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n-opetopes (for n < 2)

- There is a unique 0-dimensional opetope: the point (an operation
with no input). .

- There is a unique tree of 0-opetopes, yielding the unique
arrow-shaped 1-opetope. et A

- l-opetopes can assemble only as linear trees, and hence 2-opetopes
are in one-to-one correspondence with natural numbers:
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3-opetopes as trees




3-opetopes as unbiased associators

g
_—
goh fo(goh) fogoh
h As h 1 f
fo(goh) fogoh

This picture features (decorated)
e 0-opetopes (unnamed)

1-opetopes (f, g, h,goh,...)

2-opetopes (witnesses of unbiased composition f o g o h,...)
e one 3-opetope (unbiased associativity)
Contrast with the biased one: fo(goh)=(fog)oh
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An example of 4-opetope

(taken from the beautiful notes)
SN =
= Y
L=
=
- S
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Unbiased coherence via 4-opetopes
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5-opetopes, etc. feature higher coherences (trees of trees of...)
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|dentities via degenerate opetopes

Unit-left

This (poor) picture features
e the 2-opetope ¢ as a witness of the degeneracy promoting x to idy
e the 2-opetope « as a witness of idy o f
e the 3-opetope Unit-left as the unit law idy o f — f

Note that ¢ has no sources (tree reduced to a leaf edge).
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Polynomial functors (standard presentation)

Polynomial functors are triples of maps
1< a2 B 5y

We are interested in polynomial endofunctors, i.e. | = J. A morphism of
polynomial endofunctors is given by maps fi, f» as below:

The pullback ensures that an operation b with arity p~*(b) is mapped to
an operation with equipotent arity.
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Polynomial functor (pictorially)

e We view B as a set of operations.
e For each operation b, we view A(b) = ) as the arity of b.

pH(b
e We view B as a set of colours, or of sorts (set of incoming edges).

Note the difference between names and decorations: the latter can be
repeated, while the former are in bijection with the number of wires going

into the operation.
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Polynomial monad
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Polynomial monads versus operads

Polynomial monads are a version of (set) operads that are

e > -free (the action of the symmetric group is free)

non-skeletal (inputs are named, rather than numbered)

described in the partial or “circle /" style

coloured (or multisorted)

Note that the mechanics of polynomial functors dictates that the renaming
of wires after composition be specified as part of the data defining the
structure (cf. map f; above).

Polynomial monads are exactly the version of multicategories given by
Hermida, Makkai and Power.
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Free polynomial monad (trees)

Let P be a polynomial endofunctor on /. We define a new polynomial

endofunctor P*[on /]
The operations are P-trees, i.e. trees with leaf edges where

e nodes are decorated by operations of P,

e incoming edges of a node decorated by b are in one-to-one

correspondence with A(b), \
e edges are decorated by colours of / iy S
L\‘//
In P*: b

- the arity of a tree T is the set of the occurrences of its leaves

- the target colour of T is the colour of the root of T
A P-tree may be reduced to a leaf (no node): we call it then degenerate.

Composition is defined by grafting. l;
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The star multiplication (pictorially)

e
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Another monad on trees: the + construction ( )

Here we follow Kock-Joyal-Batanin-Mascari 2010.
We now suppose that P is a polynomial monad on some /. Then the same
P-trees give rise to another polynomial monad P, not on /, but on
B = BP:
- The arity of a tree is not its set of leaves anymore, but its set of
nodes
- The target colour of T is [T]"", where [ T] is the evaluation of T
according to the monad structure of P.

- Composition is by zooming in and substituting in nodes.

By iterating this construction, we shall get trees of trees of ...!
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The plus multiplication (pictorially)

blobe: b
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Opetopes

Opetopes are defined by iteration of the + construction.

e Basis = identity polynomial functor ©@%n a singleton set
{o} —{s} — {m} — {¢}

There is only one 0-opetope ¢, and there is only one 1-opetope ®

which has only one input *, decorated by the unique 0-opetope ¢.

e Induction: We set
On _ (On—l)—l—

and we write O" as
On+— O} — Opp1 — O,

(the operations of O"~1 become the colours of O")
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A hierarchy of shapes

An n-opetope (for n > 2) is an oriented n-dimensional volume whose
boundary is divided into a pasting scheme of source (n—1)-opetopes and a
single target (n—1)-opetope.

The target is determined by the pasting scheme of sources. Therefore,
n-opetopes can be identified with pasting schemes of (n—1)-opetopes.

Pasting schemes of (n—1)-opetopes are described by trees whose nodes
are decorated by (n—1)-opetopes and whose edges are decorated by
(n — 2)-opetopes.
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The category Ope

It has as objects all opetopes, and morphisms by generators s, (for each
node of the tree) and t, and relations

(Inner)  sysy =syt (all edges)
LN N

(Glob1) tsy, =s«sy (all leaves,w non degenerate)
TN LN

(Globl) s¢t =tt (x=root,w non degenerate)

LN - 0N

U
(Degen) ts, =tt (w degenerate) &

Opetopic sets are presheaves over Ope.
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Polygraphs (a.k.a. computads)

A polygraph is (a presentation of) a strict w-category (i.e. all truncations
are strict n-categories). It is given by the following data:

e a set Py of generating 0-cells,

e a set P of generating 1-cells, each coming with specified source and
target in Pp. This gives rise to a free strit 1-category P; over these
generators.

e a set Ppy1 of (n+1)-generating cells, each coming with a specified
source and target in P}. This gives rise to a free strict
(n+1)-category Py ; over these generators.
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Polygraphic syntax

The n cells (or n-morphims) of P} are equivalence classes of n-terms built

via the following rules: /m o - embial
: ), =

o If x € P,, then x is an n—term. 0, = Adizmi=l

e If tis an (n—1)-term, then id(t) is an n-term.
e If t1,tr are n-terms and / < n, then t; o; tp is an n-term, provided
s"'s and "'t are provably equal as (n—1)-terms.
Sources and targets are derived information:

s(id(t)) =t t(id(t)) =1t
s(tiojty) =stojst t(tiojto) =ttioith (i<n-1)
5(t1 Op_1 t2):51.'2 f(tl Op_1 t2):ft1 (i< n—l).
Equational theory (for n-terms)
(tl o; t2) Oj t3 = t1 0; (t2 oj t3) (category)
id" (5" t) o; t = ¢ to;id" (" t) =t (category)
(s10is2)0j (t10j t2) = (s19jt1) oi (s205 t2) (i #j) (exchange law)
id(tl) o; id t2) = id(tl o; t2) (I <n-— ]_) (2-category)
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Occurrences of generating n-cells in an n-cell

Let t be an n-term. We say that
e if x € Py, then x has one occurrence (of a generating n-cell) (labelled
by x),
e id(t) has no occurrence,
e the set of occurrences of t; o; tp is the (disjoint) union of the sets of
occurrences of t; and ts.
This notion is invariant under the choice of representatives of t.
It can be formulated using the language of contexts.
An n-context is a term with one occurrence of a special n-term [], with
specified source and target, called the hole.
We use the notation C[] for the context, and C[s] for the result of

replacing [] with some actual n-term s with the same source and target as
the hole. This is called filling the hole.

Then occurrences (with their labelling generating n-cell) of ¢ are in
bijection with the pairs (C[], x) such that x € P, and t = C[x].
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Many-to-one polygraphs

A polygraph is called many-to-one if for all n and x € P,,, we have
tx € Pn_1 (all generating cells have as target a generating cell).

Theorem. Many-to-one polygraphs are the same thing as opetopic sets
(giving rise to an equivalence of categories).

e The theorem has been proved by
, replacing “opetopic” with “multitopic”.
(On the other hand, has proved the equivalence
between multitopic sets and opetopic sets.)
° has a more direct proof, relying in part on notions
and results of
e Here, we offer a “plug-in" in Cédric’s proof, making it entirely
self-contained.
Remark. It follows from 's work that many-to-one polygraphs form
a presheaf category Set(??)op(without an explicit description of 77).
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The key lemma

A many-to-one polygraph gives rise naturally to a family of polynomial
endofunctors V,P (for n > 1):

s P t
Pn—l — An — Pn — Pn—l

where A,(t) is the set of occurrences of (n—1)-generating cells of 5 t, and
where s is the corresponding labelling (or filling).

Let P be a many-to-one polygraph. We write P/ for the set of
many-to-one n-cells, i.e. the cells whose target is a generating cell.

Lemma. For all n, there exists a bijective correspondence

between P and the set TrV,P of (V,P)-trees.

e There exists a composition map (_)° : TrV,P — PI"° based on a
notion of placed composition defined by
. proves that (_)° is bijective using some machinery
developped by
e We provide here an explicit inverse to ()°.
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Sketch of the proof of the theorem from the lemma

Here is the skeleton of the rest of 's proof.

e One defines a realisation functor |_| : Ope — Pol™° (idea: name all
sources and targets of an opetope). The goal is then to show that the
induced adjunction

((left Kan extension of |_|) < nerve)
is actually an equivalence.
e The key lemma

- allows to define a shape function from P, to @, (hereditarily use
the key lemma, stripping the decorations by generating cells, and
retaining only the underlying opetope),

- and to establish a bijection

between P, and ¥,cq,Pol™°(|w|, P) = Lweo,(NP.)

over O, (restoring the decorations!).

- This allows to prove that the unit and counit of the adjunction
are isos.
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Rest of the talk: proof of key lemma

(1) Recall the placed composition of and define the composition
map (-)° : TrV,P — P'°. For this we need a tool /notation that we
call context lifting.

{(2) Define an invariant associated to evey cell (not only the many-to-one
ones) = a forest, i.e. a (possibly empty) set of non-degenerate trees.

(3) Look more closely at this invariant when the cell is many-to-one: it
provides the inverse of (_)°.

J ()meﬁ conti Lut ¢on |
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Lifting of contexts (in any polygraph)

If C[]is an (n—1)-context (i.e. (n—1)-term with a hole), we define an
n-context C'[] as follows:

e If C[] =[], then we set []T = [] where this n-hole can have any
source s and target t such that ss and st are both equal to the
specified source of the original (n—1)-hole (and likewise for targets).

e If C[] = to; C'[], then CT[] = id(t) o; C''[] (and symmetrically).
One can show that this definition is independent of the choice of
representative of C[].

We call C[] the lifting of C[]. ’;’7 /U/\‘V-—g—/’)

Lifted contexts are whiskers!

(L= gol0f (1= wig) o, To, fdlﬁ)
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Placed composition (back to many-to-one polygraphs)

n-
Consider two many—to—one\c/ells s and t such that s s = C[tt] for some
context C[]. Then the term
so CM[t]

is well-defined and called the placed composition of s, t at C[].

T dim .

_ Jk
(G 2
&_)\\\, cl] W\, ¢ - v

poC'lH)

A
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Composition of (V,P)-trees

e It T is degenerate, i.e., reduced to a leaf decorated with a
(n—1)-generating cell y, then we set T° = id(y).

e If T is non degenerate, i.e. has at least one node, we fix an
admissible (i.e. ancestor respecting) enumeration of the nodes of T.
This induces a sequence of trees: the i-th tree has the first / nodes of
T, and the first one is just a single node tree decorated with
generating cell x; (the root of T). We set x{ = x and define T ; as
a placed composition of T° and x;1 (the decoration of the (i 4+ 1)-th
node) guided by the edge connecting the (i 4+ 1)-th node to T;, which
itself reads as a context by the definition of (V,P).

That this definition is independent of the choice of admissible enumeration
is a consequence of the following property, for (n—1)-contexts with two
holes C[]1[]2 and generating n-cells x1, x such that tx; can fit in [];
(i=1,2)( rule!) :

CM it xela on1 CR[s xa]i[xa]2 = CT2[txa]i[xa]2 0n—1 CT[x1]1[5 x2]2
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The other way around: the forest of a cell (setting the scene)

We shall associate with every representative t of a cell in P} a forest #(t)
whose nodes are decorated by elements of P, and whose edges are
decorated by elements of P,_1, in such a way that the following properties
hold.

e The set of leaf edges (resp. of root edges) of #(t) is in bijective
correspondence with a subset L (resp. R) of nodes of the forest
recursively associated with the source of t (resp. the target of t), and
the bijection preserves the decorations.

e The set of nodes of #(s t) that are not in L is in bijective
correspondence with the set of nodes of #(tt) that are not in R. We
abuse notation by writing this as

#(st)\ leaves(#(t)) = #(tt) \ roots(#(t)).
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The forest of a cell (definition)

(the polygraph is many-to-one, the cell is arbitrary)

e If t = x is a generating n-cell, then #(t) is forest consisting of one
tree reduced to one node, decorated by x. The leaf edges of the
forest are in one-to-one correspondence with the nodes of #(s x) and
receive the corresponding decorations, and the root edge is decorated
with tx.

e If t =id(t’), then we set #(t) to be the empty forest (whatever t’ is).

o If t =t oj tp, with i < n— 1, then #(t) is the disjoint union of the
forests #(t1) and #(t2).

o If t =t 0p_1 tp, then #(t) is obtained by grafting some trees of

#(t) above #(t1): if a root u of #(t2) is such that u € L (L relative
to t1), we graft the tree of root u of #(t2) on the corresponding tree
of #(1.’1).

This definition does not depend on the choice of a representative of an

n-cell.
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Canonical forms for many-to-one cells

Proposition. Any many-to-one n-cell has a representative t that has one
of the following shapes:

o t = x for x € P,
e t =id(y) for y € Pp_1,
e t=1t 0y 1t...05_1t, (n>2), where
- t1 = x1 € Py, and
- each t; (i > 1) is of the form C,T[x,-], where x; € P, and
sti_1 = C[’tX,'].

In plain words, t is a placed composition of the generating n-cells
occurring in it.
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The tree associated with a many to one cell

Corollary. If t is many-to-one, then we have
o #(t) is empty < t =id(y) for some y € Pp_1.
e #(t) is not-empty < #(t) consists of a single (non-degenerate) tree.

Moreover the set of leaves of #(t) is in one-to-one correspondence
with the set of nodes of #(st) (i.e. #(st)\ L=10).

This allows us to define # : P — TrV,P by

e #(id(y)) is the degenerate tree whose unique leaf is decorated with y,
o #(t) = #(t) otherwise.

Morale. Even in the canonical forms of many-to-one cells, t; for (i > 1) is
not many-to-one in general. This is why we had to define a wider invariant
(forests) working for all cells, and only then narrow it down to the
many-to-one cells.
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(-)° and # are inverse

o (L)°o# =id. Clear for t = x.
- If t =id(y), then #(x) is the degenerate tree decorated with y,

hence (#(x)) =id(y) = t.

- Ift=x1 0, 1t...0n 1 t,, the inductive definition of #(t)
provides an admissible enumeration for #(t), composing along
which yields exactly the same representative t we started from.

e #0(.)°=id. Clear for degenerate T. If T =x{z <+ T, |z € Z},
then we fix an order Z = {z; < --- < zp}, take adm. enum. on each

T,,: this determines an adm. enum. of T. One shows that
composing along it gives (for suitable lifted contexts C,T[]) N2
T° =xo0p1 C{[Tg]on-1...0n-1 CH[TE] <k %
#(T°) = x{z « #(C [T |i=1,...,p} o
and we conclude by induction, thanks to the following easy —

Lemma. If C'[] is a lifted context, then
#(CM[t]) = #(t) (for all ¢ fitting in the hole)
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