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4. Universes in presheaves

Recall the notion of a Hofmann-Streicher universe
VoV

in a category of presheaves C = Set®”.

1. Let set — Set be the full subcategory of small sets s < k.

2. Let set = 1/set be the category of small pointed sets.
3. Then for ¢ € C let:

V(c) = Cat(C/cP, set) the set of small presheaves on C/.,
V(c) = Cat(C/, sét) ... small pointed presheaves on C/..

4. The action on d — c is given by precomposition with
postcomposition C/4 — C/..

5. There is a natural transformation V — V determined by
composing with the forgetful functor set — set



4. Universes in presheaves

Definition R
In a category C = Set® of presheaves,
® an object A is small if its values A(c) are small, for all c € C,

® a map A — X is small if its fibers A, = x*A are small,
for all x: yc — X,

Note that small maps are stable under pullback.
And that the map V — V is small, since the fiber Vs over
S :yc — V has as elements pointed presheaves S : C/. — set.



4. Universes in presheaves

Proposition

For every small map A — X there is a canonical classifying map
« : X =V fitting into a pullback diagram of the form

]

— V.

Proof.

Do it first for the small maps Ax — yc, for all x : yc — X, for
which there is a canonical choice of ay : yc — V. Then use the
presentation of X as a colimit over its category of elements
(c,x) € Jo X togeta: X —U.



4. Universes in presheaves

Remark
For large enough « the small maps are closed under the adjoints

>4 1 A* 414 to pullback along small maps A — X.

This fact gives rise to natural operations on the universe VoV
that can be used to (coherently!) model the corresponding
type-forming operations, as follows:
* a universe V — V is a natural model on the category of
contexts C,
® 3 universe V — V generates a polynomial endofunctor

p:C—C.

® The type forming operations in the natural model will be seen
to correspond to an algebraic structure on the polynomial
endofunctor.



5. Polynomial monad and type formers

Let p: U — U be a natural model on an arbitrary category C,

and consider the associated polynomial endofunctor,
P=Uop,oU":C—C,
which we can write as,

X) =y xA
A:U

where [A] = p~1(A) is the fiber of p: U — U at A: U.
Lemma
Maps T — P(X) correspond naturally to pairs (A, B) where

X< ra—u0.

b

—>U

O



5. Polynomial monad and type formers

Applying P to U itself therefore gives the object
PU=> UM
A:U

for which maps ' — PU correspond naturally to pairs (A, B) of
the form,

U<B-rA—=U

b

*>U

Since maps ' — U correspond naturally to types in context I - A,
we see that maps [ — PU correspond naturally to types in the
extended context A+ B.



5. Polynomial monad and type formers

Proposition
For a natural model U — U, the polynomial object

PU =) UM
AU

classifies types in context. Specifically, there is a natural
isomorphism between maps I — PU and pairs (A, B) where

AF B.

Similarly, the object
PU =Y UM
A:U

models terms in context: pairs (A,b: B) where LA+ b: B,
for (A, B) the composite with PU — PU.



5. Polynomial monad and type formers: [1

Proposition
The natural model p : U — U models the rules for products just if
there are maps A, 1 making the following a pullback.

PU—2

PU——

n



5. Polynomial monad and type formers: [1

Proposition

The map p: U — U models the rules for products just if there are
maps A, 1 making the following a pullback.

Proof-:



5. Polynomial monad and type formers: [1

Proposition
The map p : U — U models the rules for products just if there are
maps X\, [l making the following a pullback.

Proof-:

PU) —2
S U PU)
A:U

A+ B MaB



5. Polynomial monad and type formers: [1

Proposition

The map p: U — U models the rules for products just if there are
maps A, [1 making the following a pullback.

Proof-
AFb: B Aab
3 UlAl P(U) I S
A:U | |
S Ukl P(U) ———U
AU

AFB NaB



5. Polynomial monad and type formers: [1

Proposition
The map p : U — U models the rules for products Jjust if there are
maps A, [ making the following a pullback.

Proof:
f
S UA P(U) N, S
A:U | |
S Ul P(V) ——F—U
A:U

AFB MNaB



5. Polynomial monad and type formers: [1

Proposition

The map p: U — U models the rules for products just if there are
maps A, [1 making the following a pullback.

Proof-:
A f: B Aafx = 1F
s gl PO — > )
A:U \ |
S Ul P(U) ———F—U
A:U

Al B NaB



5. Polynomial monad and type formers: X

Proposition
The map p : U — U models the rules for sums just if there are
maps (pair, X) making the following a pullback

pair

Q U
ql lp
P(U) — U
where g = p<p: Q — P(U) is the generating map of the
composite Pqg = Ppqp = Pp o Pp.
Explicitly:

Q=22 > Bk

A:U B:UA x:A



5. Polynomial monad and type formers: T

Rules for a terminal type T

FT Fax:T x:ThEx=x:T

Proposition
The map p : U — U models the rules for a terminal type just if

there are maps (x, T) making the following a pullback.

1

*
_—



5. Polynomial monad

Consider the pullback squares for T and X.

pair

1———U Q u
J{ lP p@l lp
l————U P(U) ——~—U

These determine cartesian natural transformations between the
corresponding polynomial endofunctors.

T:1=P c:PoP=P



5. Polynomial monad

Theorem (A-Newstead)

A natural model p : U — U models the T and ¥ type formers just
if the associated polynomial endofunctor P has the structure maps
of a cartesian monad.

T:1=P c:PoP=P

What about the monad laws?



5. Polynomial monad

The monad laws correspond to the following type isomorphisms.

coPo=coop | >, > C(C(ab) = > C(a, b)
a:A b:B(a) (a,b):>" B(a)
aA
coPr=1 1A
a:A
x:1




5. Polynomial monad

The pullback square for I

A

PU—"

PU——

n

determines a cartesian natural transformation
. P2
Tm:Pp=p

where P2 : C2 — €2 is the extension of P to the arrow category.



5. Polynomial monad

Theorem (A-Newstead)

A natural model p : U — U models the N type former just if it has
an algebra structure for the extended endofunctor =

7r:P2p2>p.



5. Polynomial monad

The algebra laws correspond to the following type isomorphisms.

moPr = moo | [[ I C(a,b) = II C(a, b)
a:A b:B(a) (a,b):ZE‘B(a)
moT =1 [JA = A
x:1




6. Propositions and types

We can compare these operations on types
>n:PU—U
with those on subobjects of objects A in the topos C,
4. Va4 A — Q.
Consider

PQ = Z A
A:U

for the polynomial endofunctor of U—U.
We then have the comparable maps

V:PQ— Q.



6. Propositions and types

Proposition

There is a retraction i : 2 — U, s : U — Q such that the
following squares commute.

PQ E Q PQ v Q
Pil Ts Pil Ts
PU— U PU— U

p n



6. Propositions and types

For the proof, factor the natural model p: U — U as on the right
rA U

) \'-A \U
A

r . U

So ||U|| — U is a universal family of small propositions.



6. Propositions and types

Let s : U — Q classify the mono ||U|| — U.
r.A U

\ \U

r/r-A L/

U

A s



6. Propositions and types

Let s : U — Q classify the mono ||U|| — U.

F.A\ U\U |

S

A

]

Let i : Q — U classify the family of small propositions 1 — €.



6. Propositions and types

A \5_/
(1
Let
[|-]| :=ios:U—U.
We have
soi=1:Q—= Q.
So

Q = im(]|-])).



6. Propositions and types

The following diagrams then commute, as required.

QA J Q ST QA
A:U ] AU
p,-l s Pii
ZUA s U ZUA

A:U A:U

@)
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Appendix: Natural models of HoTT

Theorem

A category C with a terminal object 1 admits a natural model of
Homotopy Type Theory if it has a class of maps D satisfying the
following conditions:

® total: every C — 1isinD,
e stable: D is closed under pullbacks along all maps in C,

® closed: D is closed under composition and under dependent
products along all maps in D,

e factorizing: every map f : A— B in C factorsas f =d o a
with a € "D and d € D.

Proof.
Uses the main idea of the Lumsdaine-Warren coherence theorem:
a left-adjoint splitting of the fibration of D-maps. Ol



Appendix: Natural models of HoTT

Examples of categories satisfying the conditions of the theorem:
e Kan complexes with the right wfs on sSets.

® Any right-proper Cisinski model category (restricted to the
fibrant objects).

Groupoids, n-Groupoids, co-Groupoids.

Joyal's mh-tribes.

The syntactic category of contexts of type theory itself.



