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Aim

Introduce Peirce’s Existential Graphs...

... as a precursor to string diagrams ...

...and as the inspiration for recent
developments in categorical logic.






Outline

* introduce Peirce’s Existential Graphs (a la regular logic and cartesian bicategories)

* move to the Neo-Peircean Calculus of Relations (a la residuation and cyclic bilinear logic)

« demonstrate topological advantages






The Existential Graphs are a graphical calculus for the logic of relations developed by
Charles S. Peirce from the 1880s-1914...
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Two holograph pages (Harvard Peirce Papers, R 493).
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[A mutilated page of R 492, showing abundant editorial marks and cut-and-paste clippings by
the editors of the Collected Papers (Harvard Peirce Papers).]

Two holograph pages (Harvard Peirce Papers, R 493).
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[A mutilated page of R 492, showing abundant editorial marks and cut-and-paste clippings by
the editors of the Collected Papers (Harvard Peirce Papers).]

[Two holograph images (Harvard Peirce Papers, R 478(s)): a reversed verso of an abandoned ms
draft page 137 (above) and an abandoned ms draft page 154 (below).]

Two holograph pages (Harvard Peirce Papers, R 493).
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Two holograph pages (Harvard Peirce Papers, R 493)

[A mutilated page of R 492, showing abundant editorial marks and cut-and-paste clippings by
the editors of the Collected Papers (Harvard Peirce Papers).]

A holograph page (Harvard Peirce Papers, R 1070).

[An undated proposal representing variants of logical graphs that have a rather special look. This
one-page study is inscribed on the back page of a leaflet, “Inventory of Instruments”, which Peirce
had retained from the Coastal and Geodetic Survey perhaps since late 1880s. Three pages of that
leaflet have been preserved in R 1070; perhaps Peirce kept them as scrap paper which he was
constantly in shortage of. The graphs are likely to have been scribed much later, however, and
possibly date from the post-1903 era. Non-standard notations are created especially for the blot,
thus effecting contradictions (“meaningless”) and denials of an assertion, as well as for the scroll,
in which the inloops are pulled out from the outloop to form these 8-shapes distinguished from
the latter by dashed boundaries. Rules for inserting on the antecedent and erasing from the con-
sequent appear near the bottom left of the page.]

[Two holograph images (Harvard Peirce Papers, R 478(s)): a reversed verso of an abandoned ms
draft page 137 (above) and an abandoned ms draft page 154 (below).]
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[A mutilated page of R 492, showing abundant editorial marks and cut-and-paste clippings by
the editors of the Collected Papers (Harvard Peirce Papers).]

A holograph page (Harvard Peirce Papers, R 1333)A holograph page (Harvard Peirce Papers, R 1070).

[A verso page filled with studies on graphs. The rp&tounfdtisdl posp ciadetjrqser tifd vardaafs of logical graphs that have a rather special look. This
Peirce’s review on English scientists, published imfiagNegstmd®isohecribd@m fHebgcdpbmgartef a leaflet, “Inventory of Instruments”, which Peirce
related to the topics taken up in the pre-drafts of hisfifththirveel ffent tiie (o@statBnld Geodetic Survey perhaps since late 1880s. Three pages of that
leaflet have been preserved in R 1070; perhaps Peirce kept them as scrap paper which he was
constantly in shortage of. The graphs are likely to have been scribed much later, however, and
possibly date from the post-1903 era. Non-standard notations are created especially for the blot,
thus effecting contradictions (“meaningless”) and denials of an assertion, as well as for the scroll,
in which the inloops are pulled out from the outloop to form these 8-shapes distinguished from
the latter by dashed boundaries. Rules for inserting on the antecedent and erasing from the con-
sequent appear near the bottom left of the page.]

[Two holograph images (Harvard Peirce Papers, R 478(s)): a reversed verso of an abandoned ms
draft page 137 (above) and an abandoned ms draft page 154 (below).]



The Existential Graphs are a graphical calculus for the logic of relations developed by
Charles S. Peirce from the 1880s-1914...



The Existential Graphs are a graphical calculus for the logic of relations developed by
Charles S. Peirce from the 1880s-1914...

...and had almost no uptake within the broader logic community.






Why return to the Existential Graphs?...






Peirce presented some of the earliest instances of string diagrams as we might recognize
them today...
... and stated some essential features and laws.
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Peirce presented some of the earliest instances of string diagrams as we might recognize

them today...

... and stated some essential features and laws.

Suppose we wish to express the algebraic principle that (z+y) +2z = (2 +y) +z. We will
write the letter s with three hooks, as in Fig. 33; to express that w is equal to a result of
adding something equal to u to something equal to v.

Fig. 33
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Then Fig. 34 expresses that, in a universe of values, whatever be the values of z, y, and z,
there is a value, m, of x + y such that a value, t, of m + 2z is a value of n + x where n is a
value of z +y. Of course, a system of representation designed to express all propositions
as analytically as possible cannot, from the nature of things, express the mathematical
relation with the same elegance as a system designed only to express the special kind of

(1903)
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What are the insights that led to the development of EGs?

&

How exactly do they compare to string diagrams as we know them?



Developing Alpha
(propositional logic)






['Sheet of Assertion’]
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Convention: Universe of discourse...
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Convention: Universe of discourse...
... what we assert to be true.

The lilacs are in bloom.

['Sheet of Assertion’]



Convention: Universe of discourse...
... what we assert to be true.

['Sheet of Assertion’]



Convention: Universe of discourse...
... what we assert to be true.

A pear isripe.

['Sheet of Assertion’]






It hails.
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Convention: Juxtaposition as conjunction...

It hails.

It is cold.
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It hails. [It hails
..and...

It is cold. It is cold.]
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Inference Rule: Erasure...

It hails.

It is cold.



Inference Rule: Erasure...

It hails.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.

It is cold.



Inference Rule: Erasure...
...once said, can be unsaid.

It is cold.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.

It is cold.



Inference Rule: Erasure...
...once said, can be unsaid.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.

It is cold.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.

It is cold.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.

It is cold.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.

It is cold.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.

['then it is true that']
It is cold.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.

['then it is true that'] It hails.
It is cold.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.

['then it is true that'] It is cold.
It is cold.



Inference Rule: Erasure...
...once said, can be unsaid.

It hails.

['then it is true that']
It is cold.



It hails.

['then it is true that']
It is cold.



It hails.
['then it is true that']



It hails.
['then it is true that']



It hails. It hails.
['then it is true that']



It hails. It hails.

['then it is true that']
It hails.



Inference Rule: Iteration...
...once asserted, can be asserted once more.

It hails. It hails.

['then it is true that']
It hails.






It hails.

It is cold.



It hails.

It is cold.

['Cut’]



Convention: ‘Cut’ as negation...

It hails.

['Cut’]



Convention: ‘Cut’ as negation...

It hails. [It hails

, ..and...
It is cold. :
It is not cold.]

['Cut’]



Convention: ‘Cut’ as negation...
... as separation from sheet.

It hails. [It hails

, ..and...
It is cold. .
It is not cold.]

['Cut’]
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It is cold. It is cold. It is cold. It is cold.



It hails.

It is cold.

[It hails
...and...
It is not cold.]

It hails.

It is cold.

[It does not hail
...and...
It is not cold.]
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It is cold.

It does not
hail
...and...

It is not cold.]
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case that...
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[It does not hail
...and...
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...and...
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[It does not hail
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It hails.

It is cold.

[It hails
..and...
It is not cold.]

It hails.

It is cold.

[It does not hail
..and...
It is not cold.]

Takeaway: Nested ‘cuts’ capture logical

connectives...

It hails.

It is cold.

[It hails
...Of...
It is cold.]

...one sign is sufficient..

It hails.

It is cold.

[If it hails
...then...

It is cold.]



It hails.

It is cold.

[It hails
..and...
It is not cold.]

It hails.

It is cold.

[It does not hail
..and...
It is not cold.]

Takeaway: Nested ‘cuts’ capture logical
connectives...

...... with reading rules allowing different
interpretations to be read from the same

graph.

It hails. It hails.
It is cold. It is cold.
[It hails [If it hails

...Or... ...then...
It is cold.] It is cold.]



Takeaway: Nested ‘cuts’ capture logical
connectives...

...... with reading rules allowing different
interpretations to be read from the same

graph.

It hails. It hails.

[If it does not hail
...then...
It is cold.]



Takeaway: Nested ‘cuts’ capture logical
connectives...

...... with reading rules allowing different
interpretations to be read from the same

graph.

It hails.

It hails.

[If it is not cold
...then...
It hails.]



It hails. -




It hails.




It hails.
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It hails.




Inference Rule: modus ponens...

It hails.
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... deiteration
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... deiteration

It hails.

[If SA
...then...

It is cold.]




Inference Rule: modus ponens...
... deiteration
... 'double-cut’ elimination

It hails.

[If SA
...then...

It is cold.]
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Inference Rule: modus ponens...
... deiteration
... 'double-cut’ elimination
... erasure

It hails.

[‘then it is true that'] It is cold.

It hails.






Developing Beta
(predicate logic)
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Convention: ‘=" as ‘'something’...

A leaf rustles over the ground.

rustles over the ground
A leaf rustles over
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over
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God gives some good to every person.

_____gives to
_____givessome goodto_
_____gives____to every person
God gives to

God gives some goodto
God gives to every person
gives some good to every person



gives to




gives to




- giveT to__



[Think of valency in chemistry:
H-O-H ]

- gives-Y to___



- giveT to__



- gives-ﬁ‘ to__

rustles over the ground



- gives-ﬁ‘ to__

rustles over the ground



Convention: ‘=" as ‘'something’...

give to__
i rustles over the ground



Convention: '~ as 'something'...
... branch as 'same as..

give to__
i rustles over the ground



Convention: '~ as 'something'...
... branch as 'same as..

give to___
i rustles over the ground

['lines of identity’]






IS a woman

Nordica
sings



Inference Rule: Erasure...
...line can be broken.
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...line can be broken.
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Inference Rule: Erasure...
...line can be broken.

~——IS a woman

Nordica—
~——sings






——sings O 599 e— sings
[P.H.]



—— sings



*—— sings —— sings *—— sings —— sings



*—— sings —— sings —— sings *—— sings



*—— sings —— sings —— sings *—— sings

['Somebody ['Somebody ['Nobody [‘Everybody
sings’] does not sing’] sings’] sings’]






[Standard EGs]

Syntax

Asserted Relations (P, Q,R...)

‘Cut’

‘Line of Identity'

Conventions

‘sheet of assertion’

Juxtaposition as ‘conjunction’

'‘Cut’ as negation

‘Line of Identity’
as something exists

Inference Rules

Erasure/lnsertion

lteration/Deiteration

Add/Remove ‘Double-Cut’

(Principle of Contraposition)



[Standard EGs]

Syntax Conventions
Asserted Relations (P, Q,R...) ‘sheet of assertion’
‘Cut’ Juxtaposition as ‘conjunction’

‘Line of Identity'

'‘Cut’ as negation

‘Line of Identity’
as something exists

Inference Rules

Erasure/lnsertion

lteration/Deiteration

Add/Remove ‘Double-Cut’

(Principle of Contraposition)

See Roberts’ 'The Existential Graphs of C.S. Peirce’ (1973).






Outline

* introduce Peirce’s Existential Graphs (a la regular logic and cartesian bicategories)

e move to the Neo-Peircean Calculus of Relations (a la residuation and cyclic bilinear logic)

« demonstrate topological advantages






String diagrams for regular logic....
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(Carboni and Walters, 1987)
Regular Logic
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Graphical Conjunctive Queries
(Bonchi, Seeber, Sobocinski, 2018)
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‘One-sided’ Presentation -> ‘"Two-sided’ Presentation:

This is sufficient for regular logic, i.e. the fragment of
first-order logic with 3, A, T .




Tarski's Relation Algebra

(really following Boole, De Morgan,
Schroder, and Peirce...)
‘One-sided’ Presentation -> “Two-sided’ Presentation:

T T

-
[ 4

This is sufficient for regular logic, i.e. the fragment of
first-order logic with 3, A, T .






What are the graphical rewrites, i.e. the inference rules?
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“the line of identity...must be understood quite differently. We must hereafter understand
it to be potentially the graph of teridentity by which means there will virtually be at least
one loose end in every graph”
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String Diagrams for Cartesian Bicategories

“Rule of Erasure: Any partial or total graph can be erased.
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String Diagrams for Cartesian Bicategories

“Rule of Erasure: Any partial or total graph can be erased. This rule is to be understood as
permitting the cutting of any line of identity.

o—0 < L > = — <
R N

=)=



String Diagrams for Cartesian Bicategories

“Rule of Iteration: Any partial or total graph may be iterated within the same [area],

—eo < E“-_J >—‘< < ___ <
— O — < — > {RYe <

=)



String Diagrams for Cartesian Bicategories

“Rule of Iteration: Any partial or total graph may be iterated within the same [area], the
new replica having junctures connecting each hook with the corresponding hook of the
original graph.
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String Diagrams for Cartesian Bicategories

B -
R.

“Rule of Iteration: Any partial or total graph may be iterated within the same [area], the
new replica having junctures connecting each hook with the corresponding hook of the
original graph.

—eo < E.____.i >—‘< < ____ <
— O — < — > {RYe <

=)



String Diagrams for Cartesian Bicategories
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The (positive fragment) of Peirce’s Existential Graphs corresponds to...

... the string diagrammatic presentation of cartesian bicategories of relations (CBR)...
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...How to most directly extend regular logic and CBR to first-order logic?
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The standard account of Peirce’s Existential Graphs correspond to...

... the string diagrammatic presentation of cartesian bicategories of relations (CBR)...

... with negation.



[Modern EG+]

Syntax Conventions Inference Rules
Asserted Relations (P, Q, R...) ‘sheet of assertion’ Erasure/Insertion
‘Cut’ Juxtaposition as ‘conjunction’ lteration/Deiteration
‘Line of Identity" '‘Cut’ as negation Add/Remove ‘Double-Cut’
‘Line of Identity’ (Principle of Contraposition)

as something exists

Cartesian bicategories with Peirce’s ‘Cut’ (first-order logic with equality).



[Modern EG+]

Syntax Conventions Inference Rules
Asserted Relations (P, Q, R...) ‘sheet of assertion’ Erasure/Insertion
‘Cut’ Juxtaposition as ‘conjunction’ lteration/Deiteration
‘Line of Identity" '‘Cut’ as negation Add/Remove ‘Double-Cut’
‘Line of Identity’ (Principle of Contraposition)

as something exists

Cartesian bicategories with Peirce’s ‘Cut’ (first-order logic with equality).

See Haydon and Sobocinski ‘Compositional Diagrammatic First-Order Logic’ (2020).






Outline

e move to the Neo-Peircean Calculus of Relations (a la residuation and cyclic bilinear logic)

« demonstrate topological advantages
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“Hence the rule is that having a formula of the form [ R; S < T 1 U ], the letters may be cyclically
advanced one place in the order of writing, those which are carried from one side of the copula to
the other being both negatived and converted.”

([On the Logic of Relatives], 1882 )
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([On the Logic of Relatives], 1882 )
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Residuation Equivalences:

Taking any of these, say the monosyllabic “blames” my proposition is that if A
blames everybody that is blamed by B and B blames everybody that is blamed
by C, then A blames everybody that is blamed by C, then A blames everybody that
is blamed by C. It is obviously so. But I will prove it by existential graphs. In order
to express that A blames everybody blamed by B, we note this simply denies that
there is anybody blamed by B and not blamed by A. Therefore we write scribe

)

So to say that B blames everybody that is blamed by C we scribe

as)

Or dropping the capital letters

18 [The graphs in this fragment are inscribed in red (the lines and letters for spots), and in black
or blue ink (the continuous and broken cuts and the scrolls).]




Residuation Equivalences:

Taking any of these, say the monosyllabic “b
blames everybody that is blamed by B and B
by C, then A blames everybody that is blamed |
is blamed by C. It is obviously so. But I will pro
to express that A blames everybody blamed by
there is anybody blamed by B and not blamed

)

So to say that B blames everybody that is blam

Or dropping the capital letters

18 [The graphs in this fragment are inscribed in red (th
or blue ink (the continuous and broken cuts and the sc

306 —— 38 Lowell Lecture V(a,b,c) (R 459, R 466, R 458)

tord

C

Now I call your attention to the fact that if any graph g is on the sheet of assertion
together with a cut g (O enclosing another graph p

g (@
we may first iterate g by the rule of iteration and deiteration

g (&r)

and may then erase the outside replica by the rule of emissien erasure and inser-

tion

Cep)

So that we-have-the-rule it comes to this that any graph not in an odd number of
cuts can be shoved into any additional cuts that may be already made.

Acting on this rule, let us shove the whole of the upper graph into the inner
cut of the lower one; thus:

Now whatever rule holds good for every graph is true of every line of identity, since
aline of identity is a graph. We therefore have a right to iterate the lower right hand
line in one more cut thus

)
Y

Now by the rule of omission and insertion within three cuts, three being an odd
number we can make any insertion we like. We can therefore join the two lines
there thus

V4
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?
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Now I call your attention to the fact that if any graph g it
together with a cut g (O enclosing another graph p

g (@
we may first iterate g by the rule of iteration and deitera
g (gp)

and may then erase the outside replica by the rule of ex
tion

Cep)

So that we-have-the-rule it comes to this that any graph
cuts can be shoved into any additional cuts that may be

Acting on this rule, let us shove the whole of the u
cut of the lower one; thus:

C

SIGIGR

Now whatever rule holds good for every graph is true of

38 Lowell Lecture V(a,b,c) (R 459, R 466, R 458) = 307

&

C

Now the two inner middle b’s having the same eenneetions ligatures, we can
deiterate erase the inner one by the rule of iteration and deiteration thus

(D)

C

And now, the middle b being in an even number of cuts can be erased, making

)

C

(s

Finally, the two cuts with nothing between except traversing cuts destroy one an-
other and we have

A=

c—

[
<

That is A blames everybody blamed by C which is what I undertook to prove.

alineof ldentlty isa graph We therefore have a rlght toitcraic uic iwwer L1zULLauu

line in one more cut thus

A

C

Now by the rule of omission and insertion within three cuts, three being an odd
number we can make any insertion we like. We can therefore join the two lines

there thus
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Now I call your attention to the fact that if any graph g it C
together with a cut g (O enclosing another graph p

O) deiterate erase the inner one by the rule of iteration and deiteration thus
we may first iterate g by the rule of iteration and deitera A /@
g (gp) %

and may then erase the outside replica by the rule of ex

tion

So that we-have-the-rule
cuts can be shoved into

Acting on this rule,
cut of the lower one; tht

Now whatever rule hold:
aline of identityis a graj
line in one more cut thu

Now by the rule of omis
number we can make a
there thus

38 Lowell Lecture V(a,b,c) (R 459, R 466, R 458) = 307

Now the two inner middle b’s having the same eenneetions ligatures, we can

V25N
est importance for pure mathematics, since pure mathematics is precisely what

results from abstracting from all the special meaning of necessary reasoning and
considering only its forms. Of these four relations there is one which enters into
the very idea definition of necessary reasoning. For necessary reasoning is that
whose conclusion is true of whatever state of things there may be in which the
premiss is true. Now this is expressed in a graph thus:

The pure mathematician substitutes for these logical terms defined symbols x, y, z,
which are to mean whatever they may mean; and he thus gets this graph, which
is precisely the graph of inclusion.

V4

I cannot stop to consider the other three relations but must hurry back to the sub-
ject of numbers. The doctrine of ordinal numbers, then, is a theory of pure math-
ematics and, as matters stand today, is the most fundamental of all branches of
pure mathematics after the mathematics of the pair of values which existential
graphs illustrate. The doctrine of multitude is not pure mathematics. Pure math-

And now, the middle b being in an even number of cuts can be erased, making

an-
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* Peirce studied residuation (around 1883) and did so extensively in the graphs

» previous history of residuation goes through Lambek (1958) and Ward and Dilworth (1938), but
this places it much earlier (see Pratt, 1992)

 residuation is now recognized as a core feature of substructural logics and of categorial grammar



Peirce presented some of the earliest instances of string diagrams as we might recognize them

today...
... and stated some essential features and laws.

* Peirce studied residuation (around 1883) and did so extensively in the graphs

» previous history of residuation goes through Lambek (1958) and Ward and Dilworth (1938), but
this places it much earlier (see Pratt, 1992)

 residuation is now recognized as a core feature of substructural logics and of categorial grammar

See Haydon and Pietarinen "Residuation in Peirce’s Existential Graphs’ (2021).






Residuation in the Existential Graphs coincides with other graphical approaches...
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... such as Cockett and Seely’s ‘circuit
diagrams’ for bilinear logic...
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... and clasp diagrams...

... such as Cockett and Seely’s ‘circuit
diagrams’ for bilinear logic...
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Negation in the reconstruction above is taken as primitive. Can we motivate
another account?...

... perhaps...

... using the “scroll?

Residuation adds an important connective that gets us part of the way...






The Neo-Peircean Calculus of Relations...
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The Neo-Peircean Calculus of Relations

axioms of cartesian bicategories

[ im~Cl— (B —I1D>=1{ 11— ><I{Hor1 |
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linear
bicategories
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axioms of cocartesian bicategories

o all inspired by

 with the dual of  these interact via o
 regular and : : : Peirce'’s
relational linear negation and ,
coregular fragment " : ST presentation of
composition linear distributivity

relations from 1883



What are the graphical rewrites, i.e. the inference rules?



Axioms of Cocartesian bicategories
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Axioms of closed symmetric monoidal linear bicategories



E__

M@E
R T

EEE - o [{

VP m
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Axioms of Cartesian bicategories

[ EIMm

_ Vi Vi \

ATET
BREH

Vi % Vi

Vi Vi \|

\Y|

|1
[ CIM

\ Vi Vi A4

&@@@
el E

:_F

g=§ -z B-3 @:@

@@EE

_ \| Vi

W@m@
@@mm

Vi \ \|

::

f

.
|

Halas

Additional axioms of NPR

Axioms of closed symmetric monoidal linear bicategories

[The closest extant theory is classical (cyclic) bilinear logic. See Lambek (1995).]






From Categorial Grammar to
Bilinear Logic

Joachim Lambek

Department of Mathematics and Statistics, McGill University!

1 Introduction

The syntactic calculus, also known as ‘bidirectional categorial grammar’,
is a kind of logic without any structural rules, other than the obligatory
reflexive law and cut-rule. It had been inspired by multilinear algebra and
non-commutative ring theory and was developed with applications to lin-
guistics in mind. Here we shall confine attention to the associative version,
although a non-associative version has also been studied [L 1961, Kandul-
ski 1988, Dosen 1988, 1989]. It differs from a very rudimentary form of
Girard’s linear logic [Girard 1987, 1989] by the absence of the interchange
rule which licenses commutativity. Because of its roots in non-commutative
algebra and syntax, all appearance of commutativity is forbidden. The no-
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2 Recalling the Syntactic Calculus

The syntactic calculus deals with types, also called ‘formulas’, and arrows
between them, which logicians think of as entailments or deductions and
linguists as derivations. The types or formulas are constructed from basic
ones by certain operations or connectives, of which we shall here consider
three nullary and five binary ones, although not all of these operations occur
in every exposition of the syntactic calculus. From a number of notational
variants, we have here chosen the following:

These operations are subject to the following axioms and rules of inference.
(For purposes of this elementary exposition, we have not labeled the arrows,
although a more advanced exposition would require this.)
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A weak form of bilinear logic, let us call it BL1, will be obtained from the
syntactic calculus described earlier by adding the following new operations:
O, &, =, =,

subject to the following new axioms and rules of inference:
(A B)C oA (BapC), ADO - A - 06 A,
C—-AeoB iff CB—-A if A=C — B.

The following derived rules are easily proved or just inferred from symme-
try:

A-B C—-D A—-B C—-D A—-B C—D

A®C—-BoeD A=-D—-B=C B=C—-A=D

Models of BL1 might be called ‘bi-residuated monoids’ or ‘bi-residuated

lattices’, the latter if the lattice operations are present. If, moreover, the
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AVvB—=C .

Certain derived rules of inference are quite useful. For example, the
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In BL1 we have four negations
lc=0/Cc, ct=C\0,'C=1=C, CT =C =1,

which may be called left annihilator, right annihilator, left creator and
right creator respectively, as they have the following properties:

(#) lcec—-0,coCt—-01-"C®CI1I—-CQCT.

However, in BL1(a), TC — C* and, in BL1(b), C+ —TC. Thus, in BL2.
ML T and cimilarly AT L Therefare we mav identifv L7 with
lattices’, the latter if the lattice operations are present. If, moreover, the
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of ®,1,&®,0 together with ~ and T. In this section, we shall ignore the
connectives A, T,V and L.

Clearly, the following axioms are necessary, in addition to the bifuncto-
riality of ® and &:

(AB)®C <+ A® (B®C), (A®B)@C - Ad(BaC),
ARl A1I®A, AP0 = A-00 A,
AR (B®C)— (A®B)a®C, (A®B)®C —» A® (B®C),
CT®C -0, I-CaCT,
C®Ct—O0, I-CteC.

To see that these axioms are also sufficient we shall check, for example, the
combination of (a') and (b):

(A®B)/C - (A®B)®&C" « A®(B®C")~ A®(B/C),

ML T and cimilarly AT L Therefare we mav identifv L7 with
lattices’, the latter if the lattice operations are present. If, moreover, the
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A—-C B-C
AVvB—=C .

Certain derived rules of inference are quite useful. For example, the

rule

A—- B C—-D
ARC - B®D

expresses what categorists call the ‘bifunctoriality’ of the operation ®. In
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By BL3 we shall understand BL2 together with the following rules: if
A®B — O then B® A — O,if ] - A® B then I — B & A, or, hall check, for example, the
equivalently,

O/A « A\O, [ A A=1
>CT) = A® (B/C),
Aentifv L7 with
£, moreover, the

These rules are not independent; according to the second formulation of
BL2 they amount to AL « AT, so that we can discard " altogether. In
a sequent calculus presentation, they should be expressed as additional

structural rules:
'A — — U

Al — — Ud
These rules characterize Yetter’s ‘cyclic (non-commutative) linear logic’.
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In this section, we shall ignore the

riality of ® and &:
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D

The cuntactie rals

13 Cyclic Bilinear Logic

By BL3 we shall understand BL2

(

A®B — O then B A — O,

equivalently,

These rules are not independent; ¢
BL2 they amount to A+ « AT, sc
a sequent calculus presentation, tl

structural rules:

-

0/A « A\O,

'A —

Al —
These rules characterize Yetter’s ‘c

bJ

12 The Algebra of Binary Relations on a Set

We study binary relations on a set X, assuming that the underlying logic
is classical. If R C X x X, we write xRy for (z,y) € R. Aside from the
obvious lattice operations, we define the bilinear operations as follows:

alb ift a=>
a(R® S)b iff 3.(aRz A 25b)
a(R/S)b iff V.(bSz = aRz)
a(S\R)b iff V.(zSa = zRb)

aOb iff a#b
a(R® S)b iff V.(aRzV 2Sb)
a(R = S)b iff 3.(aRz ~ bSz)
a(S = R)b iff 3.(zRb ~ zSa)

where ~ means ‘but not’.
We claim that all the rules of BL2 are satisfied, with — interpreted as
inclusion, here written <, and give four sample proofs.

expresses what categorists call the ‘bifunctoriality’ of the operation ®. In






Peirce’s "Note B’ as a much earlier relational presentation...






‘Note B’ (1883)

We now come to the combination of relatives. Of
theso, we denote two by special symbols; namely, we
write |

lb for lover of a benefactor,

and
.11 b for lover of everything but benefactors.

The former is called a particular combination, because
it implies the existence of something loved by its relate
and a bdenefactor of its correlate. The second combina-
tion is said to ho universal, because it implics the non-

ezistence of anything except what is either loved by its

relate or a benefactor of its corrclate. The combination

7’! ;n nn"nr‘ a nnlnf;t'n '\I‘I\lqiih“ ’ "‘ ,l 0 vn]n":nn o1nm 'P‘lﬂ

The dual of
relational
composition...



‘Note B’ (1883)

Relative addition and multiplication are subject to the

associative law. That is,
It@te)=(15)ts

L(bs) = (1d) a.
Two formulm so constantly used that hardly anything
can bo done without them aro

IGte) <ibts,

(1 0)a—< 11bs.
The former assorts that whatover is lover of an objoct
that is benofactor of everything but a servant, stands to

ovorylhing but servants in tho rolation of lover of a
bonefactor. The latter asserts that whatover stands to

...with the linear
distributive laws...



‘Note B’ (1883)

To theso ’partiall y correspond the following pair of highly
important formulxo : —

Tho logic of rclatives is highly multiform ; it is char-

acterized by innumerable immediate inferences, and by -

various distinct conclusions from the same sects of premi-

ses. An cxample of tho first character is afforded by

"“ 1‘:‘ﬂl\ﬂ‘l’ﬂ p rl\l‘t\'.’:'\” :“I\I“ m A o 2% :I\ﬁ"ﬂ'\ﬂﬁ

...the linear
negation laws...



‘Note B’ (1883)

from subject to predicate as to make the sx.xbject 1, 'Thus;;
if we have given I —<T 5, wo may relatively add ! to both
sides ; whereupon we have

1< lti—<btl
Every proposition will then be in one of the forms
1-<btl 1-< bl

With a proposition of the form 1 —<< b 11, we have the
right (1) to transpose the terms, and (2) to convert the
terms. -Thus, the following are equivalent : —

1-<btl
1-<1td 1<¥tl
1<t8.

... residuation...



‘Note B’ (1883)

from subjcct to predicate as to make the sx.xbject 1. 'Tlnu;
if we have given I << 5, wo may relatively add ! to both
sides ; whereupon we have

1< iti—<bti
Every proposition will then be in one of the forms
1-<btl 1-< bl

With a proposition of the form 1 — b 1, we have the
right (1) to transpose the terms, and (2) to convert the
terms. -Thus, the following are equivalent : —

1-<bt!
1<t 1<itl
1<t8.

...and the cyclicity
condition...






The Neo-Peircean Calculus of Relations

axioms of cartesian bicategories
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axioms of cocartesian bicategories



What are the graphical rewrites, i.e. the inference rules?
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Axioms of closed symmetric monoidal linear bicategories
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[See Bonchi, Di Giorgio, Haydon, and Sobocinski ‘Diagrammatic Algebra of First-Order Logic’ (2024)]
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Negation in the reconstruction above is taken as primitive. Can we motivate
another account?...

... perhaps...
... using the “scroll?
Residuation adds a contribution that gets us part of the way...

... adding the dual to relational composition, linear distributivity,
and the other linear negation laws from "Note B’ is sufficient!



Advantages:

* finite axiomization of full first-order logic, )

« negation is a derived operation, with the linear negation, i.e. complement converse (R), now taken
as primitive

» diagrammatic syntax: no complex rules for treating variables, simple inference rules, quantifier-free,

* comes with soundness and completeness results,

« comes with encodings into Tarski's relation algebra

» propositional fragment corresponds to deep inference systems (Briinnler, 2003)



Advantages:

* finite axiomization of full first-order logic,

« negation is a derived operation, with the linear negation, i.e. complement converse (R), now taken
as primitive

» diagrammatic syntax: no complex rules for treating variables, simple inference rules, quantifier-free,

* comes with soundness and completeness results,

« comes with encodings into Tarski's relation algebra

» propositional fragment corresponds to deep inference systems (Briinnler, 2003)

While the calculus is sufficient for classical FOL, its building blocks are not!
The closest extant theory is classical (cyclic) bilinear logic.

See Lambek (1995) and Cockett and Seely (1997).






Outline

« demonstrate topological advantages
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In the NPR calculus, the following are all equivalent:
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In the NPR calculus, if we want to reason
about certain types of relations... _
... then scribe the graph (and completeness does the rest).

[Reflexive] —

A
(&) v,

IN

b &

[Transitive] m

[Antisymmetric] <

[Total] —e o— R P
Vindicates Pierce’s use of the ‘scroll’!
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Such are the very simplest of the relations which mathematicians are in the
habit of handling! The practical advantage of writing the above in the form
[c] = [a]l®] is obvious. Yet for logical purposes the analyzed expression is
necessary.
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Such are the very simplest of the relations which mathematicians are in the
habit of handling! The practical advantage of writing the above in the form
[c] = [a]l®] is obvious. Yet for logical purposes the analyzed expression is
necessary.
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Peripatetic Talks. No. 7
[R 505] The Fundamental Principles of Existential Graphs restated in a new form.

Rule I. Any graph, A, that canbe illatively transformed into a graph, B, which can

be illatively transformed into a third graph, C, can itself be illatively trans-

formed into C. Write t as an abbreviation for “can be illatively transformed
into”. Then, in a universe of graphs, this rule is represented by Fig. 1.

Fig.1

(This rule is Aristotle’s maxim known as the Nota notae, “Nota notae est nota rei
ipsius”, as applied to graphs. De Morgan’s principle of the transitiveness of the cop-
ula and Aristotle’s Dictum de omni et de nullo are substantially this.)

Rule Il. Every graph, B, such that every graph, A, into which it, B, cannot be illa-
tively transformed, but which, A, can be illatively transformed into it, B, can
be illatively transformed in a second graph, C, can itself, B, be be illatively
transformed into C. This is represented by Fig. 2.

Fig.2

(This may be called the inductive principle of graphical transformation.)

More clearly stated: Take any two graphs, B and C. Suppose that every graph,
A, which can be transformed into B although B cannot be transformed into it, can
be transformed into C. Then B can itself be illatively transformed into C.

smaticians are in the
he above in the form

[c] = [a]l®] is obvious. Yet for logical purposes thevanalyzed expression is

necessary.
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Peripatetic Talks. No.7 ; s1e_ s
> R 535] The Fundamental Principles of Existential Rule lll. Into any graph, B, such that into every graph, C, that cannot be illatively
W " transformed into it, B, but into which, C, it, B, can be illatively transformed,
— Rule I. Any graph, A, that canbe illatively transfo a given graph, A, can be illatively transformed, this graph, A, can be illatively
lo aeagt be illatively transformed into a third graph, transformed. Fig. 3 represents this rule.

formed into C. Write t as an abbreviation for
into”. Then, in a universe of graphs, this rule

Fig.1 Fig.3

(This rule is Aristotle’s maxim known as the Nota . . L. . .

ipsius”, as applied to graphs. De Morgan’s principl (This may be called the hypothetical principle of graphical transformation.)

ula and Aristotle’s Dictum de omni et de nullo are It may be more clearly stated as follows: Take any two graphs, A and B; and
suppose that A can be illatively transformed into every graph, C, which cannot be
illatively transformed into B but into which B can be illatively transformed. Then

A can be illatively transformed in B also.

Rule Il. Every graph, B, such that every graph, A,
tively transformed, but which, A, can be illat
be illatively transformed in a second graph,
transformed into C. This is represented by Fig. _.

&

Fig.2

(This may be called the inductive principle of graphical transformation.)
More clearly stated: Take any two graphs, B and C. Suppose that every graph,
A, which can be transformed into B although B cannot be transformed into it, can
be transformed into C. Then B can itself be illatively transformed into C. ymaticians are in the
_ i _ _ he above in the form
[c] = [a]l®] is obvious. Yet for logical purposes the analyzed expression is
necessary.
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Introduce Peirce’s Existential Graphs...

... as a precursor to string diagrams ....

...and as the inspiration for recent
developments in categorical logic.



Aim

Introduce Peirce’s Existential Graphs...

... as a precursor to string diagrams ....

...and as the inspiration for recent
developments in categorical logic.

... Peirce understood the relational setting for cartesian bicategories
and for classical (cyclic) bilinear logic!






“... my Existential Graphs, by which all deduction is reduced to insertions and erasures, and in which
there are no connecting signs except the writing of terms on the same area enclosed in an oval ...
and also heavy lines to express the identity of the individual objects... This ought to be the Logic of

the Future.”

- Letter to William James, 1909
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