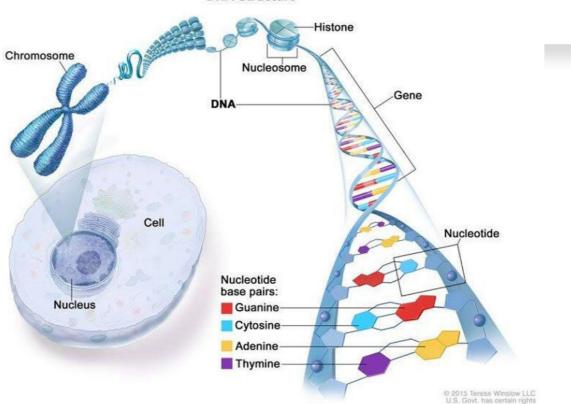
AI for Precision Oncology

Project Aim

 The aim of my project is to create a Machine Learning (ML) model that can predict a patient's Immunotherapy response using transcriptomic data.

Cancer

What is cancer?



DNA Structure

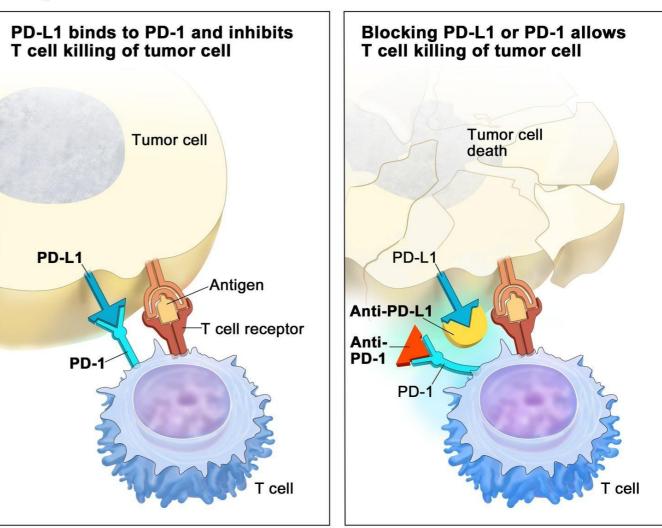
Cancer Immunotherapy

Immunotherapy leverages the body's immune system to combat cancer.

Immune Checkpoint Inhibitors

• Anti-PD1

- Pembrolizumab (Keytruda)
- Nivolumab (Opdivo)

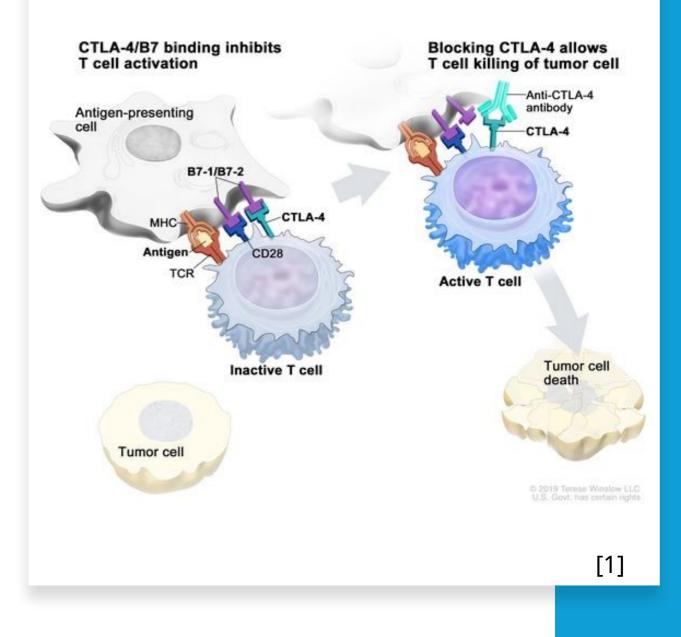


© 2015 Terese Winslow LLC U.S. Govt. has certain rights

[1]

Cancer Immunotherapy

- Anti-CTLA-4
 - Tremelimumab
 - ipilimumab



The problem

20-40% of patients [2]. On average, price patient annually is \$150,000 in the USA

Side effects of Immunotherapy can be; diarrhoea, fatigue, nausea or even an autoimmune response.

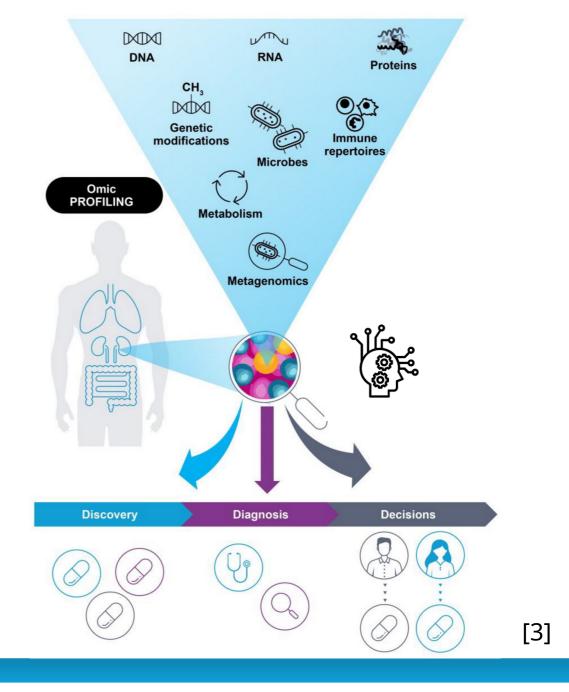
Time waste and disease progression.

The Current Solution

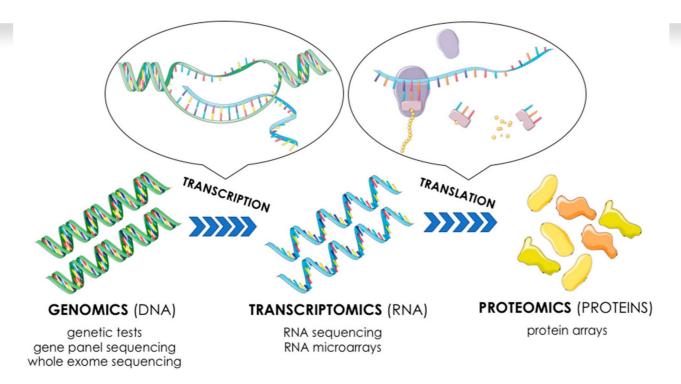
- **Precision Oncology**: Utilises genetic profiling and biomarkers to customise treatments for individuals.
- **Current Biomarker in Clinical Practice**: Tumour mutational burden, PD-L1 expression, etc.
- Limitations:
 - Costly
 - Results different across labs

The Proposed Solution

Combine **ML with precision oncology** and train ML models on pre-treatment gene expression data from next-generation sequencing to **predict patient outcomes**.



Transcriptomics



Biomarker

Biomarker – definition

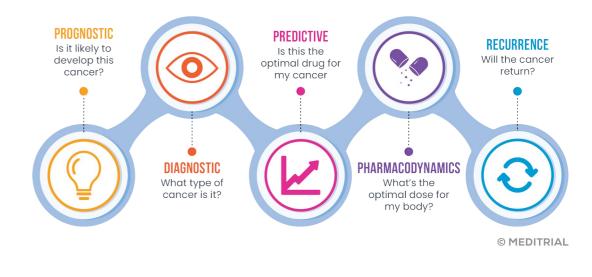
 A molecular, biological, or physical characteristic that indicates a specific physiologic state. It is used in clinical practice to identify risk for disease, diagnose disease and its severity, guide intervention strategies, and monitor patient responses to therapy

Biomarkers Definitions Working Group. Clin Pharmacol Ther 2008

World Stroke Academy

Biomarkers- methodological evaluation by Ass Prof Ana Catarina Fonseca, University of Lisbon

TYPES OF BIOMARKERS



Machine Learning Pipeline

Machine Learnin Pipeline: Data

- **Transcriptomic** data from pretreatment tumour biopsies and blood samples.
- Collected through extensive literature reviews, public databases, and clinical trials.
- The pre-treatment tumour provides a baseline of the patient's disease before treatment.

Biopsy Data

Characteristics	I01 (N = 119)	I14 (N = 56)	I09 (N = 41)	I15 (N = 28)
Studies cohort	Liu D, 2019	Riaz N, 2017	Glide TN, 2019	Hugo W, 2016
Data source	dbGaP (accession	GSE91061	ENA:	GSE78220
	number phs000452.v3.p1)		PRJEB23709	
Cancer type	Melanoma: 121 (100%)	Melanoma: 56 (100%)	Melanoma: 41 (100%)	Melanoma: 28 (100%)
Anti-PD1	Nivolumab or	Nivolumab: 56	Nivolumab: 9	Pembrolizumab
received for	Pembrolizumab (not	(100%)	(22%)	: 28 (100%)
Melanoma Cancer	identified in each		Pembrolizumab	
	patient)		: 32 (78%)	
Number of	7440	7440	7440	7440
genes in				
common				
Drug response				
(RECIST)				
CR (4)	16 (13%)	3 (5%)	4 (10%)	5 (18%)
PR (3)	31 (26%)	8 (14%)	15 (36%)	10 (36%)
SD (2)	16 (13%)	19 (34%)	6 (15%)	0 (0%)
PD (1)	57 (47%)	26 (46%)	16 (39%)	13 (46%)
Drug response				
Resnonder	47 (39%)	11 (20%)	19 (46%)	15 (54%)

13

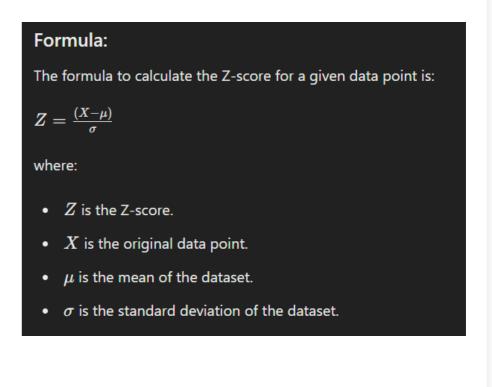
A	В	С	D	E	F	G	Н	I	J	K
Patient	Response	A1BG	A1BG-AS1	A1CF	A2M	A2M-AS1	A2ML1	A2ML1-AS	A2MP1	A3GALT2
2 Patient1	0	5	0	3	33548.86	18.96	20	0	0	0
Patient10	1	142.71	41.52	0	15506.96	9.63	4	0	0	3
Patient100	1	159.06	17.33	1	17185.05	24	10	0	0	4
Patient106	1	220.4	56	0	13348.3	6.68	10	0	0	0
Patient107	1	0	0	0	3407	0	0	0	0	0
Patient108	0	17	0	0	33240	0	0	0	0	0
Patient11	0	286.57	55.39	0	22283.74	3.25	7	0	0	1
Patient112	0	134.51	24.28	1	16282.84	10.15	337	0	0	0
0 Patient116	0	286.95	122.05	2	22599.44	20.77	1103	0	0	4
1 Patient117	0	234.94	115.85	1	72061.13	34.74	4	0	0	0
2 Patient121	. 1	419.15	36.85	3	41233.71	13.97	855	0	0	3
3 Patient125	1	121.91	81.76	0	41419.3	106.57	1	0	0	2
4 Patient126	1	333.5	104.48	3	279948.3	76.45	8	0	0	6
5 Patient127	1	291.27	72.52	13	7995.4	9.6	5	0	0	10
6 Patient13	0	166.3	58.7	3	19674.57	6.42	14	0	0	3
7 Patient130	0	269	0	0	10460.28	8.64	20	0	0	2
8 Patient131	. 1	129	0	0	8935	0	0	0	0	C
Patient132	1	124.63	41.37	0	78921.12	22.87	40	0	0	C
Patient133	0	189.33	60.58	3	25605.57	5.42	279	0	0	C
1 Patient134	0	367.85	86.15	0	71966.97	75.53	2334	0	0	C
2 Patient135	1	240.88	7	0	18233.76	3.24	103	0	0	C
		<u></u>	o ·	-		~ · · ·	-	-	-	~

Machine Learning Pipeline: Data

Machine Learning Pipeline: Data Preprocessing

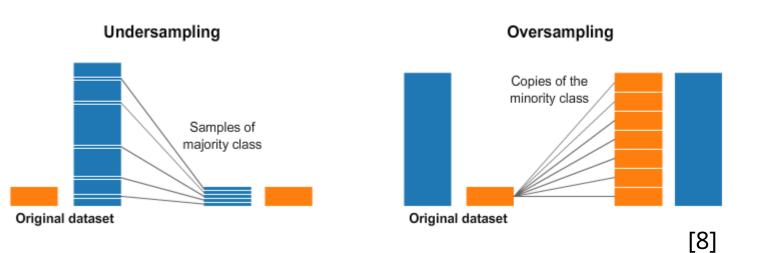
Z - score Normalization

- The purpose of Z-score normalization is to scale and centre the data such that it has a mean of zero and a standard deviation of one.
- This makes it easier to compare data that are on different scales or have different units.



Handling Imbalanced Datasets

- Re-sampling techniques
 - Oversampling
 - Under-sampling



Machine Learning Pipeline: Model Training

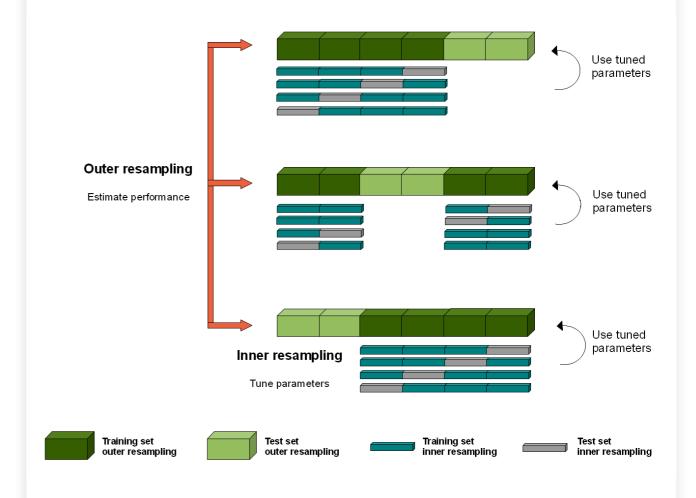
Machine Learning Pipeline: Model Training and Evaluation

Nested k Fold Cross Validation

- Hyperparameter tuning
- Feature selection

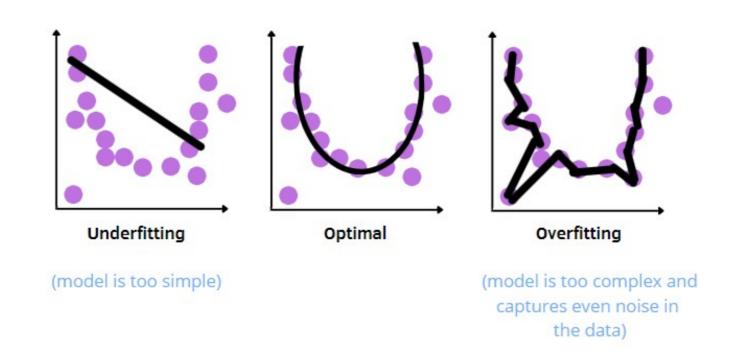
Evaluation Metrics

- Model selection
- MCC Matthews Correlation Coefficient
- **ROC** Receiver Operating Characteristic



[3]

Hyperparameter tuning



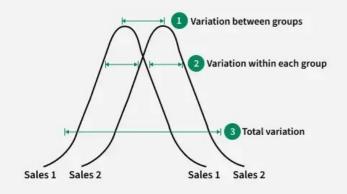
Feature Selection

• ANOVA

- Lasso, L1 regularisation
- Mutual Info

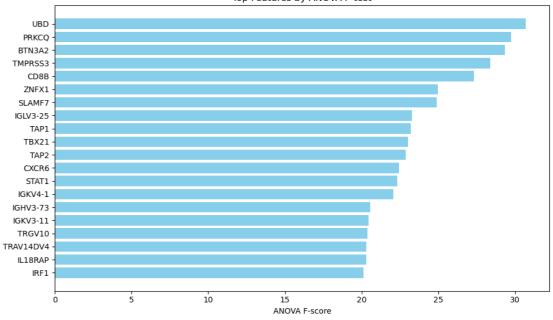
ANOVA

ANOVA testing



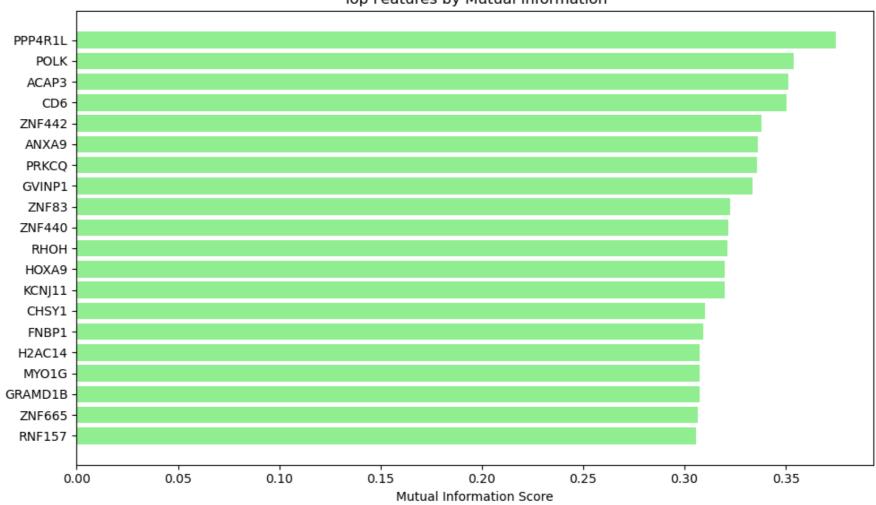
Sales 1	Sales 2
150	170
150	162
157	177
145	192
130	184
170	169
165	155

Two sample groups of sales data



Top Features by ANOVA F-test

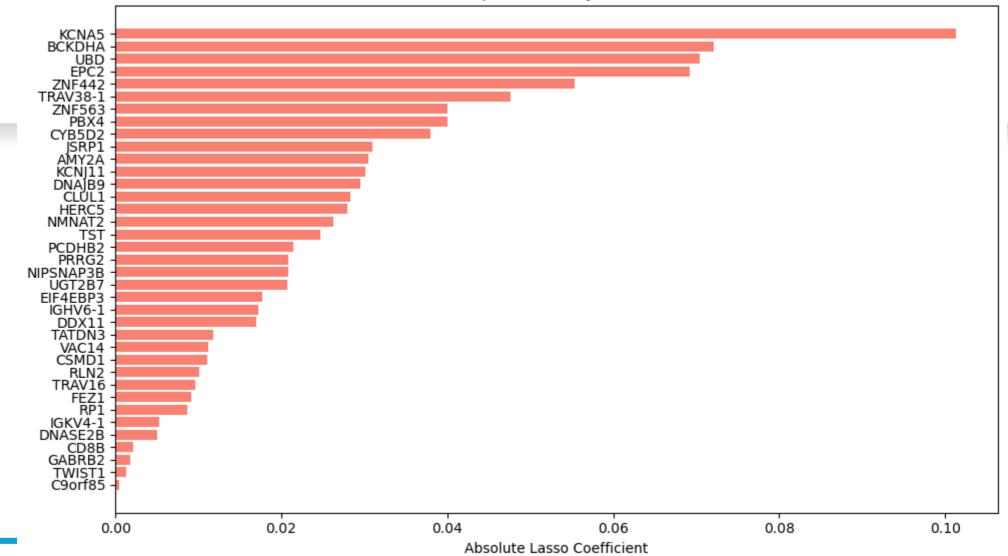
Mutua Info



Top Features by Mutual Information

Lasso, L1 regularisation

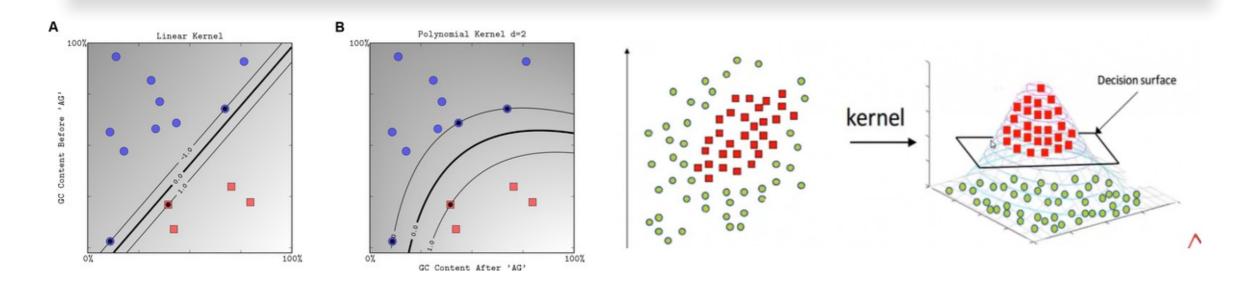
Top Features by Lasso



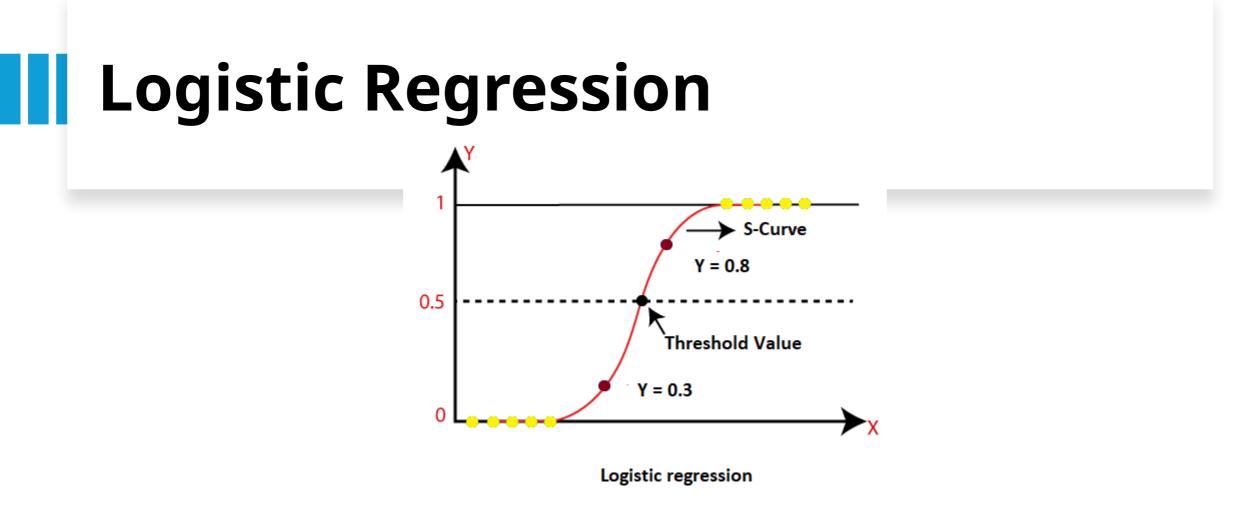
Algorithms

- Support Vector Machine
- Logistic Regression
- Extreme Gradient Boost
- Random Forest
- Classification and Regression Trees

Support Vector Machine

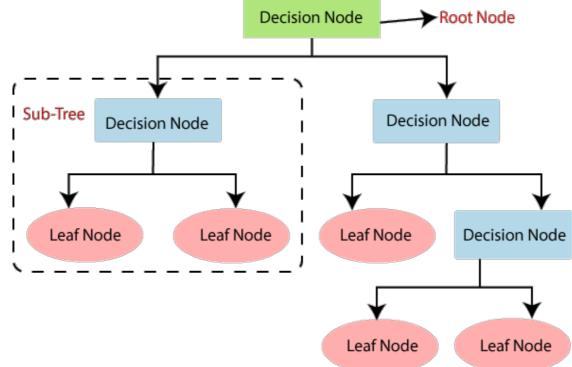


• Hyper Parameters: C, kernel



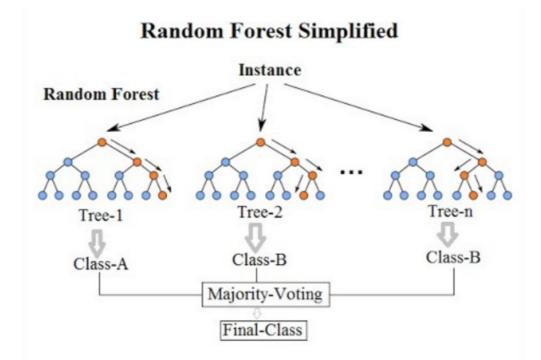
• Hyper Parameters: C, penalty

Classification and Regression Trees



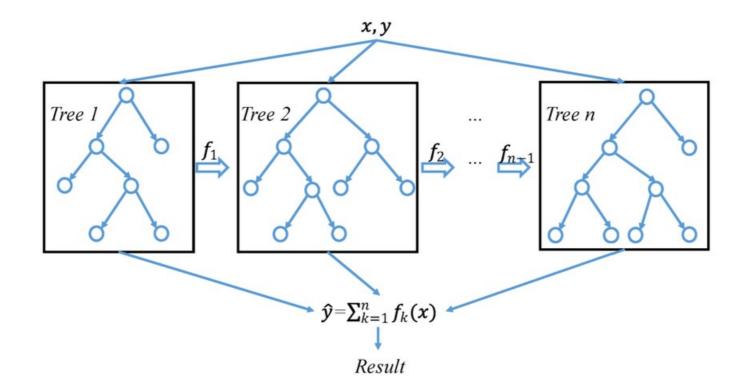
• Hyper Parameters: max depth, min sample split

Random Forest



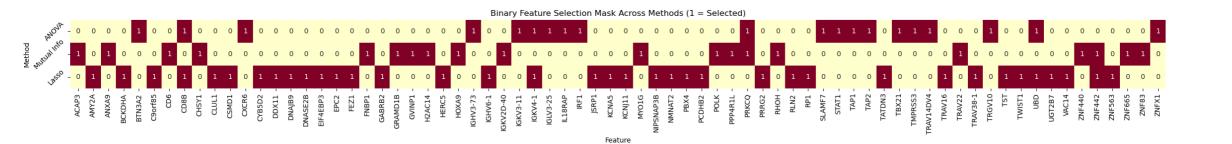
• Hyper Parameters: n estimator, max depth

Extreme Gradient Boost



• Hyper Parameters: n estimators, learning rate, max depth

Binary Feature Selection Mask Across Methods (1 = Selected)



- 1.00

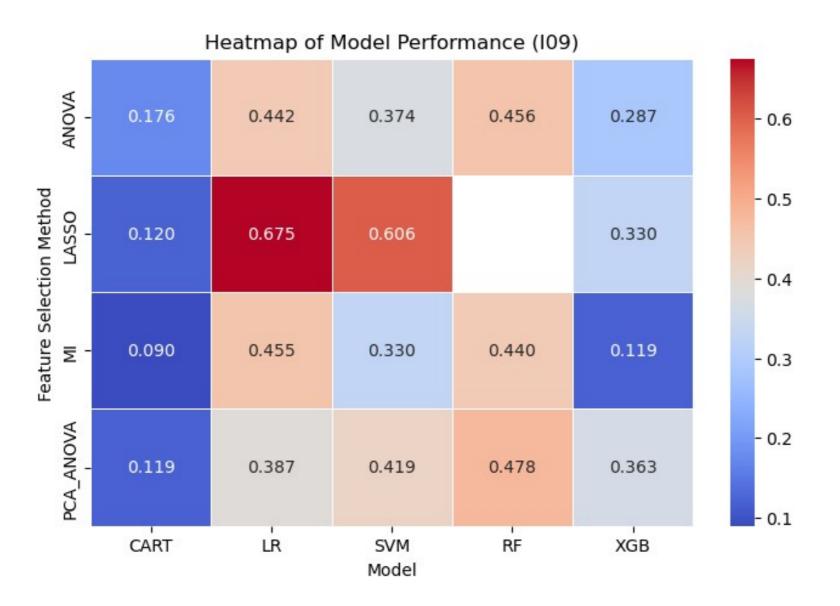
- 0.75

- 0.50 - 0.25

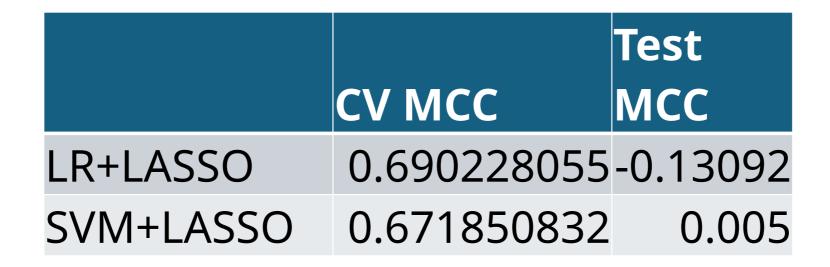
Evaluation Metrics



I09 Dataset: Results (MCC)



Test on I15



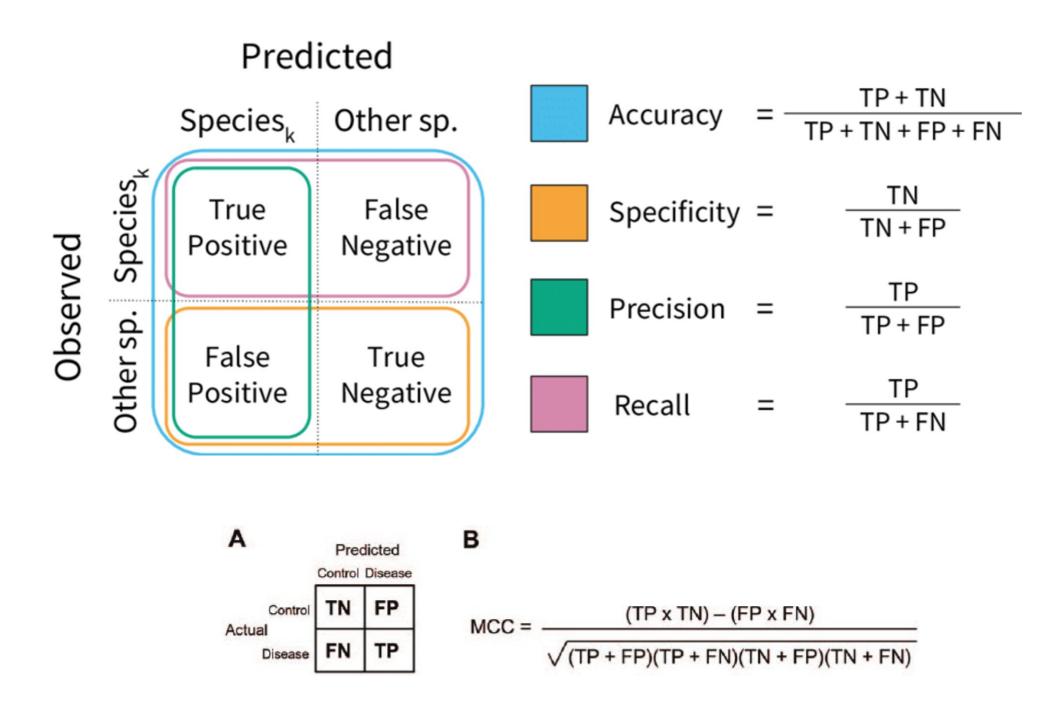
THANK YOU! QUESTIONS

References

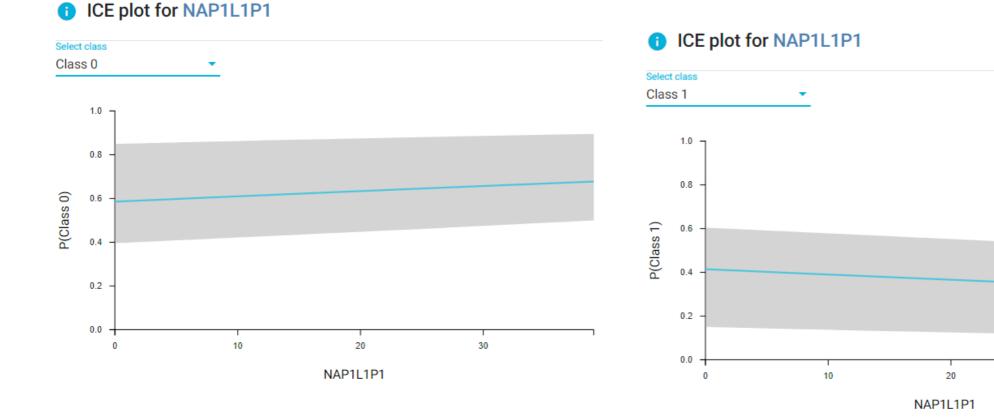
- National Cancer Institute, Winslow T. Immune Checkpoint Inhibitor (PD-1). NCI Visuals Online. June 8, 2016. Available from: <u>https://visualsonline.cancer.gov/details.cfm?imageid=10396</u>
- 2. Wolchok JD, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345-1356.
- 3. Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G, Jones ZM. mlr: Machine Learning in R. J Mach Learn Res. 2016;17(170):1-5.
- 4. Ogunleye AZ, Piyawajanusorn C, Gonçalves A, Ghislat G, Ballester PJ. Interpretable machine learning models to predict the resistance of breast cancer patients to doxorubicin from their microRNA profiles. Adv Sci (Weinh). 2022 Aug;9(24). doi: 10.1002/advs.202201501. Epub 2022 Jul 3. PMID: 35785523; PMCID: PMC9403644.
- 5. Ogunleye A, Piyawajanusorn C, Ghislat G, Ballester PJ. Large-Scale Machine Learning Analysis Reveals DNA Methylation and Gene Expression Response Signatures for Gemcitabine-Treated Pancreatic Cancer. Health Data Sci. 2024;4:0108. doi: 10.34133/hds.0108. PMID: 38486621. Available from: <u>https://pubmed.ncbi.nlm.nih.gov/38486621/</u>
- 6. Tsamardinos I, Lagani V, Papagregoriou G, Tsagris M, Borboudakis G, Zenker M, et al. A perspective on automated machine learning in bioinformatics. Brief Bioinform. 2022;23(1). doi: 10.1093/bib/bbac059. Available from: https://pubmed.ncbi.nlm.nih.gov/35382509/
- 7. Tanner G. Kernel PCA Explained. ML Explained. January 2, 2022. Available from: <u>https://ml-explained.com/blog/kernel-pca-explained</u>
- 8. Jappinen R. Resampling strategies for imbalanced datasets. Kaggle. Available from: https://www.kaggle.com/code/rafjaa/resampling-strategies-for-imbalanced-datasets

AI in Precision Oncology Case Studies

Model performance 0.80 0.56 **ROC-AUC** MCC Doxorubicin response in breast cancer patients: Decision tree combining 4 isomiRs DOI: 10.1002/advs.202201501 [4] 0.79 0.44MCC **ROC-AUC** Gemcitabine response in pancreatic cancer patients: Random forest combining 4 mRNAs DOI: 10.34133/hds.0108 [5]



I01 Dataset Feature ICE Plot (Individual Conditional Expectation Plot)



30

What is transcriptomics

Transcriptomics is the study of the complete set of RNA transcripts produced by the genome in a specific cell, tissue, or organism.

TPM – Transcripts per Kilobase Million

Normalize for gene length first, and then normalize for sequencing depth second