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Perspective – Polynomial Functors via Calculus

Taylor polynomials

Given a nice function f : R→ R, its nth Taylor polynomial

I is a polynomial of degree ≤ n, and, hence, may be easier to
work with than f ,

I provides an approximation of f in a prescribed way (at least
within the radius of convergence), and

I becomes a better approximation to f as n increases.



Perspective – Polynomial Functors via Calculus

Goal:
Define new ways to associate a sequence of functors {PnF}n≥0 to
a functor F so that

I PnF is “nice” in the sense of some property indexed by n
(PnF is degree n),

I there is a natural transformation ηn : F ⇒ PnF such that PnF
is universal among degree n functors with natural
transformations from F (PnF is related to F ),

I the induced natural transformations Pmηn : PmF ⇒ PmPnF
and ηn : PmF → PnPmF are equivalences when m ≤ n (PnF
preserves degree m part of F ).



Perspective – Equivalence

Coming from a topological point of view, we work in settings with
a weaker notion of equivalence, which we’ll denote ':

I Topological spaces: f : X
'−→ Y iff f is a weak homotopy

equivalence, that is, fj : πj(X )→ πj(Y ) is an isomorphism for
all j ≥ 0.

I Chain complexes: f : A∗
'−→ B∗ iff f is a chain homotopy

equivalence or, alternatively, a f is a quasi-isomorphism.

I (Simplicial) model categories: f : C
'−→ D iff f is a weak

equivalence.



Theorem [Goodwillie, 2003]

For a functor F of spaces or spectra that preserves weak homotopy
equivalences, there is a Taylor tower of functors and natural
transformations

F
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. . . // Pn+1F // PnF // Pn−1F // . . . // P0F

such that

I for all n ≥ 0, PnF is an n-excisive functor,

I if F is “nice,” the tower converges to F on sufficiently “nice”
objects (F (x)→ PnF (x) is roughly (n + 1)k-connected when
x is k-connected), and

I PnF is universal (up to a zig-zag of weak equivalences) among
n-excisive functors with natural transformations from F .



n-excisive functors – n-cubical diagrams

P(n) is the poset of subsets of n = {1, 2, . . . , n}.
E.g., P(2) is

∅ //

��

{1}

��
{2} // {1, 2}

An n-cube in a category C is a functor from P(n) to C. E.g., a
2-cube is a commuting square

X0
//

��

X1

��
X2

// X12

,

a 3-cube diagram is a commuting cube in C, etc.



n-excisive functors

I A n-cubical diagram of spaces (spectra) is strongly
cocartesian if every 2-face is a homotopy pushout square.

I A functor of spaces (spectra) is n-excisive if it takes strongly
cocartesian (n + 1)-cubical diagrams to homotopy cartesian
(homotopy pullback) diagrams.



Examples

I The identity functor of spaces Id is not n-excisive for any n.
(Homotopy pullback n-cubes are not the same as homotopy
pushout n-cubes in spaces.)

I (Snaith splitting) For the functor from spaces to spectra,
F : X 7→ Σ∞ΩΣX ,

PmF (X ) '
∏

1≤n≤m
Σ∞(X∧n).

I For the identity functor Id of spaces, P1Id ' Ω∞Σ∞ = Q,
the stable homotopy functor.



Applications

I Homotopy Theory: The Taylor tower of the identity functor of
spaces interpolates between stable homotopy theory and
unstable homotopy theory, and has contributed to new
perspectives on homotopy theory.

I Algebraic K -theory: Under mild hypotheses, two functors F
and G agree “up to a constant” if there is a natural
transformation F ⇒ G such that the induced map

hofiber
(
P1F (X )→ F (∗)

)
→ hofiber

(
P1G (X )→ G (∗)

)
is a weak equivalence for “nice” X . Used to compare algebraic
K -theory to topological Hochschild and cyclic homology.



Abelian Functor Calculus – Context

I A and B are abelian categories and F : B → A is a functor.

I Eilenberg and Mac Lane (1954) defined “polynomial degree
n” functors in this context in terms of cross effects.

I Eilenberg and Mac Lane (1951); and Dold and Puppe (1961)
constructed new functors QF (for stable homology of
R-modules with coefficients in S) and DF (for derived
functors of non-additive functors) that are degree 1
polynomial approximations to F .



Cross Effects

Definition:
For F : B → A where B and A are abelian categories, the nth
cross effect functor crnF : Bn → A is defined recursively by

cr0F = F (0)

F (X ) ∼= F (0)⊕ cr1F (X ),

cr1F (X1 ⊕ X2) ∼= cr1F (X1)⊕ cr1F (X2)⊕ cr2F (X1,X2),

and, in general,

crn−1F (X1, . . . ,Xn−2,Xn−1 ⊕ Xn) ∼= crn−1F (X1, . . . ,Xn−2,Xn−1)

⊕ crn−1F (X1, . . . ,Xn−2,Xn)

⊕ crnF (X1, . . . ,Xn−1,Xn).



Degree n functors

Definition:
F : B → A is degree n if and only if crn+1F ' 0.

Example

A is an object in an abelian category A, F : A → A with
F (X ) = A⊕ X . Then

A⊕ X = F (X ) ∼= F (0)⊕ cr1F (X ).

Thus,

cr1F (X ) ∼= X ,

cr1F ∼= id.

And,

X ⊕ Y ∼= cr1F (X ⊕ Y ) ∼= cr1F (X )⊕ cr1F (Y )⊕ cr2F (X ,Y ),

cr2F ∼= 0.

In fact, crnF ∼= 0 for all n ≥ 2. So F is degree 1.



Abelian Functor Calculus

Theorem (J-McCarthy, 2004)

Given a functor F : B → A between abelian categories B and A,
there exists a Taylor tower of functors and natural transformations

F
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. . . // Pn+1F // PnF // Pn−1F // . . . // P0F

such that

I for all n ≥ 0, PnF is a degree n functor,

I if F is “nice,” the tower converges to F on “nice” objects, and

I PnF is universal (in an appropriate homotopy category)
among degree n functors with natural transformations from F .



Abelian functor calculus and cartesian differential
categories

Bauer, J, Osborne, Riehl, Tebbe, 2018
There is a notion of directional derivative coming out of abelian
functor calculus that endows a category HoAbCatCh with the
structure of a Cartesian differential category.



Constructing PnF in the abelian functor calculus

Lemma:
There is an adjunction

Fun∗(Bn,A)
∆∗

//
⊥ Fun(B,A)
crn

oo

where Fun(B,A) is the category of functors from B to A and
Fun∗(Bn,A) is the category of functors of n variables from B to A
that are reduced in each variable, and ∆ is the diagonal functor.

Consequence:

Cn := ∆∗crn is a comonad on Fun(B,A). For F : B → A, X ∈ A,

CnF (X ) := crnF (X ,X , . . . ,X ).



Constructing PnF in the abelian functor calculus

Definition:
For F : B → A, PnF : B → Ch≥0A is the chain complex

. . . // C×3
n+1F

ε−Cn+1ε+C×2
n+1ε // C×2

n+1F
ε−Cn+1ε // Cn+1F

ε // F

where ε : Cn+1 = ∆∗crn+1 ⇒ id is the counit of the adjunction
(∆∗, crn+1).



Constructing PnF in the abelian functor calculus

Proposition:

For F : B → A, PnF : B → Ch≥0A is a degree n functor.

Proof:
There is a natural contracting homotopy on crn+1PnF :

. . . // crn+1C
×2
n+1F

crn+1(ε−Cn+1ε)//ff crn+1Cn+1F
crn+1ε //

s1

ll
crn+1F

s0

kk

given by sk = ηcrn+1(Cn+1)×k where η : id⇒ crn+1∆∗ is the unit
of the adjunction (∆∗, crn+1).



Questions

I Can we do something like this in a more topological (or
homotopy-theoretical) context?

I How would it compare with Goodwillie’s calculus?

I Can we make other calculi this way?



Discrete Functor Calculus

Theorem (Bauer, J, McCarthy, 2015; Mauer-Oats, 2006)

Given a functor F : C → D between a simplicial model category C
and a pointed stable simplicial model category D, there exists a
Taylor tower of functors and natural transformations

F
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. . . // Pn+1F // PnF // Pn−1F // . . . // P0F

such that

I for all n ≥ 0, PnF is a degree n functor,

I PnF is universal (in an appropriate homotopy category)
among degree n functors with natural transformations from F .



Degree n functors

Definition:
F is degree n iff crn+1F ' ∗.

Definition:
For an n-tuple X = (X1, . . . ,Xn) of objects in C,

crnF (X) := ihofiber (U ∈ P(n) 7→ F (X1(U) t · · · t Xn(U)))

where

Xi (U) =

{
Xi i /∈ U,

∗ i ∈ U.



Example

cr2F (X1,X2) is the iterated homotopy fiber of the diagram

F (X1 t X2) //

��

F (∗ t X2)

��
F (X1 t ∗) // F (∗ t ∗).



Construction of PnF for the discrete calculus

Lemma
⊥n+1 = ∆∗crn+1 defines a comonad on Fun(C,D).

Definition
For a functor F : C → D,

I k 7→ Barn+1
k F := ⊥k+1

n+1F defines a simplicial object in
Fun(C,D).

I The counit ε : ⊥n+1 ⇒ idFun(C,D) makes this an augmented
simplicial object:

Barn+1
• F

ε−→ F .

I PnF := hocofiber
(
‖Barn+1

• F‖ → F
)
.



Construction of PnF for the discrete calculus

Proposition

PnF is degree n.

Proof:
The comonad ⊥n+1 arises from a composite of adjunctions

Fun(Cn+1,D)t
U //
⊥ Fun(Cn+1,D)
t+

oo

∆∗
//

⊥ Fun(C,D)
t∗

oo

with crn+1 = U ◦ t+ ◦ t∗.



PnF is degree n, cont.

The unit for the adjunction provides a contracting homotopy for
crn+1Barn+1

• F via an extra degeneracy, so that

crn+1PnF = hocofiber
(
‖crn+1Barn+1

• F‖ → crn+1F
)

' hocofiber (crn+1F → crn+1F )

' ∗.



Theorem
I For a functor F that commutes with realization

(|F (−)| '−→ F ◦ | − |), the discrete PnF is weakly equivalent to
the n-excisive PnF .

I In general, the discrete PnF and the n-excisive PnF agree on
the initial object of C.



Calculus from Comonads (Hess-J, 20??)

Questions
For a comonad K acting on a (simplicial) model category C and an
object x in C, we can always construct a new object

ΓK (x) := hocofiber
(
‖BarK• (x)‖ → x

)
.

I If we define degree n in terms of a comonad K (e.g., x is
degree n iff Kx ' ∗), what conditions on K guarantee that
ΓK (x) will be degree n for all x?



Questions

I What conditions on a tower of comonads and comonad maps

. . .Kn → Kn−1 → · · · → K2 → K1

will guarantee that

. . . ΓKn(x)→ ΓKn−1(x)→ · · · → ΓK2(x)→ ΓK1(x)

is a Taylor tower for x?

I What are the essential properties of a Taylor tower (what
makes a tower a calculus)?

I Can the process that produced the comonads for the discrete
calculus tower be generalized?

I What kinds of new examples are produced?



What is a calculus?

Definition
Let M be a model category, and let M′ be a subcategory of M.
Let Γ be a functor that assigns to an object x in M′, a
coaugmented tower of objects in M:

x
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. . . // Γn+1x // Γnx // Γn−1x // . . . // Γ0x .

If the following conditions hold, then Γ is a calculus on M′ with
values in M.



What is a calculus?

1. For all m ≤ n and all objects x in M′, the natural
transformation

Γmηn(x) : Γmx −→ ΓmΓnx

is a weak equivalence.

2. For all m ≥ n and all objects x in M′, the natural
transformation

ηm(Γnx) : Γnx −→ ΓmΓnx

is a weak equivalence.

3. If f : x → x ′ is a weak equivalence in M′, then
Γnf : Γnx → Γnx

′ is a weak equivalence in M for all n.



Example of a calculus

Let Ch be the category of unbounded chain complexes over a
commutative ring R (with the projective model structure).
For n ≥ 0, define Γn : Ch→ Ch by

Γn(X , d)k =


Xk : k ≤ n

Xn+1/ ker dn+1 : k = n + 1

0 : k > n + 1,

Then

Hk

(
Γn(X , d)

)
=

{
Hk(X , d) : k ≤ n

0 : k > n.

The natural transformations ηn : IdCh → Γn and γn : Γn → Γn−1

are given by taking appropriate quotients.
The chain complexes that are of degree at most n with respect to
Γ are those with homology concentrated in degree at most n



Conditions on comonads

Definition, current version
Let M be a pointed simplicial model category, and let M′ be a
subcategory of M. A comonad K = (K ,∆, ε) on M is compliant
with respect to M′ if

1. BarK
• (x) is levelwise cofibrant for all objects x in M′,

2. K s sends weak equivalences in M′ to weak equivalences, and

3. K admits natural transformations |K s(−)| → K s ◦ | − | that
are componentwise weak equivalences (plus a little more).

Two comonads K and L on M that are compliant with respect to
M′ are jointly compliant if all of the simplicial objects

BarL
•
(
|BarK

• (x)|
)
, BarK

•
(
|BarL

• (x)|
)
,
∣∣BarL

•BarK
• (x)

∣∣
h
, |BarL

•BarK
• (x)

∣∣
v

are levelwise cofibrant for all objects x in M′.



Calculi from comonads

Ingredients

I M is a pointed simplicial model category.

I M′ is a subcategory of M.

I K = (Kn+1
σn−→ Kn)n≥1 is a tower of comonads.

Theorem
If each comonad Kn is compliant with respect to M′, and each
pair of comonads (Km,Kn) is jointly compliant with respect to M′,
then the coaugmented tower obtained from K is a calculus.
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Abelian Functor Calculus – Cross effects

An analogy:

For f : R→ R, f is degree 1⇒ f (x) = ax + b for some a and b.
Then

cr1f (x) := f (x)− f (0) = ax

is linear, and

cr2f (x , y) = cr1f (x + y)− cr1f (x)− cr1f (y) = 0.



For f : R→ R:
f is degree 2⇒ f (x) = ax2 + bx + c for some a, b, and c . Then

cr2f (x , y) = cr1f (x + y)− cr1f (x)− cr1f (y)

= a(x + y)2 + b(x + y)− ax2 − bx − ay2 − by

= 2axy

is linear in both x and y and

cr3f (x , y , z) = cr2f (x , y + z)− cr2f (x , y)− cr2f (x , z)

= 2ax(y + z)− 2axy − 2axz = 0.

In fact, f is degree n iff crn+1f (x1, x2, . . . , xn+1) = 0.


