LOCALISABLE MONADS: FROM GLOBAL TO LOCAL

Nuiok Dicaire School of Informatics

University of Edinburgh

EM-Cats

November 2021

Joint work with

Chris Heunen

Carmen Constantin

Outline

1. Motivational problems

- 2. Central idempotents
- 3. Localisable monads

4. Abstract characterisation of localisable monads

5. Back to motivational problems

MOTIVATIONAL PROBLEMS

Monads

- Way of providing objects and morphisms with additional context.
- Used to describe side-effects in programming semantics, e.g. reading and writing from a memory store
- From this perspective: if we start with a "large" or global monad, can we obtain "smaller" or local monad-like structures?

Example: Concurrency

Want: Category \mathbf{C} with monad M that "restricts" to \mathbf{C}_1 and \mathbf{C}_2 with monads M_1 and M_2 .

Example: From Set to Set^n

• Set:

$$T(-) = S \multimap (- \times S)$$

➤ Want something with "decomposable underlying data"

What about something like this?

• \mathbf{Set}^n

$$T(A_1,\ldots,A_n)=(S_1,\ldots,S_n)\multimap((A_1,\ldots,A_n)\times(S_1,\ldots,S_n))$$

 \triangleright Similar question on **Hilb** and **Hilb**ⁿ

CEN'NR AL IDEMPOTENTS

Intrinsic Structure

(To a monoidal category)

Intrinsic structure?

- Idea: Want a way to split up monads into "smaller monads"
- We want to identify a structure in a monoidal category that will enable this.
 - > Central idempotents!
- Let's look at a monoidal category with interesting "bigger" to "smaller" structures...

Motivating example

1 Rings and modules

- Let R be a commutative unital ring.
- Consider the monoidal category of Rmodules (and R linear morphisms) $(\otimes : \otimes \text{ of } R\text{-modules and } I = R)$

• Idempotents ideals

Ideal, map $u: U \to R$

$$u \otimes U : U \otimes U \longrightarrow U$$
$$x \otimes y \longrightarrow xy$$

Idempotent

$$U = U^2 \longrightarrow U \otimes U$$
$$\sum_{i} x_i y_i \longrightarrow \sum_{i} x_i \otimes y_i$$

We have that $u \otimes U$ is invertible.

Central idempotents

(in a <u>symmetric</u> monoidal category)

Definition

- Morphism $u: U \to I$
- Such that $\rho_U \circ (U \otimes u) = \lambda_U \circ (u \otimes U) : U \otimes U \to U$ is invertible.

Note: I is a central idempotent too!

Equivalence Class

• We identify $u:U\to I$ and $v:V\to I$ when there is an isomorphism $m: U \to V$ such that $u = v \circ m$.

Motivating example

2 Sheaves and opens

- Sheaf $F: \mathcal{O}(X)^{\mathrm{op}} \to \mathbf{Set}$
- Monoidal category of sheaves over X
- Subterminal sheaves:

$$\chi_U : \mathcal{O}(X)^{\mathrm{op}} \to \mathbf{Set}$$

$$V \mapsto \begin{cases} \{*\} & \text{if } V \subset U \\ \emptyset & \text{if } V \not\subset U \end{cases}$$

• Subterminal object \rightarrow constant presheaves \rightarrow **opens of** X

- In a cartesian category, central idempotent are exactly subterminal objects.
- We can think of central idempotents as open subsets of a hidden base space that any symmetric monoidal category comes equipped with.

More examples

3 Set

$$(\mathbf{Set}, \times, \{*\})$$

Central idempotents: 0, 1

$$(\mathbf{Set}^n, \times, (\{*\},, \{*\}))$$

Central idempotents: $\{0,1\}^n$

e.g.
$$(A, B, C) \otimes (1, 0, 1) \simeq (A, 0, C)$$

4 Lattice

- Meet semilattice $(L, \wedge, 1)$ as a category
- Central idempotents: all elements of L

★ Note: Central idempotents always form a semilattice!

What is the plan?

Want: To use central idempotent to define a notion of local monads

 \mathcal{I} Central idempotent \rightarrow "bunch" of local categories

2 Condition to define monads on these categories

Categories restricted to central idempotents

We want a "bunch" of categories (for each u)

Idea: For each u define a new category $\mathbf{C}|_{u}$.

Objects: Objects of C

Morphisms: $A \longrightarrow B$ in $\mathbf{C}|_{u}$

corresponds to $A \otimes U \longrightarrow B$ in **C**

Composition:

This is the coKleisli composition

Identity: $A \otimes u$

of the comonad $(-) \otimes U$

Can we put a monad on each new category?

LOCALISABLE MONADS

Can we put a monad on each new category?

(New Stuff!)

- b Localisable \rightarrow Local

Localisable monads

Definition:

A monad T is localisable at a central idempotent *U* if for any object A there are partial strengths

$$\operatorname{st}_{A,U}:T(A)\otimes U\to T(A\otimes U)$$

(satisfying some compatibility axioms)

 \star Localisable if localisable at all U.

Example: Strong monads.

Example: a monad T on a cartesian closed category if

$$T(A \times B) \simeq T(A) \times T(B)$$

Local monads

We want to define LOCAL monads on $\mathbf{C}||_u$ Assumption: Monad T on \mathbb{C} .

$$T_u(A) = T(A)$$

$$T_u(f) = ?$$

$$T(A) \otimes U \xrightarrow{\operatorname{st}} T(A \otimes U) \xrightarrow{T(f)} T(B)$$

$$\eta_A^u = \eta_A \otimes u$$

$$\mu_A^u = \mu_A \otimes u$$

Outline

- 1. Motivational problems
- 2. Intrinsic structure (Central idempotents)
 - 3. Localisable monads
 - 4. Abstract characterisation of localisable monads

5. Back to motivational problems

ABSTRACT CHARACTERISATION

Objective

Theorem: The above are equivalent.

2-categories

Street (1972): Formal theory of monads

Theory of monads in arbitrary 2-categories

2-category:

0-cells

1-cells: maps between 0-cells

2-cells: maps between 1-cells

2-category: $K = [\mathbf{ZI}(\mathbf{C})^{op}, \mathbf{Cat}]$

0-cells: 2-functors

central idempotents

1-cells: nat. transf. (i.e. components are 2-

functors for each U)

2-cells: modifications (i.e. components are nat.

transf. for each U)

Note: This can get confusing!!!

Monads in 2-categories

What is a monad in a 2-category?

2-cells (modifications)

Satisfying the usual monad laws.

Choose 0-cell
$$\overline{\mathbf{C}}: \mathrm{ZI}(\mathbf{C})^{\mathrm{op}} \longrightarrow \mathbf{Cat}$$
 $u \longmapsto \mathbf{C}||_{u}$

1-cell (Nat.
$$T_u: \mathbf{C}|_u \longrightarrow \mathbf{C}|_u$$
 Functor

Transf) $\mu: TT \longrightarrow T$

$$\longrightarrow \mu_u: T_uT_u \longrightarrow T_u$$

$$\eta: 1_{\overline{\mathbf{C}}} \longrightarrow T$$

$$\longrightarrow \eta_u: 1_{\mathbf{C}||_u} \longrightarrow T_u$$
P-cells (modifications)

Main Theorem (new result) Induces using local monads) (Formal) Monads in a Localisable particular 2-category monads Induces (by defining a strength)

Theorem: For a monoidal category C there is a bijective correspondence between localisable monads on \mathbf{C} and formal monads on \mathbf{C} in $[\mathrm{ZI}(\mathbf{C})^{\mathrm{op}},\mathbf{Cat}]$.

- Top arrow: Follows by definition
- Bottom arrow: Follows from properties of the strength defined
- Formal \rightarrow Localisable \rightarrow Formal: Naturality of the strength
- Localisable \rightarrow Formal \rightarrow Localisable: The structure of the strength introduced in the bottom arrow allows us to recover the original strength of the localisable monad

What is behind this?

• For each v we want to define a strength $\operatorname{st}: T_v(A) \otimes U \longrightarrow T_v(A \otimes U)$

- $\mathbf{C}|_{u}$ is the coKleisli category of the comonad $-\otimes U$ on \mathbf{C} .
- We have an adjunction:

$$FG = (-) \otimes U \subset \mathbf{C} \xrightarrow{T} \mathbf{C} ||_{u}$$

• The strength is then defined as:

$$T_v(A) \otimes U := FGT_v(A) \stackrel{\text{nat.}}{=} FT_uG(A) \stackrel{\text{unit}}{\to} FT_uGFG(A) \stackrel{\text{nat.}}{=} FGT_vFG(A) \stackrel{\text{counit}}{\to} T_vFG(A) =: T_v(A \otimes U)$$

BACK TO MOTIVATIONAL PROBLEMS

Example: Concurrency

Monad (on **Set**)

$$A \longmapsto M \times A$$

(Action monad / Writer monad)

Kleisli maps

$$A \longrightarrow M \times B$$

Start: Categories C_1 and C_2 with monoids M_1 and M_2 .

Want: Category \mathbf{C} with monoid M that "restricts" to \mathbf{C}_1 and \mathbf{C}_2 with monoids M_1 and M_2 .

Building C:

- > Idea:
 - Ob: pairs (A, B) of $A \in \mathbf{C}_1$ and $B \in \mathbf{C}_2$.
 - $\bullet \text{ Mor:} \quad \begin{array}{c|c} A & B \\ \hline f_1 & g_1 \\ \hline C & D \\ \hline \hline \tau_{CD} \\ \hline \hline f_2 & g_2 \\ \hline \end{array}$

➤ Central idempotents:

$$u_1 = (I,0), u_2 = (0,I)$$

 \triangleright In essence, we get a monoid M of the form

$$M = (M_1, M_2)$$

- > Then we obtain the restrictions we wanted:
 - Restricting C to u_i yields C_i , while M restricts to M_i .

Example: Localising the global state monad

• State monad on **Set**:

$$T(-) = S \multimap (- \times S)$$

Central idempotents: 0, 1

This is trivially localisable!

What about something like this?

• State monad on \mathbf{Set}^n :

$$T(A_1,\ldots,A_n)=(S_1,\ldots,S_n)\multimap ((A_1,\ldots,A_n)\times (S_1,\ldots,S_n))$$

• Strength is curry of

$$T(A_1,\ldots,A_n)\times(U_1,\ldots,U_n)\times(S_1,\ldots,S_n)\longrightarrow(S_1,\ldots,S_n)\times(A_1,\ldots,A_n)\times(U_1,\ldots,U_n)$$

 \triangleright Similar question on **Hilb** and **Hilb**ⁿ

Other things to mention

• Algebras

• Commutativity

$$T(A) \otimes U \otimes V \xrightarrow{\operatorname{st}_{A,U} \otimes V} T(A \otimes U) \otimes V \xrightarrow{\operatorname{st}_{A \otimes U,V}} T(A \otimes U \otimes V)$$

$$T(A) \otimes \sigma_{U,V} \downarrow \qquad \qquad \uparrow_{T(A \otimes \sigma_{V,U})} \uparrow_{T(A \otimes V,U)} \uparrow_{T($$

• Connections to other ideas of modularity on monads

THANK YOU!

Paper: https://arxiv.org/abs/2108.01756

(To appear at CSL 2022)

