
Functorial Aggregation

David I. Spivak

March 18, 2022

Workshop on Polynomial Functors
2022 March 18

Introduction

Outline

1 Introduction
Databases and aggregation
Purity of methods
Plan of the talk

2 Background on Poly

3 Cat], home of data migration

4 Aggregation

5 Conclusion

0 / 22

Introduction Databases and aggregation

Why think about databases?

I’m interested in sense-making. How do we make sense of the world?

We’re here together, each with our own purpose and abilities.

We’re engaged in the activity of collective sense-making.

I’m want to spread a sense of how Poly relates to information.

Imagine that sense is “contained” somewhere and that it can be transferred.

If our ability to deal effectively with the world were contained...

...in our brain, then we could ask “what’s the brain’s data structure?”

And if our data structures are different, then how is info transferred?

Are you getting this? If so, what’s the story of how that works?

I think of mathematical fields as accounting systems.

Arithmetic accounts for the flow of quantities, as in finance.

Hilbert spaces account for the states of elementary particles, as in QM.

Probability distributions account for likelihoods, as in game theory.

What’s a good accounting system for how we collectively make sense?

1 / 22

Introduction Databases and aggregation

Categorical databases

When I first started out on this question, I began with databases.

Their mundane and humble but widely-used and easily conceptualized.

The way I conceptualized them was as copresheaves F : C → Set.

The site C is called the schema and the copresheaf is the instance.

mySchema :=

Employee
•

Department
•

string
◦

$
◦

WorksIn

FName

Mngr
Admin

DName Bdgt

d.Admin.WorksIn = d (∀ d:Department)

Employee FName WorksIn Mngr
1 Alan 101 2
2 Ruth 101 2
3 Kris 102 3

String
Alan
IT

.

.

.

Department DName Admin Bdgt
101 Sales 1 $10
102 IT 3 $5

x : $
$5
$6

.

.

.

The schema holds the structure of your knowledge...

...and the instance holds all your examples within that structure.

For those who don’t care about databases, this talk is about copresheaves.2 / 22

Introduction Databases and aggregation

Querying and aggregating

The two most common thing to do with databases is query and aggregate.

Querying a database means performing a limit operation.
Example: find all pairs of people with the same favorite book.

Q P

P B

f

f

y

This is called a conjunctive query, “an X and a Y where...”

More generally a disjoint union of conj’ive queries (duc-query)...

... is a coproduct of these, e.g. same favorite book or movie.
Aggregating is “integrating along compact fibers”.

Assign to each b ∈ B the number of people whose fave book is b.

P R

B

f

s

(sum s)f

Or assign to b the total salary of everyone whose fave is b.

Rather than searching, this is summarizing, reporting.
3 / 22

Introduction Databases and aggregation

Beauty and the beast

Both querying and aggregating are crucial, but one is cat’ly better behaved.

Querying is part of a larger story called data migration.

Given two categories (DB schemas) C,D, a data migration functor...

... C

.

/ D is a parametric right adjoint D-Set→ C-Set.

These have nice characterizations, some of which we’ll discuss, and...

... have been implemented in open-source categorically-minded code.

In contrast, aggregation has seemingly not received a categ’al formulation.

It’s not even clear what sort of properties are desirable.

For example, aggregation is not natural wrt. copresheaf morphisms.

Consider: what is preserved by a commutative square f ′ → f ?

P′ P R

B′ B

f ′ f

s

(sum s)f

Can you make a match between beauty and the beast? “Be my guest!”
4 / 22

Introduction Purity of methods

Poly-amory: could one category be enough?

I’ve lately been totally enamored with Poly and its comonoids Cat].

First, it is an excellent setting for thinking about things I care about.
It is a natural setting for interacting dynamical systems.

And thanks to the results of Ahman-Uustalu and Garner...

...it is a natural setting for databases and data migration.

Both of these seem relevant when accounting for sense-making.
Second, Poly has loads and loads of structure.

Coproducts and products that agree with usual polynomial arithmetic;

All limits and colimits;

At least three orthogonal factorization systems;

A symmetric monoidal structure ⊗ distributing over +;

A cartesian closure qp and monoidal closure [p, q] for ⊗;

Another nonsymmetric monoidal structure / that’s duoidal with ⊗;

A left /-coclosure
[−
−

]
, meaning Poly(p, q / r) ∼= Poly(

[
r
p

]
, q);

An indexed right /-coclosure (Myers?), i.e. Poly(p, q / r) ∼=
∑

f : p(1)→q(1)

Poly(p
f
_q, r);

An indexed right ⊗-coclosure (Niu?), i.e. Poly(p, q ⊗ r) ∼=
∑

f : p(1)→q(1)

Poly(p↗f q, r);

At least eight monoidal structures in total;

/-monoids generalize Σ-free operads;

/-comonoids are exactly categories; bicomodules are data migrations. This is Cat] .

For the above and more, see “A reference for categorical structures on Poly”, arXiv: 2202.00534

It was love at first sight. I’m committed to solving problems as a team.
5 / 22

Introduction Purity of methods

Aggregation poses a “purity of methods” problem

“Solving aggregation” is not well-defined.

Given a map E → B and a map E → R, you “just integrate”.

It’s hard to know what problem needs solving.

According to Detlefsen & Arana, “purity of methods” has a long tradition.

Aristotle, Newton, Lagrange, Gauss, Bolzano, Frege,... all sought it.

Erdös wanted a non-C proof of Hadamard’s prime number thm (n
log n).

Bolzano phrased it as searching for “a thorough way of thinking.”

So this suggests a ways forward.

Since Poly is great for thinking about data migration (as I’ll discuss)...

...it is a “purity of methods” issue to get aggregation into Poly as well.

So the goal is to give an account of aggregation using...

...only monoidal/universal structures available in the Poly ecosystem.

Pursuing it led to several new structures, which I’ll tell you about.

6 / 22

Introduction Plan of the talk

Plan of the talk

Now that I’ve introduced the topic, here’s the plan for my remaining time.

Give background on Poly, its monoidal closure and mon’l coclosure.

Discuss Cat] = Comon(Poly), natural home of data migration.

Show how aggregation-useful structures on Poly generalize to Cat].

Explain aggregation with the structures we’ve explored.

Conclude with a summary.

7 / 22

Background on Poly

Outline

1 Introduction

2 Background on Poly
Poly: polynomials in one variable
Relevant categorical structures

3 Cat], home of data migration

4 Aggregation

5 Conclusion

7 / 22

Background on Poly Poly: polynomials in one variable

Poly: coproducts of representables Set→ Set

A polynomial functor is a coproduct of representables Set→ Set:

For any set E , denote the functor it represents by yE := Set(E ,−).

E.g. y = y1 is identity, y0 = 1 is constant, and yE (1) ∼= 1 for any E .

A polynomial is a disjoint union of representables p ∼=
∑

b∈B yEb .

Note that p(1) ∼= B so, we can denote polynomials as follows:

p :=
∑

I∈p(1)

yp[I]

Morphisms p
ϕ−→ q are just natural transformations Set Set

p

q

ϕ

Combinatorially, a map ϕ : p → q can be given in two parts:

A function ϕ1 : p(1)→ q(1) “forward on positions” and...

...for each I∈p(1), a function q[ϕ1I]→ p[I] “backward on directions”

A polynomial can be viewed as a functor or just as a combinatorial object.

Polynomials can be viewed as functors; this is like “querying”.

The functor p “migrates data”, sending X ∈ Set to p(X) ∈ Set.

But it’s often helpful just to think of p as a data structure. 8 / 22

Background on Poly Relevant categorical structures

Dirichlet product ⊗ and its closure

Poly admits many monoidal structures, e.g. coproduct and product (+,×).

Among the most useful is Dirichlet product ⊗; its unit is y.

If you think of a polynomial p as a bundle,
(∑

I∈p(1) p[I]
)
→ p(1)...

...then p ⊗ q is just product of base and total spaces for p, q ∈ Poly.

p ⊗ q ∼=
∑

(I ,J)∈p(1)×q(1)

yp[I]×q[J]

The ⊗-structure has a closure: Poly(p ⊗ q, r) ∼= Poly(p, [q, r]):

[q, r] ∼=
∑

ϕ∈Poly(q,r)

y

∑
J∈q(1)

r [ϕ1J]

Like so much in Poly, both ⊗ and [−,−] generalize to Cat].

The polynomial y is a dualizing object: for any A ∈ Set...

...we have isomorphisms [Ay, y] ∼= yA and [yA, y] ∼= Ay.

We write Ay ∼= yA. This generalizes to an important part of our story.
9 / 22

Background on Poly Relevant categorical structures

Substitution product / and its coclosure

The other important monoidal product is called substitution or composition.

The composite p / q := p ◦ q of polynomial functors is a polynomial.

E.g. if p = y2 and q = y + 1, then p / q ∼= y2 + 2y + 1.

(There are many reasons for / instead of ◦. One is that we want to reserve ◦ for morphisms; / is “composing” objects!)

This monoidal product / preserves equalizers in both variables.

It and ⊗ are duoidal: (p1 / p2)⊗ (q1 / q2)→ (p1 ⊗ q1) / (p2 ⊗ q2).

In fact, / has a right coclosure (Myers?) and an indexed left coclosure.

We’ll only need the former, Poly (p, q / p′) ∼= Poly
([

p′

p

]
, q
)

.

For any p ∈ Poly the polynomial
[
p
p

]
is a /-comonoid (Meyers).

We’ll see that /-comonoids are categories; which one is this?

It’s the full internal subcat’y of Setop (Jacobs) spanned by p-fibers.

We’ll rely heavily on this in a special case: u = List =
∑

N∈N yN .

Then
[
u
u

]
is a skeleton of Finop.

Later we’ll get its opposite as the dual,
[
u
u

]
' Fin.

10 / 22

Cat], home of data migration

Outline

1 Introduction

2 Background on Poly

3 Cat], home of data migration
Shulman, Ahman-Uustalu, Garner
Databases for intuition
Categorical structures

4 Aggregation

5 Conclusion

10 / 22

Cat], home of data migration Shulman, Ahman-Uustalu, Garner

Cat] := Comon(Poly)

Shulman: if equipment P has good equalizers, Comon(P) is an equipment.

An equipment is a kind of double cat’y, where 2-cells can be “cartesian.”

Any bicat’y—and hence any monoidal category—is one, called globular.

So (Poly,y, /) is a equipment! It happens to be vertically-trivial.

We said Poly has “good equalizers”: i.e. they are preserved by /.

Shulman tells us that Cat] := Comon(Poly) is also an equipment.

Ahman-Uustalu: the objects of Comon(Poly) are categories.

A comonoid in (Poly,y, /) consists of (c , ε, δ) where c ∈ Poly and...

...ε : c → y and δ : c → c / c are (counital & coassoc’tive) maps.

This turns out to force c ∼=
∑

a∈Ob(C) y
C[a] for some category C,...

...where C[a] :=
∑

a′∈Ob(C) HomC(a, a′). Say c is C’s outfacing poly’l.

Then ε gives identities and δ gives codomains and composition.

Garner: horizontal morphisms of Comon(Poly) are data migrations.

He didn’t say it that way. He said that a bicomodule C

.

/
p

D...

...is a parametric right adjoint SetD → SetC. I’ll explain soon.

I denote the cat’y of (c , d)-bicomodules by c-Set[d].
11 / 22

Cat], home of data migration Shulman, Ahman-Uustalu, Garner

PolyFun and Span as subequipments of Cat]

To understand Cat] := Comon(Poly), let’s start with something familiar.

Gambino-Kock showed that sets, functions, and multi-variate poly’s...

...form an equipment, called PolyFun. (And similarly for arbitrary LCC cat’y in place of Set).

It sits inside Cat] as the full subequipment spanned by discrete caty’s.

Discrete caty’s are those whose outfacing poly’l is linear, Iy for I∈Set.

I E B J

E ′ ×B′ B B

I ′ E ′ B ′ J ′

ϕ]

ϕ1y
!

Iy Jy

I ′y J ′y

. /
p

. /
p′

⇓ ϕ

All the “activity” is subsumed under the def’n of comonoid, comodule.

The usual double cat’y of spans sits inside: Span ⊆ PolyFun ⊆ Cat].

Span ⊆ Cat] is the subequipment where every poly is linear!

Discrete carrier makes: a cat’y be discrete, a bicomodule be a span.
12 / 22

Cat], home of data migration Databases for intuition

Database schemas and Duc-queries

We can get more intuition for Cat] by thinking about databases.

The indexing cat’y for graphs is G := • • , carried by g := y3 + y.

Bicomodules c .

/X 0 can be ident’d with copresheaves c
X−→ Set.

So a graph is just a bicomodule g . /X 0. Call X a g -set or G-set.

Think of G as a database schema, an arrangement for sets, and...

...think of X : G→ Set as a G-instance, some sets so-arranged.

We can move data between database schemas using duc-queries.

The cat’y of conjunctive queries on C is (C-Set)op. Idea:

For Q ∈ C-Set we have a functor C-Set(Q,−) : C-Set→ Set.

We think of Q as a query: find me all Q-shapes in −. Contravariant in Q.

E.g. there’s a graph Qn for which G-Set(Qn,−) returns length-n paths.

If we want all paths, we need a disjoint union of conjunctive query’s.

A data migration (bicomod) C

. /
p

D is a C-indexed duc-query on D.

It functorially assigns a duc-query on D to each c ∈ C.

Given a D-instance D

. / 0, composition returns a C-instance.
13 / 22

Cat], home of data migration Categorical structures

Adjoint prafunctors

Data migrations = Bicomodules = parametric right adjoint functors.

A bicomodule c . /
p

d is a prafunctor d-Set→ c-Set.

It is also a c-indexed duc-query on d . This can be helpful.

E.g., a profunctor cop × d → Set is a special case of prafunctor.

It can be identified with a c-indexed conjunctive query on d , no sums.

When is a prafunctor c .
/

p
d a right adjoint in Cat]?

Two conditions: it is a right adjoint functor d-Set→ c-Set and...

...the associated left adjoint c-Set→ d-Set is also a prafunctor.

For example for any functor F : c → d , we have ∆F a ΠF .

For c . /
p

d , I denote its left adjoint by d . /
p

†

c .

In the subcategory PolyFun = Cat]disc, adjoints are easy to characterize:

Left adjoints are those p with linear carrier (spans), and...

...right adjoints are the profunctors, i.e. c-indexed conjunctive queries.

14 / 22

Cat], home of data migration Categorical structures

External and internal ⊗

The equipment Cat] has lots of structure, e.g. it is monoidal.

There is a double functor ⊗ : Cat] × Cat] → Cat].

It is an (external) symmetric monoidal structure on Cat].

On objects, c ⊗ d is the usual product of categories.

It also has local ⊗-monoidal structures.

For any c , d ∈ Cat] the cat’y c-Set[d] has an induced ⊗-structure.

That is, for any two bicomodules c .

/
p,q

d , there is...

...a bicomodule c . /
p c⊗d q

d . The local unit is c(1)yd(1).

These fit together “duoidally”:

c0 c1 c2

.

/
p1

.

/q1

.

/
p2

.

/q2
 c0 c2

. /
(p1/c1p2) c0⊗c2 (q1/c1q2)

. /
(p1 c0⊗c1 q1)/c1 (p2 c1⊗c2 q2)

⇓ duoid

15 / 22

Cat], home of data migration Categorical structures

Local closures and dualizing object

The local ⊗-structures have closures.

That is, for p, q, r ∈ c-Set[d], there is a natural isomorphism

c-Set[d](p c⊗d q , r) ∼= c-Set[d](p , c [q, r]d)

Wanted: other equip’s with local (duoidal) monoidal-closed structure.

For any sets C ,D, there’s a dualizing object in C -Set[D]=PolyGK (C ,D).

It’s the terminal span, C ← (C × D)→ D, i.e. Cy

. /
CDy

Dy.

Calling it ⊥ := CDy, the functor · := C [−,⊥]D provides a duality...

If p ∈ C -Set[D] is linear then [p,⊥] is conjunctive, and vice versa.

In particular p ∼= p for any linear or conjunctive p.

It generalizes [Ay, y] ∼= yA from earlier.

16 / 22

Cat], home of data migration Categorical structures

Transposing a span, “oppositing” a category

The idea of p is that it transforms ΣF ◦∆G into ΠF ◦∆G .

That’s not its adjoint!

The adjoint of ΣF ◦∆G is ΠG ◦∆F .

So what is the adjoint of the dual or the dual of the adjoint?

Answer: ΣF ◦∆G 7→ ΠF ◦∆G 7→ ΣG ◦∆F . (The other works too.)

On the level of spans, this is the transpose!

The transpose operation is a composite of two more primitive ones.

This doesn’t happen within Span; kind of like contour integrals.

Similarly, the opposite of a category is a composite of two operations.

A category C can be viewed as a monad in Span, and its adjoint is...

...a comonoid c(1)y . /c c(1)y, which is a cat’y in a different way!

And the dual of that comonoid is again a monad in Span, namely Cop.

In particular, with u =
∑

N∈N yN , we will use (twice) that
[
u
u

]
' Fin.

17 / 22

Aggregation

Outline

1 Introduction

2 Background on Poly

3 Cat], home of data migration

4 Aggregation
Finitary instances
Commutative monoids
Putting it together

5 Conclusion

17 / 22

Aggregation Finitary instances

Finitary instances

For X : c → Set, i.e. c . /X 0, the following are equivalent

the copresheaf X is finitary, i.e. it factors through Fin ⊆ Set.

there exists a function pXq : c(1)→ u(1) with

c(1)y 0

u(1)y 0

. /X

pXq

. /
u

cart

There exists a monad map pXq1 as shown here:

c(1)y c(1)y

u(1)y u(1)y

. /c

†

pXq pXq

. /[
u
u

]
pXq1

c

†

=
∑

a∈c(1)

cop[a]y.

for which the c

†

-algebra induced by u is X .

I know that’s impossible to follow; sorry! The gist: “everything works!”
18 / 22

Aggregation Finitary instances

Minor difficulty during talk

Edit: This slide was added afterwards. In the talk I worried about an error.

For any polynomial comonad c , we have three related bicomodules:

c(1)y .

/c c(1)y c(1)y .

/c

†

c(1)y c(1)y .

/c c(1)y

The first is a comonoid profunctor; it’s basically “the same as c”.

The second two, c

†

and c , are both monads in Span related to c .

Question: which of c
†

, c should we consider as c and which as cop?

This is what tripped me up during the talk.

Note that c

†

= c

†

are again comonoids, and are certainly cop.

There are two ways to think about it: syntactically vs. copresheaves.

Syntactically (as in the talk), c

†

acts more like cop.

Reading it out like I did during the talk, things look opposite.

But in terms of algebras:

c-Coalg ∼= Fun(c,Set) c

†

-Alg ∼= Fun(c ,Set) c-Alg ∼= Fun(cop,Set).

So I used to think of c

†

as more like c and c as more like cop.

That was the confusion that tripped me up during the talk. 19 / 22

Aggregation Commutative monoids

Commutative monoids as Fin-algebras

A database schema assigns a comm’ve monoid (Ma,~a) to each a ∈ c(1).

Assigning the set Ma to each a ∈ c(1) is a bicomodule y

.

/
My

Ay.

Consider the following diagram that coerces ~ into the picture:

u(1)y y

u(1)y y c(1)y

. /u

.

/

My

.

/
[
u
u

]
. /u

. /
My

~

The composite u(1) . /u
y

. /
My

c(1)y assigns...

... to each N ∈ N and a ∈ c(1) the set (Ma)N .

So what does the 2-cell say, and what does being a
[
u
u

]
-module mean?

Given a function f : N → N ′, an object a ∈ c(1), and m ∈ (Ma)N ...

...there is an induced (~m)f ∈ (Ma)N
′
. Integration along fibers.

u /My being a
[
u
u

]
-algebra means it works with ids and composites.

20 / 22

Aggregation Putting it together

Aggregation

The thing we’ve worked so hard for is as follows.

Suppose we have a category c and a copresheaf X : c → Set and...

...a commutative monoid Ma and a map sa : Xa → Ma for each a ∈ c(1).

Then given f : a→ b in c , and given y ∈ X (b), we want:

... to take the fiber {x ∈ X (a) | x .f = y} and “add ’em up”.

That is, take ~{x|x.f =y}sa(x).
Xa Ma

Xb

Xf

sa

(~ sa)f

We have accomplished this now, using pieces we’ve collected.

c(1)y c(1)y c(1)y

u(1)y u(1)y y c(1)y

y

pXq

.

/c

†. /

c

†

pXq

.

/
c(1)y

.

/[
u
u

].

/u

.

/u

.

/
My

.

/

My

pXq1 s

~

b a a

u(1)y u(1)y y c(1)y

y

pXq

f

f

pXq

.

/[
u
u

].

/u

.

/u

.

/
My

.

/

My

pXq1 s

~

b a a

X (b) X (a)

y

pXq

f

f

pXq

X (f).

/u

x 7→ sa(x)

.

/

My

pXq1 s

~

b a a

X (b) X (a)

pXq

f

f

pXq

X (f)

y 7→

x 7→ sa(x)

~{x|x.f =y}sa(x)

pXq1 s

~

21 / 22

Conclusion

Outline

1 Introduction

2 Background on Poly

3 Cat], home of data migration

4 Aggregation

5 Conclusion
Summary

21 / 22

Conclusion Summary

Summary

Aggregation is of central importance in database practice.

Add up salaries, count things, collect each fiber into a set, etc.

If we also have “calculated fields” (not too hard), you can...

... take averages, plot graphs, etc. Aggregation is very powerful.

There’s a really nice categorical story for data migration.

It is that Cat] = Comon(Poly) is categories and prafunctors.

And prafunctors are data migrations (e.g. find all paths in a graph).

But a categorical formulation of aggregation has been missing.

But Poly is so highly-structured, we asked if it might include aggregation.

Using adjoint prafunctors, local monoidal closures, and coclosures...

...we found a way to say what we needed to say.

It’s not as plain and simple as I’d like, but there’s likely a better way.

We tested the mettle of Poly and it was indeed up to the task!

Thank you for your time; questions and comments welcome!

22 / 22

	Introduction
	Databases and aggregation
	Purity of methods
	Plan of the talk

	Background on
	: polynomials in one variable
	Relevant categorical structures

	Cat, home of data migration
	Shulman, Ahman-Uustalu, Garner
	Databases for intuition
	Categorical structures

	Aggregation
	Finitary instances
	Commutative monoids
	Putting it together

	Conclusion
	Summary

