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Introduce Peirce’s Existential Graphs… 

… as a precursor to string diagrams … 

... and as the inspiration for recent  
developments in categorical logic.   

Aim





Outline

• introduce Peirce’s Existential Graphs (à la regular logic and cartesian bicategories) 

• move to the Neo-Peircean Calculus of Relations (à la residuation and cyclic bilinear logic) 

• demonstrate topological advantages





The Existential Graphs are a graphical calculus for the logic of relations developed by 
Charles S. Peirce from the 1880s-1914…  
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30 Logical Tracts. No. 2 (R 492) | 227

[A mutilated page of R 492, showing abundant editorial marks and cut-and-paste clippings by

the editors of the Collected Papers (Harvard Peirce Papers).]
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[A mutilated page of R 492, showing abundant editorial marks and cut-and-paste clippings by

the editors of the Collected Papers (Harvard Peirce Papers).]

41 A Syllabus of certain Topics of Logic (R 478) | 379

[Two holograph images (Harvard Peirce Papers, R 478(s)): a reversed verso of an abandoned ms

draft page 137 (above) and an abandoned ms draft page 154 (below).]



3
8
4

|
13

Th
e
P
ri
n
ci
p
le
s
o
f
Lo
g
ic
a
lG

ra
p
h
ic
s
(R
4
9
3
),
c.
18
9
9

Tw
o
h
o
lo
g
ra
p
h
p
ag
es

(H
ar
va
rd

P
ei
rc
e
P
ap
er
s,
R
4
9
3
).

30 Logical Tracts. No. 2 (R 492) | 227

[A mutilated page of R 492, showing abundant editorial marks and cut-and-paste clippings by

the editors of the Collected Papers (Harvard Peirce Papers).]

41 A Syllabus of certain Topics of Logic (R 478) | 379
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418 | 42 Fragments

A holograph page (Harvard Peirce Papers, R 1070).

[An undated proposal representing variants of logical graphs that have a rather special look. This
one-page study is inscribedon thebackpageof a leaflet, “Inventory of Instruments”,whichPeirce
had retained from the Coastal and Geodetic Survey perhaps since late 1880s. Three pages of that
leaflet have been preserved in R 1070; perhaps Peirce kept them as scrap paper which he was
constantly in shortage of. The graphs are likely to have been scribed much later, however, and
possibly date from the post-1903 era. Non-standard notations are created especially for the blot,
thus effecting contradictions (“meaningless”) and denials of an assertion, aswell as for the scroll,
in which the inloops are pulled out from the outloop to form these 8-shapes distinguished from
the latter by dashed boundaries. Rules for inserting on the antecedent and erasing from the con-
sequent appear near the bottom left of the page.]
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had retained from the Coastal and Geodetic Survey perhaps since late 1880s. Three pages of that
leaflet have been preserved in R 1070; perhaps Peirce kept them as scrap paper which he was
constantly in shortage of. The graphs are likely to have been scribed much later, however, and
possibly date from the post-1903 era. Non-standard notations are created especially for the blot,
thus effecting contradictions (“meaningless”) and denials of an assertion, aswell as for the scroll,
in which the inloops are pulled out from the outloop to form these 8-shapes distinguished from
the latter by dashed boundaries. Rules for inserting on the antecedent and erasing from the con-
sequent appear near the bottom left of the page.]

42 Fragments | 413

A holograph page (Harvard Peirce Papers, R 1333).

[A verso page filled with studies on graphs. The recto of this loose sheet is part of the draft of
Peirce’s review on English scientists, published in The Nation, October 1, 1903. The graphs are
related to the topics taken up in the pre-drafts of his fifth Lowell Lecture (V(a,b,c)).]



The Existential Graphs are a graphical calculus for the logic of relations developed by 
Charles S. Peirce from the 1880s-1914…  



The Existential Graphs are a graphical calculus for the logic of relations developed by 
Charles S. Peirce from the 1880s-1914… 

…and had almost no uptake within the broader logic community.





Why return to the Existential Graphs?…





Peirce presented some of the earliest instances of string diagrams as we might recognize 
them today… 

… and stated some essential features and laws.
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Peirce presented some of the earliest instances of string diagrams as we might recognize 
them today… 

… and stated some essential features and laws.





What are the insights that led to the development of EGs? 

& 
  

How exactly do they compare to string diagrams as we know them?



Developing Alpha  
(propositional logic) 
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Convention: Universe of discourse… 
… ‘Blank’ as True 



Convention: Universe of discourse… 
… what we assert to be true.
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Convention: Universe of discourse… 
… what we assert to be true.

[‘Sheet of Assertion’]

The lilacs are in bloom.



Convention: Universe of discourse… 
… what we assert to be true.

[‘Sheet of Assertion’]



Convention: Universe of discourse… 
… what we assert to be true.

[‘Sheet of Assertion’]

A pear  is ripe.





It hails.
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Convention: Juxtaposition as conjunction… 
… asserted together.
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…once asserted, can un-assert. 
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It hails.
[‘then it is true that’]

Inference Rule: Iteration… 
…once asserted, can be asserted once more. 

It hails.

It hails.
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[‘Cut’]



It hails.

It is cold. 

[‘Cut’]

Convention: ‘Cut’ as negation… 
… asserted together.
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… asserted together.
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It is cold. 

[It hails 
…and… 

It is not cold.]

[‘Cut’]

Convention: ‘Cut’ as negation… 
… as separation from sheet.
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Takeaway: Nested ‘cuts’ capture logical 
connectives… 

…one sign is sufficient.. 
… with reading rules allowing different 

interpretations to .. read from the same graph.   
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[If it is not cold 
…then… 
It hails.]

Takeaway: Nested ‘cuts’ capture logical 
connectives… 

… … with reading rules allowing different 
interpretations to be read from the same 

graph.    
… with reading rules allowing different 

interpretations to .. read from the same graph.   
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…then… 
It is cold.]
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…then… 
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… deiteration 

… ‘double-cut’ elimination
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Inference Rule: modus ponens… 
… deiteration 

… ‘double-cut’ elimination 
… erasure

It hails.

[‘then it is true that’]
It hails.

It is cold. 





Developing Beta  
(predicate logic) 





A leaf rustles over the ground.
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… asserted together.



A leaf rustles over the ground. 

______ rustles over the ground 
A leaf rustles over _________ 
______ rustles over _________ 
______ over ______



God gives some good to every person.



God gives some good to every person. 

____ gives ____ to ___ 
____ gives some good to ___ 
____ gives ____ to every person 
God gives ____ to ___ 
God gives some good to ___ 
God gives ____ to every person 
____ gives some good to every person 



God gives some good to every person. 

____ gives ____ to ___ 
____ gives some good to ___ 
____ gives ____ to every person 
God gives ____ to ___ 
God gives some good to ___ 
God gives ____ to every person 
____ gives some good to every person 



____ gives ____ to ___



____ gives ____ to ___



[Think of valency in chemistry: 
H-O-H ]

____ gives ____ to ___
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____ gives ____ to ___
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Convention: ’—‘ as ‘something’… 
… asserted together.
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… branch as ’same as’.



____ gives ____ to ___
______ rustles over the ground

Convention: ’—‘ as ‘something’… 
… branch as ’same as’.

[‘lines of identity’]





Nordica
is a woman

sings



Nordica
is a woman

sings

Inference Rule: Erasure… 
…line can be broken. 
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Inference Rule: Erasure… 
…line can be broken. 





sings sings

[P.H.]



sings



singssingssingssings



singssingssingssings



[‘Somebody 
sings’]

[‘Somebody 
does not sing’]

[‘Nobody 
sings’]

[‘Everybody 
sings’]

singssingssingssings





‘Cut’ Juxtaposition as ‘conjunction’

Syntax Conventions

‘sheet of assertion’

‘Cut’ as negation 

Iteration/Deiteration

Inference Rules

Erasure/Insertion

Add/Remove ‘Double-Cut’

(Principle of Contraposition)

[Standard EGs]

‘Line of Identity' 

‘Line of Identity’  
as something exists

Asserted Relations  (P , Q , R…)



‘Cut’ Juxtaposition as ‘conjunction’

Syntax Conventions

‘sheet of assertion’

‘Cut’ as negation 

Iteration/Deiteration

Inference Rules

Erasure/Insertion

Add/Remove ‘Double-Cut’

(Principle of Contraposition)

‘Line of Identity' 

‘Line of Identity’  
as something exists

See Roberts’ ‘The Existential Graphs of C.S. Peirce’ (1973). 

Asserted Relations  (P , Q , R…)

[Standard EGs]





Outline

• introduce Peirce’s Existential Graphs (à la regular logic and cartesian bicategories) 

• move to the Neo-Peircean Calculus of Relations (à la residuation and cyclic bilinear logic) 

• demonstrate topological advantages





• String diagrams for regular logic….



Cartesian Bicategories of Relations 
(Carboni and Walters, 1987)

Graphical Conjunctive Queries 
(Bonchi, Seeber, Sobocinski, 2018)

Regular Logic 
∃, ∧ , ⊤and
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‘One-sided’ Presentation:



‘One-sided’ Presentation -> ‘Two-sided’ Presentation:

->



‘One-sided’ Presentation -> ‘Two-sided’ Presentation:

This is sufficient for regular logic, i.e. the fragment of  
first-order logic with .∃, ∧ , ⊤

->



‘One-sided’ Presentation -> ‘Two-sided’ Presentation:

This is sufficient for regular logic, i.e. the fragment of  
first-order logic with .∃, ∧ , ⊤

->

Tarski’s Relation Algebra

(really following Boole, De Morgan, 
Schröder, and Peirce…) 





• What are the graphical rewrites, i.e. the inference rules?





• String Diagrams for Cartesian Bicategories



• String Diagrams for Cartesian Bicategories



Associativity

Commutativity

Unit

• String Diagrams for Cartesian Bicategories



"only connectivity  
matters…”

• String Diagrams for Cartesian Bicategories
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• String Diagrams for Cartesian Bicategories

Primitive inference rules…
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• String Diagrams for Cartesian Bicategories

Peirce’s  
‘lines of identity’



• String Diagrams for Cartesian Bicategories

‘Teridentity’

‘Tri-identity’



• String Diagrams for Cartesian Bicategories

Graphical rules for (positive fragment of) Existential Graphs
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• String Diagrams for Cartesian Bicategories



“Quateridentity is obviously composed of two teridentities; i.e. This         is           or       or        
.” 

• String Diagrams for Cartesian Bicategories



• String Diagrams for Cartesian Bicategories



“the line of identity...must be understood quite differently. We must hereafter understand 
it to be potentially the graph of teridentity by which means there will virtually be at least 

one loose end in every graph” 

• String Diagrams for Cartesian Bicategories
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• String Diagrams for Cartesian Bicategories



• String Diagrams for Cartesian Bicategories

“Rule of Erasure: Any partial or total graph can be erased. This rule is to be understood as 
permitting the cutting of any line of identity.”
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permitting the cutting of any line of identity.



• String Diagrams for Cartesian Bicategories

“Rule of Iteration: Any partial or total graph may be iterated within the same [area],, the 
new replica having junctures connecting each hook with the corresponding hook of the 

original graph.
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The standard account of Peirce’s Existential Graphs correspond to… 

… the string diagrammatic presentation of cartesian bicategories of relations (CBR)… 

… with negation.
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‘Cut’ Juxtaposition as ‘conjunction’

Syntax Conventions

‘sheet of assertion’

‘Cut’ as negation 

Iteration/Deiteration

Inference Rules

Erasure/Insertion

Add/Remove ‘Double-Cut’

(Principle of Contraposition)

[Modern EG1]

‘Line of Identity' 

‘Line of Identity’  
as something exists

Cartesian bicategories with Peirce’s ‘Cut’ (first-order logic with equality).

See Haydon and Sobocinski ’Compositional Diagrammatic First-Order Logic’ (2020). 





Outline

• introduce Peirce’s Existential Graphs (à la regular logic and cartesian bicategories) 

• move to the Neo-Peircean Calculus of Relations (à la residuation and cyclic bilinear logic) 

• demonstrate topological advantages
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… such as Cockett and Seely’s ‘circuit 
diagrams’ for bilinear logic…

… and clasp diagrams…
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Residuation adds an important connective that gets us part of the way…  
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The Neo-Peircean Calculus of Relations

• regular and 
coregular fragment 

• with the dual of 
relational 
composition 

• these interact via 
linear negation and 
linear distributivity  

• all inspired by 
Peirce’s 
presentation of 
relations from 1883



• What are the graphical rewrites, i.e. the inference rules?
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[The closest extant theory is classical (cyclic) bilinear logic. See Lambek (1995).]
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‘Note B’ (1883)

…and the cyclicity 
condition…
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Axioms of closed symmetric monoidal linear bicategories 





Example Derivation:



If    then   R; S ≤ T R ≤ T † S⊥

If    then   R ≤ S S⊥ ≤ R⊥

Example Derivation (more):
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Axioms of closed symmetric monoidal linear bicategories Additional axioms of NPR

[See Bonchi, Di Giorgio, Haydon, and Sobocinski ‘Diagrammatic Algebra of First-Order Logic’ (2024)]
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another account?… 

… perhaps… 

… using the `scroll’? 

Residuation adds a contribution that gets us part of the way…   

… adding the dual to relational composition, linear distributivity, 
and the other linear negation laws from `Note B’ is sufficient!   



Advantages: 

• finite axiomization of full first-order logic, 
• negation is a derived operation, with the linear negation, i.e. complement converse ( ), now taken 

as primitive  
• diagrammatic syntax: no complex rules for treating variables, simple inference rules, quantifier-free, 
• comes with soundness and completeness results, 
• comes with encodings into Tarski’s relation algebra 
• propositional fragment corresponds to deep inference systems (Brünnler, 2003)   
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While the calculus is sufficient for classical FOL, its building blocks are not! 

The closest extant theory is classical (cyclic) bilinear logic.   

See Lambek (1995) and Cockett and Seely (1997).    
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Vindicates Pierce’s use of the ‘scroll’!
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… then scribe the graph (and completeness does the rest).

In the NPR calculus, if we want to reason  
about certain types of relations…
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Aim

Introduce Peirce’s Existential Graphs… 

… as a precursor to string diagrams … 

... and as the inspiration for recent  
developments in categorical logic.   

… Peirce understood the relational setting for cartesian bicategories 
and for classical (cyclic) bilinear logic!





“… my Existential Graphs, by which all deduction is reduced to insertions and erasures, and in which 
there are no connecting signs except the writing of terms on the same area enclosed in an oval … 

and also heavy lines to express the identity of the individual objects… This ought to be the Logic of 
the Future.” 

- Letter to William James, 1909 



Thanks!




