
What is a Functor?

Todd Trimble

Western Connecticut State University
Department of Mathematics



Outline of talk

I Back-story

I Classical CT

1. Adjoints and actions
2. Adjoint lifting theorem
3. Beck’s “crude” monadicity theorem
4. Left adjoint monads “=” right adjoint comonads

I C -sets

1. Monadic over slice
2. Comonadic over slice
3. Comonadic over Set

I What are functors?



Outline of talk

I Back-story

I Classical CT

1. Adjoints and actions
2. Adjoint lifting theorem
3. Beck’s “crude” monadicity theorem
4. Left adjoint monads “=” right adjoint comonads

I C -sets

1. Monadic over slice
2. Comonadic over slice
3. Comonadic over Set

I What are functors?



Outline of talk

I Back-story

I Classical CT

1. Adjoints and actions
2. Adjoint lifting theorem
3. Beck’s “crude” monadicity theorem
4. Left adjoint monads “=” right adjoint comonads

I C -sets

1. Monadic over slice
2. Comonadic over slice
3. Comonadic over Set

I What are functors?



Outline of talk

I Back-story

I Classical CT

1. Adjoints and actions
2. Adjoint lifting theorem
3. Beck’s “crude” monadicity theorem
4. Left adjoint monads “=” right adjoint comonads

I C -sets

1. Monadic over slice
2. Comonadic over slice
3. Comonadic over Set

I What are functors?



Adjoints and actions

Let T : D → D be a monad; let G : C → D have a left adjoint
F : D → C . The following are equivalent:

I Left T -actions α : TG → G .

I Monad maps θ : T → GF .

I Right T -actions β : FT → F .

Special case: T = UF , θ = id. The left T -action α : TU → U is

Uε : UFU → U

and the rightT -action β : FT → F is

εF : FUF → F



Adjoint lifting theorem

Let T : D → D be a monad. Category of algebras U : DT → D.

I Lifts of functors G : C → D through U : DT → D,

DT

C D,

U
Ĝ

G

are equivalent to T -algebra structures α : TG → G .

I If in addition C has reflexive coequalizers, then Ĝ has a left
adjoint F̂ iff G has a left adjoint F .

Construction: F̂ (d , α : Td → d) = coequalizer in C :

FTd Fd “F ◦T d”
Fα

βd



“Crude” Monadicity Theorem

Theorem: (Beck) A functor G : C → D is monadic if

I G has a left adjoint F (and then GF is the monad T :
canonical left action Gε : GFG → G );

DT

C D,

U
Ĝ

G

I C has reflexive coequalizers (F̂ a Ĝ ), and G preserves them
(unit η̂ : id→ Ĝ F̂ an isomorphism; note (1));

I G reflects isos (counit ε̂ : F̂ Ĝ → id an isomorphism; note (2)).

Crudely monadic functors compose. Even better:

Theorem: If U : C → D is crudely monadic and V : D → E is
monadic, then VU : C → E is monadic.



“Crude” Monadicity Theorem

Theorem: (Beck) A functor G : C → D is monadic if

I G has a left adjoint F (and then GF is the monad T :
canonical left action Gε : GFG → G );

DT

C D,

U
Ĝ

G

I C has reflexive coequalizers (F̂ a Ĝ ), and G preserves them
(unit η̂ : id→ Ĝ F̂ an isomorphism; note (1));

I G reflects isos (counit ε̂ : F̂ Ĝ → id an isomorphism; note (2)).

Crudely monadic functors compose. Even better:

Theorem: If U : C → D is crudely monadic and V : D → E is
monadic, then VU : C → E is monadic.



Left adjoint monads = right adjoint comonads

Theorem: (Eilenberg-Moore, 1965)

I If M : D → D is a monad with a right adjoint K : D → D,
then K carries a comonad structure mated to the monad
structure on M,

µ : MM → M

δ : K → KK
,

η : id→ M

ε : K → id

I M-algebras are equivalent to K -coalgebras,

α : Md → d

γ : d → Kd

I If (F : D → C ) a (U : C → D) a (G : D → C ), then
M = UF a UG = K and AlgUF ' CoalgUG .



Left adjoint monads = right adjoint comonads

Theorem: (Eilenberg-Moore, 1965)

I If M : D → D is a monad with a right adjoint K : D → D,
then K carries a comonad structure mated to the monad
structure on M,

µ : MM → M

δ : K → KK
,

η : id→ M

ε : K → id

I M-algebras are equivalent to K -coalgebras,

α : Md → d

γ : d → Kd

I If (F : D → C ) a (U : C → D) a (G : D → C ), then
M = UF a UG = K and AlgUF ' CoalgUG .



Example: C -sets

C a category: (C0,C1, d0 = dom : C1 → C0, d1 = cod : C1 → C0).

I SetC : category of C → Set, with UC : SetC → Set/C0.

I Left adjoint FC a UC :
X

C0

 ∑
c:C0

Xc · C (c ,−)
FC

I UCFCX in Set/C0 is the family indexed over d : C0:∑
c:C0

∑
f :c→d

Xc


d :C0

=

∑
f :C1

X (d0f )


d=d1f

= Σd1d
∗
0X

I Monad UCFC = Σd1d
∗
0 has a right adjoint KC = Πd0d

∗
1 .



Example: C -sets

C a category: (C0,C1, d0 = dom : C1 → C0, d1 = cod : C1 → C0).

I SetC : category of C → Set, with UC : SetC → Set/C0.

I Left adjoint FC a UC :
X

C0

 ∑
c:C0

Xc · C (c ,−)
FC

I UCFCX in Set/C0 is the family indexed over d : C0:∑
c:C0

∑
f :c→d

Xc


d :C0

=

∑
f :C1

X (d0f )


d=d1f

= Σd1d
∗
0X

I Monad UCFC = Σd1d
∗
0 has a right adjoint KC = Πd0d

∗
1 .



Example: C -sets

C a category: (C0,C1, d0 = dom : C1 → C0, d1 = cod : C1 → C0).

I SetC : category of C → Set, with UC : SetC → Set/C0.

I Left adjoint FC a UC :
X

C0

 ∑
c:C0

Xc · C (c ,−)
FC

I UCFCX in Set/C0 is the family indexed over d : C0:∑
c:C0

∑
f :c→d

Xc


d :C0

=

∑
f :C1

X (d0f )


d=d1f

= Σd1d
∗
0X

I Monad UCFC = Σd1d
∗
0 has a right adjoint KC = Πd0d

∗
1 .



Example: C -sets

C a category: (C0,C1, d0 = dom : C1 → C0, d1 = cod : C1 → C0).

I SetC : category of C → Set, with UC : SetC → Set/C0.

I Left adjoint FC a UC :
X

C0

 ∑
c:C0

Xc · C (c ,−)
FC

I UCFCX in Set/C0 is the family indexed over d : C0:∑
c:C0

∑
f :c→d

Xc


d :C0

=

∑
f :C1

X (d0f )


d=d1f

= Σd1d
∗
0X

I Monad UCFC = Σd1d
∗
0 has a right adjoint KC = Πd0d

∗
1 .



Example: C -sets

C a category: (C0,C1, d0 = dom : C1 → C0, d1 = cod : C1 → C0).

I SetC : category of C → Set, with UC : SetC → Set/C0.

I Left adjoint FC a UC :
X

C0

 ∑
c:C0

Xc · C (c ,−)
FC

I UCFCX in Set/C0 is the family indexed over d : C0:∑
c:C0

∑
f :c→d

Xc


d :C0

=

∑
f :C1

X (d0f )


d=d1f

= Σd1d
∗
0X

I Monad UCFC = Σd1d
∗
0 has a right adjoint KC = Πd0d

∗
1 .



Example: C -sets

Proposition: The functor UC : SetC → Set/C0 is crudely
monadic:

I Has a left adjoint FC : Set/C0 → SetC ;

I UC : SetC → Set/C0 preserves reflexive coequalizers (colimits
in SetC are computed “pointwise”);

I UC reflects isos (a natural transformation is invertible if its
components are).

By Eilenberg-Moore (1965), since MC = UCFC has a right adjoint
KC , the functor UC is also comonadic: FC a UC a GC :

X

C0

 ∏
d :C0

XdC(−,d)GC



Example: C -sets

Proposition: The functor UC : SetC → Set/C0 is crudely
monadic:

I Has a left adjoint FC : Set/C0 → SetC ;

I UC : SetC → Set/C0 preserves reflexive coequalizers (colimits
in SetC are computed “pointwise”);

I UC reflects isos (a natural transformation is invertible if its
components are).

By Eilenberg-Moore (1965), since MC = UCFC has a right adjoint
KC , the functor UC is also comonadic: FC a UC a GC :

X

C0

 ∏
d :C0

XdC(−,d)GC



C -sets: crude comonadicity and Polyfun

Proposition: UC : SetC → Set/C0 is crudely comonadic.

Proof: Know UC is comonadic (right adjoint GC , reflects isos).
UC also preserves coreflexive equalizers, e.g., by FC a UC .

Proposition: ΣC0 : Set/C0 → Set is comonadic, in fact crudely so.

Proof: The comonad is C0 ×− : Set→ Set. Function X → C0 =
coalgebra X → C0 × X . Also ΣC0 preserves connected limits, in
particular coreflexive equalizers.

Corollary: The composite

SetC Set/C0 Set
UC

ΣC0

is (crudely) comonadic.



C -sets: crude comonadicity and Polyfun

Proposition: UC : SetC → Set/C0 is crudely comonadic.

Proof: Know UC is comonadic (right adjoint GC , reflects isos).
UC also preserves coreflexive equalizers, e.g., by FC a UC .

Proposition: ΣC0 : Set/C0 → Set is comonadic, in fact crudely so.

Proof: The comonad is C0 ×− : Set→ Set. Function X → C0 =
coalgebra X → C0 × X . Also ΣC0 preserves connected limits, in
particular coreflexive equalizers.

Corollary: The composite

SetC Set/C0 Set
UC

ΣC0

is (crudely) comonadic.



C -sets as coalgebras

From UC a GC and ΣC0 a C ∗0 , we have ΣC0UC a GCC
∗
0 , hence a

comonad p = ΣC0UCGCC
∗
0 :

SetC

Set Set/C0 Set/C0 Set

Set/C1

UC

C∗
0

GC

d∗
1

KC
ΣC0

Πd0

so that the polynomial functor

p =

(
Set Set/C1 Set/C0 Set

C∗
1

Πd0
ΣC0

)
is a comonad, and



C -sets as coalgebras

Corollary: The category of p-coalgebras is SetC , with comonadic
functor

SetC Set/C0 Set

(F : C → Set)
∑

c:C0
Fc

UC
ΣC0

Calculate p(S):

Set Set/C0 Set/C0 Set

S (C ∗0S)d = (S)d
∑

c:C0

∏
d :C0

SC(c,d)

C∗
0 KC

ΣC0



C -sets as coalgebras

Corollary: The category of p-coalgebras is SetC , with comonadic
functor

SetC Set/C0 Set

(F : C → Set)
∑

c:C0
Fc

UC
ΣC0

Calculate p(S):

Set Set/C0 Set/C0 Set

S (C ∗0S)d = (S)d
∑

c:C0

∏
d :C0

SC(c,d)

C∗
0 KC

ΣC0



C -sets as coalgebras

We have∑
c:C0

∏
d :C0

SC(c,d)
∑

c:C0
S
∑

d :C0
C(c,d) ∑

c:C0
Sd∗

0 (c)∼ ∼

so that p-coalgebra structures take the form

S
∑

c:C0
Sd∗

0 (c).
γ

Identify S with a category El(F ) of F : C → Set: the composite

S →
∑
c:C0

Sd∗
0 (c) →

∑
c:C0

1 = C0

gives a fibering S → C0, and for each f : c → d , the corresponding
map Sf : Sc → Sd of fibers takes s ∈ Sc to γ(s)(f ) ∈ Sd .



C -sets as coalgebras

We have∑
c:C0

∏
d :C0

SC(c,d)
∑

c:C0
S
∑

d :C0
C(c,d) ∑

c:C0
Sd∗

0 (c)∼ ∼

so that p-coalgebra structures take the form

S
∑

c:C0
Sd∗

0 (c).
γ

Identify S with a category El(F ) of F : C → Set: the composite

S →
∑
c:C0

Sd∗
0 (c) →

∑
c:C0

1 = C0

gives a fibering S → C0, and for each f : c → d , the corresponding
map Sf : Sc → Sd of fibers takes s ∈ Sc to γ(s)(f ) ∈ Sd .



What are functors?

Notation: Polynomial comonad p : Set→ Set for C , q : Set→ Set
for D. Sets p1, q1 for C0,D0. Left adjoint monad Mp on Set/C0,
right adjoint comonad Kp. Coalgebra categories Setp = SetC .

A functor F : C → D is ... not...

I A function f : p1→ q1 together with a lift F : SetC → SetD

over Σf : Set/p1→ Set/q1:

Setp Setq

Set/p1 Set/q1

F

Up Uq

Σf

(same as an Mq-algebra structure on Σf Up; same as a
Kq-coalgebra structure on Σf Up).

I This is the concept of cofunctor from C to D.



What are functors?

Notation: Polynomial comonad p : Set→ Set for C , q : Set→ Set
for D. Sets p1, q1 for C0,D0. Left adjoint monad Mp on Set/C0,
right adjoint comonad Kp. Coalgebra categories Setp = SetC .

A functor F : C → D is ...

not...

I A function f : p1→ q1 together with a lift F : SetC → SetD

over Σf : Set/p1→ Set/q1:

Setp Setq

Set/p1 Set/q1

F

Up Uq

Σf

(same as an Mq-algebra structure on Σf Up; same as a
Kq-coalgebra structure on Σf Up).

I This is the concept of cofunctor from C to D.



What are functors?

Notation: Polynomial comonad p : Set→ Set for C , q : Set→ Set
for D. Sets p1, q1 for C0,D0. Left adjoint monad Mp on Set/C0,
right adjoint comonad Kp. Coalgebra categories Setp = SetC .

A functor F : C → D is ... not...

I A function f : p1→ q1 together with a lift F : SetC → SetD

over Σf : Set/p1→ Set/q1:

Setp Setq

Set/p1 Set/q1

F

Up Uq

Σf

(same as an Mq-algebra structure on Σf Up; same as a
Kq-coalgebra structure on Σf Up).

I This is the concept of cofunctor from C to D.



What are functors?

Notation: Polynomial comonad p : Set→ Set for C , q : Set→ Set
for D. Sets p1, q1 for C0,D0. Left adjoint monad Mp on Set/C0,
right adjoint comonad Kp. Coalgebra categories Setp = SetC .

A functor F : C → D is ... not...

I A function f : p1→ q1 together with a lift F : SetC → SetD

over Σf : Set/p1→ Set/q1:

Setp Setq

Set/p1 Set/q1

F

Up Uq

Σf

(same as an Mq-algebra structure on Σf Up; same as a
Kq-coalgebra structure on Σf Up).

I This is the concept of cofunctor from C to D.



What are functors?

Notation: Polynomial comonad p : Set→ Set for C , q : Set→ Set
for D. Sets p1, q1 for C0,D0. Left adjoint monad Mp on Set/C0,
right adjoint comonad Kp. Coalgebra categories Setp = SetC .

A functor F : C → D is ... not...

I A function f : p1→ q1 together with a lift F : SetC → SetD

over Σf : Set/p1→ Set/q1:

Setp Setq

Set/p1 Set/q1

F

Up Uq

Σf

(same as an Mq-algebra structure on Σf Up; same as a
Kq-coalgebra structure on Σf Up).

I This is the concept of cofunctor from C to D.



What are functors?

A functor is ...

I (Viewing categories as monads in Span) A function
f : C0 → D0 together with a 2-cell in Span:

C0 C0

D0 D0

f f
ψ

Set/C0 Set/C0

Set/D0 Set/D0

Mp

Σf Σf
ψ

Mq

compatible with monad structures, e.g.,

ΣfMpMp MqΣfMp MqMqΣf

ΣfMp MqΣf

ψMp

Σf µp

Mqψ

µqΣf

θ



What are functors? Various answers
A functor is ...

I A pair (f : p1→ q1, ψ : ΣfMp → MqΣf ) satisfying
conditions;

I A pair (f : p1→ q1, φ : Mpf
∗ → f ∗Mq) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗Kq → Kpf
∗) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗UqGq → Kpf
∗) with conditions;

I A pair (f : p1→ q1, γ : f ∗Uq → Kpf
∗Uq satisfying...

Kp-coalgebra conditions on f ∗Uq!

Interpretation: Kp-coalgebra map gives a lift SetF : SetD → SetC :

Setq Setp

Set/D0 Set/C0

SetF

Uq Up

f ∗

(SetF is a left/right adjoint, since f ∗ is)



What are functors? Various answers
A functor is ...

I A pair (f : p1→ q1, ψ : ΣfMp → MqΣf ) satisfying
conditions;

I A pair (f : p1→ q1, φ : Mpf
∗ → f ∗Mq) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗Kq → Kpf
∗) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗UqGq → Kpf
∗) with conditions;

I A pair (f : p1→ q1, γ : f ∗Uq → Kpf
∗Uq satisfying...

Kp-coalgebra conditions on f ∗Uq!

Interpretation: Kp-coalgebra map gives a lift SetF : SetD → SetC :

Setq Setp

Set/D0 Set/C0

SetF

Uq Up

f ∗

(SetF is a left/right adjoint, since f ∗ is)



What are functors? Various answers
A functor is ...

I A pair (f : p1→ q1, ψ : ΣfMp → MqΣf ) satisfying
conditions;

I A pair (f : p1→ q1, φ : Mpf
∗ → f ∗Mq) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗Kq → Kpf
∗) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗UqGq → Kpf
∗) with conditions;

I A pair (f : p1→ q1, γ : f ∗Uq → Kpf
∗Uq satisfying...

Kp-coalgebra conditions on f ∗Uq!

Interpretation: Kp-coalgebra map gives a lift SetF : SetD → SetC :

Setq Setp

Set/D0 Set/C0

SetF

Uq Up

f ∗

(SetF is a left/right adjoint, since f ∗ is)



What are functors? Various answers
A functor is ...

I A pair (f : p1→ q1, ψ : ΣfMp → MqΣf ) satisfying
conditions;

I A pair (f : p1→ q1, φ : Mpf
∗ → f ∗Mq) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗Kq → Kpf
∗) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗UqGq → Kpf
∗) with conditions;

I A pair (f : p1→ q1, γ : f ∗Uq → Kpf
∗Uq satisfying...

Kp-coalgebra conditions on f ∗Uq!

Interpretation: Kp-coalgebra map gives a lift SetF : SetD → SetC :

Setq Setp

Set/D0 Set/C0

SetF

Uq Up

f ∗

(SetF is a left/right adjoint, since f ∗ is)



What are functors? Various answers
A functor is ...

I A pair (f : p1→ q1, ψ : ΣfMp → MqΣf ) satisfying
conditions;

I A pair (f : p1→ q1, φ : Mpf
∗ → f ∗Mq) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗Kq → Kpf
∗) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗UqGq → Kpf
∗) with conditions;

I A pair (f : p1→ q1, γ : f ∗Uq → Kpf
∗Uq satisfying...

Kp-coalgebra conditions on f ∗Uq!

Interpretation: Kp-coalgebra map gives a lift SetF : SetD → SetC :

Setq Setp

Set/D0 Set/C0

SetF

Uq Up

f ∗

(SetF is a left/right adjoint, since f ∗ is)



What are functors? Various answers
A functor is ...

I A pair (f : p1→ q1, ψ : ΣfMp → MqΣf ) satisfying
conditions;

I A pair (f : p1→ q1, φ : Mpf
∗ → f ∗Mq) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗Kq → Kpf
∗) satisfying conditions;

I A pair (f : p1→ q1, θ : f ∗UqGq → Kpf
∗) with conditions;

I A pair (f : p1→ q1, γ : f ∗Uq → Kpf
∗Uq satisfying...

Kp-coalgebra conditions on f ∗Uq!

Interpretation: Kp-coalgebra map gives a lift SetF : SetD → SetC :

Setq Setp

Set/D0 Set/C0

SetF

Uq Up

f ∗

(SetF is a left/right adjoint, since f ∗ is)



What are functors? Enter Beck-Chevalley

Set/D1

Set/D0 Set/D0

Set Set/C0 Set/C0 Set

Πd0d∗
1

f ∗

Kq

θ f ∗

C∗
0

D∗
0

Kp ΣC0

Set/D1

Set/D0 Set/D0 Set/f ∗D1

Set Set/C0 Set/C0 Set

Πd0

g∗

d∗
1

f ∗

Kq

θ f ∗
Πh

C∗
0

D∗
0

Kp ΣC0



What are functors? Enter Beck-Chevalley

Set/D1

Set/D0 Set/D0

Set Set/C0 Set/C0 Set

Πd0d∗
1

f ∗

Kq

θ f ∗

C∗
0

D∗
0

Kp ΣC0

Set/D1

Set/D0 Set/D0 Set/f ∗D1

Set Set/C0 Set/C0 Set

Πd0

g∗

d∗
1

f ∗

Kq

θ f ∗
Πh

C∗
0

D∗
0

Kp ΣC0



What are functors?
Condensing the previous diagram, let us write

Set/f ∗D1

Set Set/C1 Set/C0 Set

Πh
θ

(f ∗D1)∗

C∗
1 Πd0

ΣC0

f ∗D1 D1

C0 D0

h

g

y
d0

f

The “top” Polyfun is based on a bundle h obtained as a pullback

p f ∗q q

p(1)y q(1)y

θ

h
y

f

Statement: A functor from p to q consists of f : p(1)→ q(1)
together with a p-coalgebra structure on f ∗q and a p-coalgebra
map θ making the triangle commute. “Lens-like.”



Thank you!



Notes
Note 1: To prove η : id→ Ĝ F̂ : DT → DT is an iso, it suffices to
prove

Uη : U → UĜ F̂ = GF̂

is an iso, since U : DT → D reflects isos. For an object
(d , α : Td → d) of DT , we have

FTd Fd F̂ (d , α).
Fα

βd

coeq

Since G is assumed to preserve reflexive coequalizers,

GFTd GFd GF̂ (d , α).
GFα

Gβd

coeq

But this coincides with

TTd Td d .
Tα

µd

α=coeq



Notes
Note 2: The counit F̂ Ĝ → id is given by

FTGc FGc F̂ Ĝc

c

FGεc

εFGc

coeq

εc

Since G is assumed to reflect isos, it suffices that GF̂ Ĝ → G be an
iso. Since G preserves reflexive coequalizers, the top sequence of

GFTGc GFGc GF̂ Ĝc

Gc

GFGεc

GεFGc

G(coeq)

Gεc

is a coequalizer, but then again, as is well-known, the lower
sequence is a split coequalizer (QED):

GFTGc GFGc Gc.
GFGεc

µGc

Gεc


