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Outline

● Application: A Bayesian Machine Learning Framework for 
Large-Scale Time Series Projection and Intervention

● Theory (ACT): A Modular and Compositional Framework for 
System Dynamics Modeling



Traditional Surveillance data1: Big data2:

1. cite from publicly accessed data from “Alberta Respiratory virus dashboard”: 
https://www.alberta.ca/stats/dashboard/respiratory-virus-dashboard.htm?data=highlights#highlights
2. cite from “What ‘Data Never Sleeps 9.0’ proves about the pandemic”:
https://www.domo.com/blog/what-data-never-sleeps-9-0-proves-about-the-pandemic/

Characteristics 
of Big Data:

Large Volume

High Velocity

High Variety
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https://www.alberta.ca/stats/dashboard/respiratory-virus-dashboard.htm?data=highlights#highlights
https://www.domo.com/blog/what-data-never-sleeps-9-0-proves-about-the-pandemic/


Methodology:

● Using Dynamic Models simulate the system

● Using Machine Learning Algorithms (Bayesian models) and 

(large scale) empirical datasets to train the machine learning 

dynamic models

● Project forward based on the trained models

● Perform counterfactual analysis to help decision making.
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Bayesian Machine Learning & Dynamic Models

• MCMC:  Sample from pM(θ|y1:T) : posteriors of deterministic dynamic model static 
parameters, scenario results, and incremental scenario gains.

• Particle Filtering/SMC:  Sample from pθ,M(x1:T|y1:T): posteriors of stochastic dynamic 
model latent states stochastically evolving parameters, scenario results, and incremental 
scenario gains.

• Particle MCMC (PMCMC): Sample from pM(θ,x1:T|y1:T): posteriors of stochastic dynamic 
model latent states, stochastically evolving parameters, scenario results, and incremental 
scenario gains and static parameters.
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The mathematical structure of the COVID-19 dynamic model employed in particle filtering

An example of a COVID-19 
dynamic model applied daily 
for 17 jurisdictions in Canada:  

● Saskatchewan
● All other Canadian 

provinces (for PHAC) 
● Weekly for First Nations 

Reserves (for FNIHB)
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Associated ODEs
Stocks:
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Dynamic Parameters:
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State Space:
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1. Daily count of new reported incident confirmed or suspected cases

2. Cumulative reported incident confirmed or suspected cases from the 
inception of the pandemic

7. Cumulative reported 
deaths from COVID-19

8. Daily COVID-19 
patients admitted into 
hospital for non-ICU care

9. Daily midnight census 
(count) of COVID-19 
patients in the ICU

10. Daily count COVID-19 
patients admitted into 
hospital for ICU care

11. Daily midnight census 
(count) of COVID-19 
patients in the hospital for 
non-ICU care

3. Weekly average virus 
SARS-CoV-2 concentration 
in wastewater

12. Daily new likely exogenous cases
6. Daily count of persons undergoing PCR 
(nasopharyngeal swab)-based testing

5. Daily count of persons 
who received their second 
vaccination dose

4. Daily count of persons 
who received their first 
vaccination dose

12 empirical datasets: used to drive the model, and used in the PF likelihoods.
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COVID-19 daily reported cases

COVID-19 weekly average virus SARS-CoV-2 concentration in wastewater 

From 22 February 2020 to 31 July 2021
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From 22 February 2020 to 31 July 2021

COVID-19 daily count of patients in hospitalized ICU

COVID-19 daily count of patients in hospitalized Non-ICU
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From 22 February 2020 to 31 July 2021

Covid-19 daily undiagnosed infectives 

Results of Latent Dynamic Variables: 

Covid-19 daily effective prevalence of infectives  
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14-days Projection Results 
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7-days Intervention Results

Example Scenario: Quarantine and isolation ( 50% contact rate)
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Motivations:

Limitations of current modeling tools:

● Lack of Explicit Representation of Mathematical Structures

● Insufficient Representation of Mathematical Relationships

● No Clear Separation Between Diagrammatic Syntax and Semantics

● Inability to Represent Models Modularly

● Limited Support for Submodel Composition (Reusability)
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Three models with same structure:

1. Aggregate population

2. Age Stratified

3. Age & Region Stratified

Main Transmission and Progress

Asymptomatic Infectives

HospitalizeVaccination
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The PF COVID-19 Model Graphical Interface An Example of A Function
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Traditional Modeling Methods
A Next-generation Modular Modeling 

Framework of Constructing Models by 
Composition

Research Question:

?



2. A Modular and Compositional Framework for System 
Dynamics Modeling

Methods: Applied Category Theory

Syntax:

Semantics:

Mathematical construction of composition and stratification:
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Category of Closed Stock and Flow Diagrams: (FinSetC, φ)



Schema of interface (H)

For functor L: FinSetH → FinSetC, there is a double category 
LCsp(FinSetC) 

Schema of SFD (C)
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Constructing Category of Open Stock and Flow Diagrams (Structured/Decorated Cospan): 
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A horizontal 1-cell from object a to b ( in FinSetH) is a diagram in FinSetC:
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Composition
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d(Stock) / dt = sum(φInflows) - sum(φOutflows)

StockFlow  ➙  Dynam 

Semantics
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Covid-19 Model Example
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Operadic Algebra:
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Composed Pertussis Model:



A Framework of Stratification

example example

example example

Pullback 
Square
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Examples of 
constructing 

stratified models
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System Dynamics Modeling

● Stock and Flow diagrams
● System Structure Diagrams
● Causal Loop Diagrams

functor

Stock and Flow diagram Causal Loop Diagram



● Impactful modeling projects are best contributed by interdisciplinary teams

● System Dynamics is a diagram- and stakeholder-focused tradition offering high 

potential for transparency and team support, but greatly limited by extant tools

● ACT empowers teams via transparency, modularity, composition, abstraction 

interconnections between diagram types, cleaner stratification & enhanced 

semantic flexibility 

● ACT-based systems can support System Dynamics modeling in teams without 

end-user familiarity with category theory

Take-Home Messages



Thank you!

Q&A


