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Motivation

This work is propedeutic to the wider DCST (or DOTS) program.

Indeed, the two main tenets of DCST are: (1) systems organize in algebras of
symmetric monoidal double categories (or double operads) and (2) behaviour is
specified by functors into ‘behavioural theories’, which are Set-like theories of
systems ‘a la Willems'.

Such functors are often ‘corepresentable’, but without a formal theory of
‘copresheaves of systems theories’ this is just a suggestive term. So we set to
study the concept of ‘copresheaf’, i.e. classifying map for a discrete opfibration, for
2-algebraic structures.

The ultimate goal is to characterize the compositionality of a corepresentable
behaviour in terms of the properties of the theory of systems it is defined over and
the corepresenting object that generates it.
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Enhanced 2-categories, introduced by Lack and Shulman in Reference [lack-2012-enhanced],
are 2-categories equipped with a distinguished wide sub-2-category whose 1-cells are called
tight.

We work will with with such 2-categories for much of the same reasons Lack and Shulman do,
that is, to single out the well-behaved strict morphisms of 2-(co)algebras amongst (co)lax ones.

Definition 2.2.1. [mc-000S]
An enhanced 2-category, or .7 -category, is a 2-category K =: K, whose 1-cells are called
loose and a wide and locally full subcategory Jx : K, — K.

In other words, being tight is a mere property of 1-cells of an enhanced 2-category, and 2-cells
between tight 1-cells are the same as the 2-cells between the same 1-cells considered as loose.
In particular, IC; — K, is identity-on-objects, faithful and locally fully faithful. This is equiva-
lent to the definition as a category enriched in the category .# of full embeddings of categories,
as already noted by Reference [lack-2012-enhanced].

From the definition as enriched categories, we also get that enhanced 2-functors are 2-functors
that preserve tightness, while enhanced 2-natural transformations, or tight natural transforma-
tions, are 2-natural transformations whose components are all tight.



Definition 2.2.3. Enhanced 2-monad [1mc-0010]
An enhanced 2-monad is an .#-monad, thus a 2-monad (7', 7, m) such that T preserves tight-
ness and where 2 and m have tight components.

Definition-example 2.2.4. Enhanced 2-category of 7-algebras and lax morphisms
[mc-000L]

The enhanced 2-category of T-algebras and lax T-morphism Alg;(T") for an enhanced 2-
monad 7" on the enhanced 2-category K is the enhanced 2-category so comprised:

1. its objects are strict T-algebras whose structure map is tight in £,
2. its loose maps are lax T-morphisms,

[T

~1~wvwv~>

3. its tight maps are strict 7-morphisms whose underlying map is tight in /C,

T7A 5 1B

|

4. its 2-morphisms are 7-2-morphisms.



Definition 2.3.1. (Tight) discrete opfibration [mc-000X]
A (tight) discrete opfibration in a(n enhanced) 2-category K is a (tight) map p : E — B that
admits unique (opcartesian) lifts:

[

X by B X by E
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The chief example of discrete opfibration is given by projections out of a comma:

Definition 2.3.2. Representable discrete opfibration [mc-001T]
A discrete opfibration is representable if it is equivalent to the projection out of a comma
object dashed below:

b/B — X
ol b
B——2~HB

We say b/B 2, Bis represented by the object b : X — B. When X = 1, we say it is glob-
ally representable. When b = id g, we get the domain opfibration associated to B.

For an enhanced 2-category, we are guaranteed that a representable discrete opfibration is
tight when the comma is tight, or when b is a tight map and the comma is left-tight.



The following is an instantiation of the notion of good 2-classifier as given in Definition 2.15 of
Reference [mesiti-2024-classifiers] for the pullback-stable property P of being a tight discrete
opfibration.

Definition 2.3.3. Enhanced 2-classifier [mc-0012]
An enhanced 2-classifier in an enhanced 2-category K with tight terminal object 1 and left-
tight commas is a tight map

7:1—> 0

such that the functor 7/— induced by taking comma objects is fully faithful and essentially
surjective on tight discrete opfibrations:

T/— y
K(B,2) 4= dFib(B)

Y \$ T

dFib(B),



This definition deliberately mimicks that of subobject classifier in a topos, where 7 is thought
of as picking out a verum inside 2. And in fact the above can be rephrased more informally as
saying that, for every discrete opfibration p : F — B, there is a unique classifying morphism
dp : B — () making the square below a comma:

"l /g

Crucially, dp does not need to be tight.

When p is representable by b, then we also say dp is representable and denote it by 3/°.



Example 2.3.4. [mc-002R]

—— 1 ; : .
The archetypal example of 2-classifier is 1 — Set in Cat (which, for us, is the 2-category of
locally small categories). This recovers the well-known discrete opfibration of elements con-
struction:

JF—— 1

l/l

BT>S€t



Construction-example 2.3.5. Mesiti's result [mc-002P]
In Reference [mesiti-2024-classifiers], Mesiti shows that [C, Cat] admits a 2-classifier:

c L » Cat

c [c/C, Set]
fl — |y
d [c//C, Set]

with 7 : 1 — € picking 1 € [c/C, Set] for each c € C.

Example 2.3.6. 2-classifier on Graph(Cat) [mc-0020)]
Following Mesiti's recipe for Graph(Cat) = [{e =% v}, Cat], one finds that:

id,
Qe) = S / \t — Set

Q(v) = {idy} — Set

with ©(s) and Q(t) given by the evident restrictions. Thus {2 is the (large) graph of spans of
sets, and 7 : 1 — (2 picks out the trivial span1 =1 = 1.



In the presence of a 2-classifier, there always is a special fibration:

Construction 2.3.4. Generic discrete opfibration [mc-000A]
The discrete opfibration classified by the identity or, equivalently, represented by 7, is called
the generic discrete opfibration:

7/

-

As the name suggest, one can equivalently use u to classify discrete opfibrations, now by taking
strict pullbacks rather than commas. Specifically, it is the case that p = dp*u, by a straightfor-
ward application of the pasting lemma for commas (Theorem 2.1):

|

e =

T

Q

o)

E—s 1/Q — 1 _

i | E ] 1
Pl ul / J,T = Pl / J,T
BTP)Q=Q BT)Q

This is the original treatment given by Weber in Reference [weber-2007-yoneda]. As remarked
by Mesiti in Reference [mesiti-2024-classifiers], the main advantage of using Definition
[djm-00D6] instead is a rather straightforward definition of the functor turning classifying mor-
phisms into discrete opfibrations, which in the case of a generic discrete opfibration needs in-
stead to be define by hand' using the lifting property of v qua opfibration, rather than follow-
ing automatically from the universal property of commas. This streamlines the proof of Theo-
rem 4.10, though in other places we do still use Weber's definition.



Cartesianity




Definition 3.1. [mc-002C]
Let f : A — B be a strict T-morphism. We call T-cartesianity defect of f the canonical com-
parison map induced by the pullback below:

We say f is T-cartesian when its defect is invertible.



Proposition 3.3. Reference [lack-2005-lax] (Proposition 4.6) [mc-000M ]
The forgetful 2-functor Alg.(T') — K creates comma objects of the form f /s, where f is colax

and s is strict:

=

f/s

of
%\

4

S

e

Sy
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This basically means the structures on f and s equip f/s with a T-algebra structure, thus the
above diagram (which exists in Alg.(7")) corresponds to the following diagram in /C, where the

dashed map is the T™-algebra in question:

T(f/s) T0, — TE
) ™ Iy Tn
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Definition 3.4. [mc-0004]
Let (A, @) be a T-algebra and a : X — A a colax 7-morphism. We say « is cartesian at a
when the representable discrete opfibration at a (Definition 2.3.2) is a T-cartesian morphism:

T(a/A) =2 TA

wl ]

afA—2 5 A



Example 3.5. [mc-001E]

Let ' = Fam be the free coproduct completion 2-monad on Cat. Then a category with coprod-
ucts A, i.e. a Fam-algebra, is cartesian at id 4 iff it is strictly extensive.

By strictly extensive we mean that there is an isomorphism of categories A/(a +b) = A/a x
A/b, rather than the usual equivalence (Reference [carboni-1993-introduction]). We end up
with this weaker notion of extensivity as a consequence of working with strict 2-pullbacks,

rather than ‘strict bipullbacks' (i.e. pullbacks whose universal property holds only up to equiv-
alence).

To prove the claim we made, observe the comma algebra A/ [] : Fam(A/A) — A/A is given
by

(I € Finset, (v; : i — Yi)ic1) — H(p,- : ]_I:z:z - Hy,'

icl icl icl
Consider
Fam(A/A)
\\531 .
~3
Fam(A) x4 A/JA —— Fam(A)
A/ ul . lu
A/A >y A

01



To prove the claim we made, observe the comma algebra A/ [] : Fam(A/A) — A/A s given
by

(I € Finset, (@i : Ti — Yi)ic1) — H(p,' : H:L'z — Hyi

il el el

Consider

Fam(A/A)

L
3
3

Fam(A) x4 A/A —— Fam(A)
au| Il

A/A — A

The Fam-cartesianity defect of 8; : A/A — A sends (I, (@i : ©i — :)i) to (I, (%i)i), [, ¥i :
[1; i — [, vi)- To say this is an isomorphism means saying that for all 1) : X — [][. y; there
exists a unique family (1; : ; — ¥;); such that [ [, ¢; = . Clearly, this is precisely saying that
A is strictly extensive, i.e. that the canonical map [ [, A/y; — A/(]]; v:) is an isomorphism of
categories.



Remark 3.7. [mc-002I]
In the special case X = 1, we get that

A(a,t(bl, OIS bn)) = t(A(a,bl), < vyA(a, bn))

For T the free symmetric monoidal category 2-monad on Cat is easy to see this corresponds to
the characteristic representability of products (we will come back to this example shortly, in
Example 3.15). In general, the above definition is quite literally expressing the fact that the
corepresentables at a, which normally are just lax 7-morphisms, be actually strong.

Example 3.8. Spanish double categories [mc-0020]
A spanish double category is one for which every "triangle' as below left factors uniquely as be-
low right:

REEE
1 1=

Consider the free double category 2-monad fc on Graph(Cat). A strict objecta : 1 — A in a dou-
ble category A is simply an object of A, and A is spanish exactly when it is fc-cartesian at all its
objects. Indeed, an object of fc(a/A) is a composite of triangles such as above right, while

a X 4 01 is comprised of single triangles as above left. The cartesian defect of a composes a se-
ries of triangles, and asking this map invertible means having unique factorizations as re-
quired.



Proposition 3.9. [mc-000D]
Leta : X — A be a colax morphism of T-algebras. The following are equivalent:

1. Ais cartesian at a,
2. the following is a comma square:
Diagram. [mc-0025]

T(ajd) —E2 s TA

Tﬂx / "
e|
X —— A

Proof. [mc-000E]
By Proposition 3.3, the square on the left commutes:

T

T(a/A) > TA
> L
Ty a/A ——
! / \
TX _

The claim is then a direct application of the pasting lemma for commas (Theorem 2.1) to the
two squares on the right, constituting Diagram [mc-0025].



Generalized ‘Reverse Fox’ Theorem

Observe that Diagram [mc-0025] above doesn't mention the colax structure of a. In fact, when T’
is ‘cartesian at the representable discrete opfibrations', such colax structure is uniquely
determined. Here's what we mean:

Definition 3.10. [mc-0008]
A 2-natural transformation ¢ : F = G : K — H is cartesian at a morphism f € K when the
2-naturality square of ¢ at f is a strict 2-pullback in H.

Definition 3.11. [mc-001Z]
A 2-monad 7' is cartesian at a class of maps M C K when its unit and multiplication, as 2-
natural transformations, are cartesian at the maps in question.

Theorem 3.12. Costructure for free [mc-001W]

Suppose T has unit and multiplication z and m cartesian at representable discrete opfibrations.
Let (X, ¢) and (A, o) be T-algebras, and leta : X — A be an object of A. Consider the discrete
opfibration represented by a (Definition 2.3.2) and suppose Diagram [mc-0025] is a comma.
Then a is equipped with a unique 7'-colax structure.



Proof. [mc-001V]

We construct the colaxator in two steps. First, consider the universal map "id, ' : X — a/A
induced by factoring the identity square of a through the comma square defining the discrete
opfibration represented by a:

X - Ta
TX L% TA TTid,”
~
£l a7 la = T(a/A) 225 T4
X T> A J/ _I/ J/Q'

XT)fl



Therefore, for these well-behaved monads, we get a less demanding notion of cartesianity at an
object. Indeed, for a T-algebra (A, o), we could distinguish between unstructured objects,
which are just objects a : X — A of its carrier A, and T-co/structured objects, which are co/lax
T-morphisms a : X — A. Then Definition 3.4 defined T-cartesianity at a T-costructured object,
whereas Theorem 3.12 defines T-cartesianity at an (unstructured) object. We record this defini-
tion:

Definition 3.13. [mc-0022]

Let 7" be a 2-monad cartesian at the representable discrete opfibrations. Given a T™-algebra

(A, a) and a (plain) morphism a : X — A, we say « is cartesian at ¢ when Diagram [mc-0025]
is a comma.

And we have:

Corollary 3.14. [mc-0024]
(A, a) is T-cartesian at the (unstructured) object a if and only if it is cartesian at the (uniquely)

T-costructured object a.



Lifting 2-classifiers



Definition 4.1. Plumbus [mc-001K]
A plumbus is an enhanced 2-category admitting the following 2-limits:

1. all left-tight pullbacks of tight discrete opfibrations,
2. all left-tight commas,
3. a tight terminal object.



Proposition 4.3. [mc-0011]
When K is a plumbus and (7', ¢, m) an enhanced 2-monad, the 2-category Alg;(T") is a plumbus
too.

Proof. [mc-002F]
We take Alg;(7") with its canonical enhanced structure of Definition-Example 2.2.4 given by
the choice of T-strict tight morphisms. It admits tight-over-loose commas because K does and

opfibrations exists because, first of all, they do in X and then by (the dual of) Theorem 5.10
from Reference [capucci-2024-contextads]. Indeed, the latter result says that strict normal
tight opfibrations admit pullbacks along arbitrary lax 7-morphisms in .Alg;(7"). Since dis-
crete opfibrations are automatically normal, we get our desired claim.




From now on, fix a plumbus K with enhanced 2-classifier 7 : 1 — €2 (Definition [djm-00D6]). In
the following, we will be concerned in lifting this latter piece of structure to the plumbus Alg;(T")
. This requires the 2-monad to play along. We now single out two sets of conditions that need to
be verified.

Definition 4.4. Opfibrantly cartesian enhanced 2-monad [mc-000K]
An enhanced 2-monad (T, 7, m) is opfibrantly cartesian when

1. T preserves pullbacks of tight discrete opfibrations,
2. T preserves tight discrete opfibrations,
3.2 and m are cartesian at all tight discrete opfibrations.

Remark 4.5. [mc-002K]

Opfibrantly cartesian 2-monads is an enhanced and slightly weaker notion of ‘cartesian’ 2-
monad, i.e. a 2-monad required to respect 2-limits and whose structure maps are cartesian at
the tight maps. Indeed, every 2-monad which preserves commas preserves discrete opfibra-
tions.



Lemma 4.6. [mc-0017]
An enhanced 2-monad (7', ¢, m) is opfibrantly cartesian if and only if:

1."' T preserves pullbacks of the generic discrete opfibration,
2."'Tu is a (tight) discrete opfibration,
3."7 and m are cartesian at the generic discrete opfibration.



Lemma 4.7. [mc-0015]
The map w : T2 — () defined in the proof of Lemma 4.6 is a e&siet T-algebra.

*in fact, only pseudo!

Proof. [mc-0016]

Strict unitaljty is proven by observing that In the proof below, the definition of 2-classifier only
implies the two classifying maps are isomorphic

/QMT( /Q) —— 1 /9

S R,

iQ

and thus w(if2) = du = idg. In the above, the left hand side pullback square is given by
cartesianity of ¢ at the tight discrete opfibration 7'u. We obtain strict associativity in the same
way, appealing to cartesianity of m instead. Indeed we have

T2(7/Q) 2 (1 /Q) 5 T2(7/9) y 1
Tzul B Tu J, lll . / lT
T20 —— TQ 5 Q T2} ———s TQ —— Q

and therefore, applying repeatedly the identity proven in Proof [mc-0018], w(m2) =
d(T?*u) = w(Td(Tu)) = w(Tw).



Lemma 4.8. [mc-0019]
The 2-classifier 7 : 1 — 2 is a colax T-morphism and ({2, w) is cartesian at 7.

Proof. [mc-0023]

The second part is precisely Corollary 3.14.

What does this mean? It means that ‘points of a term are terms of the points', and thus that w is
directly defined by its classification property.



Lemma 4.8. [mc-0019]
The 2-classifier 7 : 1 — 2 is a colax T-morphism and ({2, w) is cartesian at 7.

Proof. [mc-0023]

The second part is precisely Corollary 3.14.

What does this mean? It means that ‘points of a term are terms of the points', and thus that w is
directly defined by its classification property.

Proposition 4.9. [mc-002A]
An enhanced 2-monad (7', 7, m) is opfibrantly cartesian if and only if:

1." T preserves pullbacks of the generic discrete opfibration,
2." €2 is equipped with a T-algebra w which is cartesian at 7.



However, in order to lift 7 to Alg;(7"), we must assume 7 is in fact strict, otherwise we cannot
even consider it as lax 7-morphism, and as seen Proposition 3.3 we cannot take commas with
strong T-morphisms in general. This explains the hypotheses of the following, which is the main
theorem of the paper:

Theorem 4.10. [mc-0003]

Then its enhanced 2-category of T™-algebras and lax morphisms (Definition-Example 2.2.4) ad-
mits an enhanced 2-classifier.




Proof. [mc-000]]

Letp : E — B be a tight discrete opfibration in Alg;(T"), and denote by n and §3, respectively,
the algebra structures on E and B. Consider the classifying map dp : B — 2 obtained in £
from U(p). By Proposition 3.3, if p can be classified, it must be by a lax T-morphism carried
by dp.

Thus we only need to show dp admits a lax T-structure (see (1.1)--(1.3) in Reference
[blackwell-1989-twodimensional]), which first of all amounts to a 2-cell:
Diagram. [mc-000N]

Td
TB # O
B l To see this, consider the above square as a 2-cell between classifying maps. Such 2-cells, by
the structure of a 2-classifier, are in one-to-one correspondence with maps as dashed below,
B — Q

where the (non-dotted) 2-cells are classifying comma squares (squashed beyond recognition):

Tdp*T(r/9)

N
o

B*E



By the proof of Lemma 4.6, we know that T'dp*T'u = Tp. Thus we get dp by exhibiting a map
TE — p*pover TB, and indeed there is a unique such map, namely the T-cartesianity defect
of p (Definition 3.1):




Corollary 4.12. [mc-001R]
Letp : E — B be a tight discrete opfibration in Alg;(T"). Its classifying map dp : B — (2 is

Proof. [mc-001S]
It follows by inspection of the proof of the main theorem: the laxator of dp classifies the strict
T-cartesianity defect of p.

cartesian precisely when B is T-cartesian at its representing object b : X — B, by definition
(Definition 3.4). Thus:

Corollary 4.13. [mc-001U]

The representable copresheaf y® : B — (2 associated to a representable discrete opfibration
8 : : s 2 1 :

b/B — B is always a lax T-morphism, and it is strong precisely when B is T-cartesian at b.



Thanks!



