A categorical study of quasi-uniform structures

Minani Iragi

University of South Africa

Department of Mathematical Sciences

Em-Cats seminar Talk

September 29, 2021

- Topology can be defined using open or closed sets. The approach using open sets is more familiar but the one using closed sets is equivalent.
- Classically, we think of closing subsets under limits. A closure operator is an abstraction formulation of this on the category **Top** of topological spaces. This allows an abstract formulation of continuous maps.
- We can then try to replace **Top** with a suitably nice category *C*. This permits us to "do topology in category". However this is hard.
- The topological structure we will look at is quasi-uniform structures. These allow to study things like uniform continuity, uniform convergence.

ヨト イヨト

- 1. Quasi-uniform structure on a set
- 2. What is needed to do topology in categories?
- 3. Quasi-uniform structures on categories
- 4. Quasi-uniform structure determined by a subclass of ${\mathcal M}$
- 5. Other things the main theorem enables us to do

Quasi-uniform structure on a set

Э

イロト イポト イヨト イヨト

- Quasi-uniform structures are like uniform structures with one condition relaxed.
- A function f : A ⊆ ℝ → ℝ is continuous at a point if
 ∀ε > 0, ∃δ > 0 | ∀x ∈ D, 0 < |x − a| < δ ⇒ |f(x) − f(a)| < ε.

This is about the neighbourhood of a point.

- $B_{\delta} = \{x \in \mathbb{R} \mid |x a| < \delta\}$ is an open ball.
- $\{B_{\delta} \mid \delta > 0\}$ is a base of a topology on \mathbb{R} .

Quasi-uniform structure of the real line

- $f : A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ is uniformly continuous if $\forall \varepsilon > 0, \exists \delta > 0 \mid \forall x, y \in D, 0 < |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$
- This is about x, y varying together.

In fact $D_{\delta} = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid |x - y| < \varepsilon\}$ is a neighbourhood of the diagonal.

- $\mathcal{B}_{\mathbb{R}} = \{D_{\delta} \mid \varepsilon > 0\}$ is a base for a uniform structure $\mathcal{D}_{\mathbb{R}}$ on \mathbb{R} .
- We think of D_{δ} as a relation.

The absolute value makes it symmetric.

We will drop that symmetry condition to define a quasi-uniformity.

Definition of quasi-uniform structure on a set

- A quasi-uniform structure on a set X is non-empty collection \mathcal{D}_X of subsets of $X \times X$ such that:
 - (U1) $\forall D \in \mathcal{D}_X, \ \triangle \subseteq D \text{ where } \triangle_X = \{(x, x) \mid x \in X\} \text{ (reflexivity).}$

(U2) $\forall D \in \mathcal{D}_X, \exists D' \in \mathcal{D}_X \text{ with } D' \circ D' \subseteq D \text{ (related to the triangle inequality)}$

(U3) $\forall D \in \mathcal{D}_X$ and $U \subseteq V$, $V \in \mathcal{U}_X$ (upwards closed).

(U4) $\forall D, D' \in \mathcal{D}_X, D \cap D' \in \mathcal{D}_X$ (finite intersections).

• A non-empty collection \mathcal{B}_X of subsets of $X \times X$ is a base of a quasi-uniform structure on a set X if it satisfies axioms (U1), (U2) and (U4) above.

- If (X, d) is a metric space, $\mathcal{T}(d) = \{A \subseteq X \mid \forall x \in A, \exists \delta > 0 \text{ with } B(x, \delta) \subseteq A\}.$
- For any $D \in \mathcal{D}_X$, $D(x) = \{y \in X \mid (x, y) \in D\}$ is the uniform neigbourhood of x.
- Every quasi-uniform structure \mathcal{D}_X on X induces a topology.
- $\mathcal{T}(\mathcal{D}) = \{A \subseteq X \mid \forall x \in A, \exists D \in \mathcal{D}_X \text{ with } D(x) \subseteq A\}$ where $D(x) = \{y \in X \mid (x, y) \in D\}.$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- If \$\mathcal{T}(\mathcal{D}) = \mathcal{T}_X\$, then we say that the quasi-uniform structure \$\mathcal{D}_X\$ is compatible with a topology \$\mathcal{T}_X\$ or \$\mathcal{T}_X\$ admits \$\mathcal{D}_X\$.
- Example : $\mathcal{D}_{\mathbb{R}}$ is compatible with the topology of the real line.
- All topological spaces admit a quasi-uniform structure. This is better than uniform structures because only completely regular spaces admit a uniform structures.
- This means quasi-uniform structures are an alternative approach to the study of topological spaces

Quasi-uniform structure as a family of maps

Idea : We want to express quasi-uniform structures via maps so that we can look at them in other categories instead of **Top**.

A quasi-uniform structure on a set X is a family $\mathcal{U}_X = \{U : X \longrightarrow \mathcal{P}(X)\}$ of maps such that

(U1) $\forall x \in X, \forall U \in U_X, x \in U(x)$ (reflexivity).

(U2) $\forall U \in \mathcal{U}_X, V \in \mathcal{U}_X | V \circ V \leq U$ i.e $y \in V(x) \Rightarrow V(y) \subseteq U(x)$ (related to the triangle inequality).

(U3) $\forall U \in \mathcal{U}_X$ and $U \leq V$ (*i.e* $U(x) \subseteq V(x), \forall x \in X$), $V \in \mathcal{U}_X$ (upwards closed).

(U4) $\forall U, V \in \mathcal{U}_X, U \cap V \in \mathcal{U}_X$ where $(U \cap V)(x) = U(x) \cap V(x)$ for each $x \in X$ (finite intersections).

イロト 不得 トイヨト イヨト ヨー うくや

- $U: X \longrightarrow \mathcal{P}(X): x \longmapsto U(x) =$ uniform neighbourhood of x
- It is easy to see that these maps can easily be extended to endomaps on P(X),
 U : P(X) → P(X) : A → ∪_{x∈A}U(x).
- Question: How can we deal with power sets in a general category C?

We also need images (for this definition) and pre-images for talking about continuity.

• Answer: We use factorization systems.

What is needed to do topology in categories?

э

Idea of factorization systems in Set

- Subsets are given by monics in Set
- Every $f: X \longrightarrow Y \in \mathbf{Set}$ can be factored through its image
- $X \longrightarrow Y = X \longrightarrow Imf \longrightarrow Y$ giving epic/monic factorization.
- For any $X \in \mathbf{Set}$, $\mathcal{P}(X)$ is a complete lattice with the union and intersection.
- For every $X \longrightarrow Y \in \mathbf{Set}$, there is an image/pre-image adjunction in the power set lattice:

$$f(A) \subseteq B \Leftrightarrow A \subseteq f^{-1}(B)$$

for all $B \in \mathcal{P}(Y)$, $A \in \mathcal{P}(X)$

- A category C endowed with an $(\mathcal{E}, \mathcal{M})$ -factorization system for morphisms.
- For any $X \in C$, define sub $X = \{m \in M \mid cod(m) = X\}$, collection of subobjects of X
- SubX ordered as follows: $n \le m \Leftrightarrow \exists j \mid m \circ j = n$.
- Question: How can we make sure that subX is a complete lattice?
- Answer: We use \mathcal{M} -completeness.

- *M*-completeness is a technical condition involving wide pullbacks as a generalization of arbitrary intersections.
- If C is \mathcal{M} -complete then subX is a complete lattice with greatest element $1_X : X \longrightarrow X$.
- This also ensures that any C-morphism, $f: X \longrightarrow Y$ induces an image/pre-image adjunction

$$f(m) \leq n \Leftrightarrow m \leq f^{-1}(n)$$

for all $n \in \text{sub} Y$, $m \in \text{sub} X$ with f(m) the \mathcal{M} -component of the $(\mathcal{E}, \mathcal{M})$ -factorization of $f \circ m$.

• Comment: We now have everything we need to define quasi-uniform structures on a category $\mathcal{C}.$

- 34

イロト 不得下 イヨト イヨト

Topology in Top	Topology in a category ${\mathcal C}$
subsets	subobjects.
$\mathcal{P}(X)$	SubX lattice hence a category.
endomaps on $\mathcal{P}(X)$	$\mathcal{F}(subX) = functor\ category\ on\ subX$

- 32

・ロト ・ 理 ト ・ 国 ト ・ 国 ト

$U \leq V$ if $U(x) \subseteq V(x)$ for all element x	$U \leq V$ if $U(m) \leq V(m)$ for all subobject m .
Axioms (<i>U</i> 1)-(<i>U</i> 4)	Categorical version of $(U1)$ - $(U4)$.
Continuous maps	Continuity with respect to the structure
Uniform continuity	\mathcal{U} -continuity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quasi-uniform structures on categories

3

▶ ∢ ⊒

Definition (M. Iragi and D. Holgate, 2019)

- For all $U, V \in \mathcal{F}(\operatorname{sub} X)$, we define $U \leq V$ if $U(m) \leq V(m)$ for all $m \in \operatorname{sub} X$.
- A quasi-uniform structure on C with respect to M is a family $U = \{U_X \mid X \in C\}$ with U_X a full subcategory of $\mathcal{F}(subX)$ for each X such that:

(U1) For any $U \in \mathcal{U}_X$, $1_X \leq U$ (reflexivity).

(U2) For any $U \in U_X$, there is $U' \in U_X$ such that $U' \circ U' \leq U$ (related to triangle inequality).

(U3) For any $U \in U_X$ and $U \leq U', U' \in U_X$ (upwards closed).

(U4) For any $U, U' \in \mathcal{U}_X, U \wedge U' \in \mathcal{U}_X$ (finite intersection).

(U5) For any C-morphism $f : X \longrightarrow Y$ and $U \in U_Y$, there is $U' \in U_X$ such that $f(U'(m)) \leq U(f(m))$ for all $m \in subX$ (uniform continuity).

ヘロト 人間 ト イヨト イヨト ニヨー

- *QUNIF*(*C*, *M*) will denote the large collection of all quasi-uniform structures on *C* with respect to *C*.
- $QUNIF(\mathcal{C}, \mathcal{M})$ is ordered as follows: $\mathcal{U} \leq \mathcal{V}$ if for all $X \in \mathcal{C}$ and $U \in \mathcal{U}_X$, there is $V \in \mathcal{V}_X$ such that $V \leq U$.
- A base for a quasi-uniformity \mathcal{U} on \mathcal{C} is a family $\mathcal{B} = \{\mathcal{B}_X | X \in \mathcal{C}\}$ with each \mathcal{B}_X a full subcategory of $\mathcal{F}(\operatorname{sub} X)$ for all $X \in \mathcal{C}$ satisfying all the axioms in the previous definition except (U3).

Quasi-uniform structures and closure operators on **Top**.

- Every quasi-uniformity on X induces a closure operator on X.
- For a given topology on X, there are a number of quasi-uniformities on X which generate the topology.
- Quasi-uniformities and closure operators each make a complete lattice on **Top**.
- We have a monotone map from quasi-uniformities to closure operators and back on **Top**.
- Note that for **Top**, we can use interior operators instead of closure operators since subX is boolean.
- Our main result describes monotone maps between quasi-uniform structures and closure operators on \mathcal{C} .

E nar

Quasi-uniformities determined by a subclass of $\ensuremath{\mathcal{M}}$

э

メロト スポト メヨト メヨ

In Top	In C
Embeddings	The class ${\cal M}$
Closed embeddings	subclass ${\mathcal N}$ of ${\mathcal M}$
Closed subsets of X	$\mathcal{N}_X = \{m \in \mathcal{N} \mid cod(m) = X\}$
Pre-images	Pullbacks
Pre-image of a closed subset is closed	${\cal N}$ is closed under pullbacks

For all $X \in \mathbf{Top}$	For all $X\in\mathcal{C}$
Consider \mathcal{N}_X all subsets of X	Consider $\mathcal{N}_X = \{m \in \mathcal{N} \mid cod(m) = X\}$
\mathcal{N}_X is closed under arbitrary intersection	Require \mathcal{N}_X to be closed under intersection.
Build a relation for each $L\subseteq \mathcal{N}_X$	Build a monotone map U^L for each $L\subseteq \mathcal{N}_X$
Make a base of a quasi-uniformity on Top	Make a base of a quasi-uniformity on ${\mathcal C}$

- \bullet Let ${\mathcal N}$ be a fixed subclass of ${\mathcal M}$ closed under formation of pullbacks.
- For any X ∈ C, let N_X = {m ∈ N | cod(m) = X} be closed under arbitrary intersections and A_X the collection of all subclasses of N_X closed under arbitrary intersections.
- Define $U^L(m) = \bigwedge \{n \in L \mid m \leq n\}$ for any $m \in {\sf sub} X$
- Define $\mathcal{B}^{\mathcal{A}} = \{\mathcal{B}^{\mathcal{A}}_X \mid X \in \mathcal{C}\}$ where $\mathcal{B}^{\mathcal{A}}_X = \{U^L \mid L \in \mathcal{A}_X\}$

Then $\mathcal{B}^{\mathcal{A}}$ is a base for a quasi-uniformity $\mathcal{U}^{\mathcal{A}}$ on \mathcal{C} .

Closure operator on categories

• A closure operator c on C with respect to \mathcal{M} is given by a family of maps

 ${c_X : \operatorname{sub} X \longrightarrow \operatorname{sub} X \mid X \in \mathcal{C}}$ such that:

(C1) $m \leq c_X(m)$ for all $m \in \operatorname{sub} X$;

(C2) $m \le n \Rightarrow c_X(m) \le c_X(n)$ for all $m, n \in subX$;

(C3) every morphism $f: X \longrightarrow Y$ is c-continuous: $f(c_X(m)) \le c_Y(f(m))$ for all $m \in subX$.

• $CL(\mathcal{C}, \mathcal{M})$ = the collection of all closure operators on \mathcal{C} with respect to \mathcal{M} .

• $c \in CL(\mathcal{C}, \mathcal{M})$ is said to be idempotent if $c_X(c_X(m)) = c_X(m)$ for all $m \in subX$ and $X \in \mathcal{C}$.

- Let U be a quasi-uniform structure, then c^U_X(m) = ∧ {U(m) : U ∈ U_X} is a closure operator on C.
- $\mathcal{U} \in \mathsf{QUNIF}(\mathcal{C},\mathcal{M})$ is compatible with a closure operator c if $c_X(m) = c_X^{\mathcal{U}}(m)$

Quasi-uniformity generated by a closure operator

Let c be an idempotent closure operator on C.

- $\mathcal{N} = \mathcal{M}^c$ = the class of *c*-closed elements of \mathcal{M} .
- For any $X \in \mathcal{C}$, consider $\mathcal{N}_X = c$ -closed subobjects of X.
- \mathcal{N}_X is closed under arbitrary intersection.
- Build a monotone map c_X^L for each subclass L of \mathcal{N}_X closed under arbitrary intersection.
- B^c_X = {c^L_X | L ⊆ N_X and L closed under arbitrary intersection} is a base of a quasi-uniformity on C.
- $c_X(m) = c_X^{\mathcal{U}}(m)$.
- Note that we can also define interior operators but things do not work well.

Other things the main theorem enables us to do

э

▶ ∢ ⊒

Image: A mathematical states and a mathem

Other things the main theorem enables us to do

- Galois connection between quasi-uniform structures and subclasses of \mathcal{N}_X closed under pullbacks.
- Categorical description of all quasi-uniform structures compatible with a given topology.
- Every subcategory of ${\mathcal C}$ induces a quasi-uniform structure on ${\mathcal C}$
- $\bullet\,$ Galois connection between quasi-uniform structures and subcategories of $\mathcal{C}.$
- Describe subcategories determined by a quasi-uniform on \mathcal{C} .
- We can apply this to many examples of ${\mathcal C}$ including groups, rings, topological groups.

- $\mathcal{C} = \mathbf{Grp}$, the category of groups and group homomorphisms.
- $\bullet~\mathcal{N}$ be the class of injective normal group homomorphisms.
- For any $G \in \mathbf{Grp}$, \mathcal{N}_G = normal subgroups of G.
- Build a monotone map c_X^L for each subclass L of \mathcal{N}_X closed under arbitrary intersection.
- B^c_X = {c^L_X | L ⊆ N_X and L closed under arbitrary intersection} is a family of closure operators on Grp

E SQC

Future work

- Completion of objects of a category using quasi-uniform structures.
- Categorical approach to quasi-uniform convergence topologies on function spaces.

For more on this topic, see e.g

- Quasi-uniform structures determined by closure operators with David Holgate, Topol. Appl. 295 (2021), 107669.
- Quasi-uniform and syntopogenous structures on categories with David Holgate, Topol. Appl. 263 (2019), 16-25.
- Topogenous and Nearness Structures on Categories with Holgate and Ando, Appl. Categor. Struct. 24(2016), 447-455.

Minani Iragi (UNISA)