
Dependent products of polynomials

Sean Moss1

2022 Workshop on Polynomial Functors
1University of Oxford

1



Dialectica categories, polynomials, models of type theory

• [von Glehn, 2014]:
(B,F) 7→ (PolyF ,FPolyF ) is an operation on display map categories.

=⇒ A dependently-typed version of Dialectica categories
[de Paiva, 1989], [Hyland, 2002],. . .

=⇒ A model of dependent types from freely adding sums and products
• Dependent types for other variants?

[Moss, 2018], [Moss, von Glehn, 2018]

2



Outline

1 ΣΠ(C): polynomials in C

2 Tensors and (local) exponentials in ΣΠ(C)

3 Dialectica categories

4 Σ(A) where A has biproducts

3



Outline

1 ΣΠ(C): polynomials in C

2 Tensors and (local) exponentials in ΣΠ(C)

3 Dialectica categories

4 Σ(A) where A has biproducts

4



The category of polynomials

y := id ∼= Set(1,−) ∈ [Set,Set]

Poly ≃ (closure of {y} under sums and products) ⊆ [Set,Set]

5



Σ(C), the free sum completion of C

objects

I

(ci)i∈I
= “
∑
i∈I

ci”

with I ∈ Set and c : I → obC.

morphisms

I

(ci)i

J

(dj)j(df(i))i⌟

f

(ϕi)i

universal property

C

Σ(C) K
(has sums)∃ ess. unique

(preserving sums)

as presheaves

Σ(C) ≃ closure of
{C(−, c)}c∈C ⊆ [Cop,Set]

under sums.

Σ(C) := (closure of {C(c,−)}c∈C under sums) ⊆ [Cop,Set]

Evident functors C → Σ(C) → Set.

6



Π(C): the free product completion of C

Π(C) := (Σ(Cop))op ≃ (closure of {C(c,−)}c∈C under products) ⊆ [C,Set]op

objects

I

(ci)i∈I
= “
∏
i∈I

ci”

with I ∈ Set and c : I → obC.

morphisms

I

(ci)i

J

(dj)j(cf(j))j⌞

f

(ϕj)j

7



ΣΠ(C): adding products, then adding sums

objects
Bundles of bundles in
obC.

I

A

(ca)a∈A

p

= “
∑
i∈I

∏
a∈Ai

ca”

morphisms

I

A

(ca)a

J

B

(db)b

Bf⌟

(df̄(x))x(cF (x))x

f

F f̄

8



Basic examples of Σ(−), Π(−), ΣΠ(−)

Σ(1) ≃ Set Π(1) ≃ Setop ΣΠ(1) ≃ Poly

ΣΠ(2) = ‘dependently-typed Dialectica category’

Σ(I) ≃ SetI (where I ∈ Set)

ΣΠ(I) ≃ polynomial functors SetI → Set

9



Products in Σ(C)

If C has products then Σ(C) has products given by∏
j∈J

∑
i∈Ij

ci,j ∼=
∑

f∈Πj∈JIj

∏
j∈J

cf(j),j

and C → Σ(C) preserves products.

Corollary
ΣΠ(C) has products, and these distribute over sums.

(Actually a distributive law ΠΣ
δ−→ ΣΠ).

10



The fibration of F-polynomials in a fibration p : E → B

B

E

F
p

cod

7→

B

ΣΣΣFΠΠΠF(E)

F
ΣΣΣFΠΠΠF(p)

cod

where

B

F B

EΣΣΣF(E)⌟ p

dom
cod

ΣΣΣF(p)

Recovering the basic setting

(E
p−→ B) = (Σ(C)

Σ(!)−−→ Σ(1) ≃ Set) F = morSet

ΣΠ(C) = (ΣΣΣFΠΠΠF(E))1
11



Summary of polynomials in C

• ΣΠ(C), the ‘polynomials in C’, is given by formally/freely adding sums
and products to the category C.

• Poly ≃ ΣΠ(1).
• The fibrational setting gives lots of flexibility. e.g.

(a) control the ‘sizes’ of sums/products are added,
(b) non-standard notions of ‘bundles’ of polynomials.

12



Outline

1 ΣΠ(C): polynomials in C

2 Tensors and (local) exponentials in ΣΠ(C)

3 Dialectica categories

4 Σ(A) where A has biproducts

13



The Day tensor on Σ(C) (e.g. when C is small)

Let (C,⊗, I) be symmetric monoidal.

• ‘Convolution’ extends ⊗ to the Day tensor on [Cop,Set]…

(F ⊗G)c :=

∫ x,y∈C

Fx×Gy × C(c, x⊗ y).

• … which restricts to Σ(C):(∑
i∈I ci

)
⊗
(∑

j∈J dj

)
:=
∑

(i,j)∈I×J ci ⊗ dj.

• ⊗ has exponentials in [Cop,Set]

(G ⊸ H)c :=

∫
y,z∈C

(C(z, y ⊗ c)×Gy) ⇒ Hz

but not necessarily in Σ(C). 14



Lifting tensors to ΣΠ(C)

• Day convolution takes × on Π(C) to × on ΣΠ(C).(∑
i∈I

∏
a∈Ai

ca

)
×

∑
j∈J

∏
b∈Bj

db

 =
∑

(i,j)∈I×J

∏
x∈Ai+Bj

(. . .)

• If (C,⊗, I) is monoidal, extend by Day convolution twice.(∑
i∈I

∏
a∈Ai

ca

)
⊗

∑
j∈J

∏
b∈Bj

db

 =
∑

(i,j)∈I×J

(∏
a∈Ai

ca

)
⊗

∏
b∈Bj

db


=

∑
(i,j)∈I×J

∏
(a,b)∈Ai×Bj

ca ⊗ db

15



Day exponentials in Σ(C)?

C ⊆ Σ(C),

is a dense subcategory closed under ⊗.

=⇒ Sufficient to check exponentials on c ∈ C:

c⊗ Y → Z

c → Y ⊸ Z
===========

We will see: when Σ(C) has products, enough that (c ⊸ d) ∈ Σ(C).

16



Exponentiating by connected objects

• X ∈ E is connected (or coprime) iff E(X,−) : E → Set preserves
coproducts.

• The connected objects in Σ(C) are precisely C ⊆ Σ(C).

=⇒ c ⊸
(∑

j dj

)
∼=
∑

j (c ⊸ dj)

17



Exponentiating when Σ(C) is closed under products

Suppose Σ(C) has products, e.g. because C has products.

(∑
i

ci

)
⊸
(∑

j

dj

)
∼=
∏
i

∑
j

(ci ⊸ dj)

Then (Σ(C),⊗, I) is closed under ⊸ iff (c ⊸ d) ∈ Σ(C) for all c, d ∈ C.

18



ΣΠ(C) is cartesian closed (for C locally small)

[Altenkirch, Levy, Staton, 2010] for Poly

• × in Π(C) is free over C:

Π(C)(X × Y, c) ∼= Π(C)(X, c) + Π(C)(Y, c)

=⇒ For Y ∈ Π(C), c ∈ C,

Y ⇒ c ∼= c+
∑

f∈Π(C)(Y,c) 1.

• For general
(∏

k∈K ck
)
∈ Π(C),

Y ⇒ (
∏

k ck)
∼=
∏

k (Y ⇒ ck) .

19



Tensors and exponentials so far

• Easy to lift a tensor ⊗ from C to Σ(C) or to ΣΠ(C).
• ΣΠ(C) admits ⊸ iff c ⊸ d exists in ΣΠ(C) for c, d ∈ C.
• ΣΠ(C) cartesian closed.

Local exponentials?
Pullbacks in ΣΠ(C) are not guaranteed, so let’s focus on Poly where
having all finite limits simplifies things.

20



Dependent products in a category E with finite limits

Dependent product along f : B → A is a right adjoint Πf : E/B → E/A to
pullback f ∗ : E/A → E/B.

• Gives local exponentials: Πf (f
∗(−)) ∼= f ⇒ (−) in E/A.

• Conversely: can construct Πf (−) from f ⇒ (−) (and pullbacks).
=⇒ Dependent products along f exist iff f is exponentiable in E/A.

• Also: exponentiable maps are stable under pullback.
=⇒ If E is a CCC (with pullbacks), then product projections are

exponentiable.

21



Exponentiable maps in Poly

1. Product projections are exponentiable.

yB
yf−→ yA is exponentiable whenever f : A → B is injective

2. In Poly/yA, exponentiable objects are closed under sums.
3. Poly/

∑
i y

Ai ≃
∏

i

(
Poly/yAi

)
therefore exponentiable maps are

closed under sums.

I J

A BBf

f

p q⌟
F

No other maps in Poly are exponentiable [von Glehn], [Altenkirch, Levy, Staton].
22



Summary of (local) exponentials

• ΣΠ(C) is always cartesian closed.
• Poly is not locally cartesian closed, but we know exactly which maps
are exponentiable.

• In general ΣΠ(C) might not have all pullbacks. Instead, find a class

F = FΣΠ(C) ⊆ mor(ΣΠ(C))

of display maps modelling “Π-types”: Πf where f ∈ F , defined on F ,
valued in F .

• The F that works for Poly generalizes to ΣΠ(C).
(cf. “Reedy fibrations” of [Shulman, 2014], [Uemura, 2017]).

23



Outline

1 ΣΠ(C): polynomials in C

2 Tensors and (local) exponentials in ΣΠ(C)

3 Dialectica categories

4 Σ(A) where A has biproducts

24



The ‘Dialectica polynomials’ ΣΠ(2) where 2 = {⊥ ≤ ⊤}

objects

I

A

α

p

∼=

I

A

2

p

α

= “∃i ∈ I.∀x ∈ Ai.α(i, x)”

morphisms

I

A

α

J

B

β

Bf⌟
⌞ ⌟f̄−1(β)F−1(α)

f

F f̄

⊆⊆⊆

“The proof of β(f(i0), y) must consume precisely one
predetermined instantiation of ∀x ∈ Ai0 .α(i0, x)”.

25



Dial (‘classic Dialectica’) [de Paiva, 1989]

Dial ⊆ ΣΠ(2) is the full subcategory on objects

α ↣ I × A → I

• Dial has sums of ‘∀-homogeneous’ summands.

(∃i ∈ I. ∀x ∈ A.α(i, x)) + (∃j ∈ J.∀x ∈ A. β(j, x))

∼= (∃x ∈ I + J.∀a ∈ A. matchx {inl(i) → α(i, a), inr(j) → β(j, a)}).

• [Hofstra, 2011]:
Take F = product projections in Set and add F-sums and F-products
to a fibration of propositions P → Set.

Cf. Lens ⊆ Poly

26



Products and tensor in Dial

Dial is closed under the products of ΣΠ(2):(∑
i∈I

∏
x∈A

α(i, x)

)
×

(∑
j∈J

∏
y∈B

β(j, y)

)
=

∑
(i,j)∈I×J

(∏
x∈A

α(i, x)

)
×

(∏
y∈B

β(j, y)

)
︸ ︷︷ ︸

product over A+B

and also the tensor product induced by (2,∧,⊤):(∑
i∈I

∏
x∈A

α(i, x)

)
⊗

(∑
j∈J

∏
y∈B

β(j, y)

)
=

∑
(i,j)∈I×J

∏
(x,y)∈A×B

(α(i, x) ∧ β(j, y))

ΣΠ(2) has exponentials for both, Dial only for the latter.

27



Dialectica categories so far

• The simplest version is ΣΠ(2) — objects are “∃i ∈ I.∀x ∈ Ai.α(i, x)”.
The original Dial just requires (Ai)i be constant in i ∈ I .

• Dial is SMC with ⊗, cartesian, has only weak sums.
ΣΠ(2) is SMC with ⊗, cartesian closed, has sums.

• ‘Really’ about adding quantifiers to a fibration P → Set of predicates.

Another way to ‘make’ Dial cartesian closed is to take the co-Kleisli
category of a well-chosen comonad, e.g. such that ⊗ becomes the
cartesian product (cf. ! modality in linear logic).

• Diller-Nahm variant [de Paiva, 1989] using Mfin.
• ‘Error’ variant [Biering, 2008] using (−) + 1.

28



Outline

1 ΣΠ(C): polynomials in C

2 Tensors and (local) exponentials in ΣΠ(C)

3 Dialectica categories

4 Σ(A) where A has biproducts

29



The ‘type theory part’ of Dill

• The finite multisets monad Mfin : Set → Set induces a comonad L on
Poly. ∑

i∈I

yAi 7→
∑
i∈I

yMfin Ai

• (Poly)L ≃ Σ((SetMfin
)op) ≃ Σ(FreeCMonop).

Recent work on automatic differentiation uses CC structure of
Σ(CMon), Σ(CMonop),. . . [Vákár, Smeding, Lucatelli Nunes].

30



Σ(A) is cartesian closed — when A has biproducts and products

• Earlier: if A has products, suffices to exponentiate A’s by A’s.
• × = ⊕ = + in A:

A(a⊕ b, c) ∼= A(a, c)× A(b, c)

=⇒ Exponentiate A’s by A’s:

b⇒ c ∼= c×
(∑

f∈A(b,c) 1
)

∼=
∑

f∈A(b,c) c

31



Polynomials via an enriched sum completion?

[Kelly, Basic concepts of enriched category theory]

• Let (V ,⊗, I) be a bicomplete SMC (e.g. CMon, Set∗).
• Free V-category CV on a Set-category C:

obCV := obC CV(c, d) := C(c, d) · I

• Free V-sum completion ΣV(A): close A under sums in [Aop,V ]V .

• 1CMon ≃ N (as a ‘semiring’/one-object CMon-category).
• FreeCMon ≃ ΣCMon(1CMon) (cf. [Mac Lane, Ex. VIII.2.5–6]).
• Thus (Poly)L ≃ ΣΠCMon(1CMon).

32


	(C): polynomials in C
	Tensors and (local) exponentials in (C)
	Dialectica categories
	(A) where A has biproducts

