do a bunch of set theory.

– Construct the real numbersR.
– Define limits of a functionR → R

f(x)
x→x0−−−−→ c ⇐⇒

∀ε > 0∃δ > 0∀y ∈ R(|x − x0| < δ =⇒ |f(x) − c| < ε)

– Define continuity of a functionR → R.

∀x0 ∈ R
(
f(x)

x→x0−−−−→ f(x0)
)

– Define differentiability for continuous functions.

∀x ∈ R∃c ∈ R
( f(x) − f(x + h)

h
h→0−−−→ c

)

– Do choice-woo to make that into a function.

– Declare signature: (R,+, ·, 0, 1) is a ring.
– Define: D := {x : R | x2 = 0}
– Postulate: Every f : D → R is of the form

f(d) = a+ b · d

(note that a = f(0))

– Given f : R → R and x : R, apply the axiom to
λd . f(x+ d):

f(x+ d) = f(x) + f ′(x) · d
Done! Then… Given a space (type)M, a tangent vector at
p : M is a curve t : D → Mwith t(0) = p. The tangent
bundle isMD with projection π, and the tangent space
TpM is the fiber over p of π, etc.
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Synthetic theories are subject to revision

FromKockMethods2016,
– Every spaceM comes equipped with a reflexive symmetric relation∼M
(e.g.,∼ :

∏
M:U M×M→ U ).

– x ∼k+1 y := ∃z . x ∼ z ∧ z ∼k y.
– Mk(x) := {y : M | y ∼k x}
– etc

It is not the intention of SDG to avoid using the wonderful tool of coordinates. […]
The reason we did not start there, is to stress that the “arithmetization” in terms of [a ring]

is a tool, not the subject matter, of geometry. […] in particular, [geometry] has a life without the
ring R of real numbers, who sometimes thinks of himself as being the owner and boss of the
company. (Kock 2017)

Many ways to synthesize a subject (up to critical discussion)
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Other subjects can be synthesized

From Bauer (2006),
– A type theory with types 1, sums, products, subsets, etc.
– Assume natural numbersN.
– Define monotone binary sequences

N+ := { f : 2N | ∀n : N ( f(n) = 1→ f(s(1)) = 1)}

– Define several types of truth-values:
▶ Standard: Ω := P(1)
▶ Decidable: 2 := {p : Ω | p ∨ ¬p}
▶ Classical: Ω¬¬ := {p : Ω | ¬¬p→ p}

– etc
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In synthesis…

In sum:
– Synthetic reasoning involves structure and logic
– There is a rich field of possible “synthetizations” of an area

Issues:
– How can we combine and transform synthetic theories?
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Universal Logic
as a conceptual framework



Motivation for UL

What logicians have to say:
Logic is often informally described as the study of sound reasoning. […] In an enormous

development beginning in the late 19th century, it has been found that awide variety of different
principles are needed for sound reasoning in different domains, and a “logic” has come tomean
a set of principles for some form of sound reasoning. But in a subject the essence of which
is formalization, it is embarrassing that there is no widely acceptable formal definition of
“a logic”. (Mossakowski et al. 2007, my emphasis)
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The central questions

How to identify, translate, and combine logics?

§3. Universal Logic [13/35]



Example: sketches, a possible framework

Categorical sketches

are given by a diagram (category) I , a set of conesL and a set of co-cones C.

A model of a sketch (I,L, C) in a category C is a functor F : I → C taking cones inL to limits
and co-cones in C to colimits.
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Example of a sketch

A sketch for unital magmas1 (nLab 2022) given by the category generated by

“1×M”

“1” M “M2”

“M× 1”

e m

πL

πR

πR

πL “e×1M”

πL

πR “1M×e”

under some relations…

m ◦ “e× 1M” = πR

m ◦ “1× e” = πL

e ◦ πL = πL ◦ “e× 1M”
πR ◦ “e× 1M” = πR

πL = “1M × e” ◦ πL
e ◦ πR = πR ◦ “1M × e”

and cones making the π’s into projections.

1Types with a binary operation with a unit.
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The point of the sketch

The models of the sketch of unital magmas in Set are the unital magmas.

Takeaways:

Mod(S,Mod(T ,C)) ' Mod(S ⊗ T ,C)

Models are functors/morphisms

Model-taking is monoidally closed
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AnMMT-like theory
as a formal tool



Theories inMMT

A theory is a sequence of declarations. A declaration is an identifier and an expression built
from previous declarations and constructors.

For example:

theory Monoid
M : Type
· : M→M→M
e : M

assoc : (x, y, z : M)→ x · (y · z) = (x · y) · z
unitL : (x : M)→ x = e · x
unitR : x · e = x

With constructors→, Type,
dependent functions, and
application
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MMTmorphisms

A morphism Σ → Γ takes every declared name in Σ to an expression in Γ in such a way as to
preserve types under translation.

For example, a morphismMonoid→ Set, for a set theory Set

M : Type 7→ XX : Type (X some set)
· : M→M→M 7→ λfλgλx . f(g(x)) : XX → XX → XX

e : M 7→ λx . x : XX

assoc :
∏

(x,y,z:M)

x · (y · z) = (x · y) · z 7→ [. . . ] : [. . . ] (proof of associativity)

unitL : (x : M)→ x = e · x 7→ [. . . ] : [. . . ] (proof of left unitality)
unitR : x · e = x 7→ [. . . ] : [. . . ] (proof of right unitality)
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MMTColimits

No definition, but an example:
theory Monoid theory Sets

M : Type

· : M→M→M
...

e : M (X some set)

assoc : (x, y, z : M)→ x · (y · z) = (x · y) · z
...

unitL : (x : M)→ x = e · x
unitR : x · e = x

←
↩

←

theory Group theory Something
(_)−1 : M→M (_)−1 : XX → XX

inverse : (x : M)→ x · x−1 = e inverse : (f : XX)→ f ◦ f−1 = IdX
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MMT implements UL?

– Identification: definition, isomorphisms.
– Translation: morphisms.
– Combination: push-forwards, finite colimits in general.

§4. Formal framework [21/35]



The joys of modular mathematics



π1: basics

Grp
pt : Type
· : pt → pt → pt
e : pt

( )−1 : pt → pt
assoc : (x, y, z : pt) → x · (y · z) = (x · y) · z

neutralL : (x : pt) → e · x = x
neutralR : (x : pt) → x = x · e

inverse : (x : pt) → x · x−1 = e

Top∗

pt : Type
open : P(P(pt))
base : pt

open⊤ : open(fullpt)
open⊥ : open(emptypt)

open∪ : (a : Type) →

(u : a → P(pt)) →
((i : a) → open(ui)) →

open

(∪
i

ui

)
open∩ : (u, v : P(pt)) → open(u) → open(v) → open(u ∩ v)
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π1: categories

Cat
obj : Type
arr : obj→ obj→ Type
Id : (x : obj)→ arr x x
◦ : (x, y, z : obj)→ arr y z→ arr x y→ arr x z

assoc : (x, y, z,w : obj)→ (f : arr x y)→ (g : arr y z)→ (h : arr z w)→ f ◦ (g ◦ h) = (f ◦ g) ◦ h
IdL : (x, y : obj)→ (f : arr x y)→ Idx ◦ f = f
IdR : (x, y : obj)→ (f : arr x y)→ f ◦ Idy = f

§5. Uses [24/35]



Collectivization

Given a theory (ai : Ei)i, and given name C, its collectivization is

(ai : Ei)i 7→ C : Type, (ai : (c : C)→ ϕ(Ei))

where

ϕ(b) := b(c) b is an identifier
ϕ(K(Fj; (xjk)k)j) := K(ϕ(Fj); (xjk)k)j

§5. Uses [25/35]



Collectivization

For example, for C(Grp)we have

Grp C(Grp)
Grp : Type

pt : Type pt : (g : Grp) → Type
· : pt → pt → pt · : (g : Grp) → ptg → ptg → ptg
e : pt e : (g : Grp) → ptg

( )−1 : pt → pt ( )−1 : (g : Grp) → ptg → ptg
assoc : (x, y, z : pt) → x · (y · z) = (x · y) · z assoc : (g : Grp → (x, y, z : ptg) → x ·g (y ·g z) = (x ·g y) ·g z

neutralL : (x : pt) → e · x = x neutralL : (g : Grp) → (x : ptg) → eg ·g x = x

neutralR : (x : pt) → x = x · e neutralR : (g : Grp) → (x : ptg) → x = x ·g eg
inverse : (x : pt) → x · x−1 = e inverse : (g : Grp) → (x : ptg) → x ·g x−1g = eg
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Categories inMMT

Define the category of groups by interpreting Cat in C(Grp) (syn. by implementing the Cat
interface in C(Grp).

Grp : Cat −→ C(Grp)

obj 7−→ Grp

arr G H 7−→
∑

f:ptG→ptH

∏
x,y:ptG

( f(x ·G y) = f(x) ·H f(y), f(eG) = eH)

g ◦ f 7−→ 〈fst g ◦ fst f, λxλy . ?〉

IdG 7−→ 〈IdptG , λxλy . Refl〉

assoc 7−→ proof that ◦ is associative

IdL 7−→ proof of left identity

IdR 7−→ proof of right identity

Do the same for Top∗
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To implement π1, at least three options

1. Internal functor
2. Interpreted functor
3. Translation

§5. Uses [28/35]



Internal functor

•

• •

C(Grp) C(Cat),C : Cat C(Top∗)

Cat Cat

⌟ ⌟

⌟
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Internal functor

Then,

In Grp+ Top∗

objπ1
: obj(Top∗)→ obj((Grp))

objπ1
:= λX

 ∑
γ:arr(I,X)

γ(0) = γ(1) = baseX


(Observe that obj(Top∗) reduces to Top)

π1 : Functor(Top,Grp)
π1 := 〈objπ1

, ?, ?〉

§5. Uses [30/35]



Interpreted functor

Functor over C(Cat)
src : Cat
tgt : Cat
fobj : obj(src)→ obj(tgt)
map : (x, y : objsrc)→ arrsrc(x, y)→ arrtrg(fobj(x), fobj(y))

coherence : (x, y, z : objsrc)
→ (f : arrsrc(x, y))
→ (g : arrsrc(y, z))
→ map(g ◦src f) = map(g) ◦trg map(f)
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Interpreted functor

Functor→ Grp+ Top∗

src 7→ Top∗

trg 7→ Grp
fobj 7→ λX . π1(X)
map 7→ λf . [corresponding morphism]

coherence 7→ [proof of functoriality]

(Grp+ Top∗ is the co-product of Grp and Top∗ together with the vocabulary from Cat given
interpretation under the morphismsGrp andTop∗, respectively. That is realized as a suitable
colimit.)
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Translation

Amorphism π1 : Grp→ (C(Top∗),X : Top∗):

Grp→ C(Top∗),C : Top

pt 7→
∏
γ:XI

(γ(0) = baseX, γ(1) = baseX)⧸∼

· 7→ λγ, δ, t . [. . .]
e 7→ JconstbaseXK

( )−1 7→ [. . .]

assoc 7→ proof of associativity
neutralL 7→ proof of left neutrality
neutralR 7→ proof of right neutrality
inverse 7→ proof of inverseness

§5. Uses [33/35]
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Conclusions

– A framework for modular mathematics making possible to
▶ Do synthetic reasoning
▶ In the shape of Universal Logic

– Missing: categorical structure and justification to theories

§5. [34/35]
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