Poly: a category of remarkable abundance

David I. Spivak

TOPOS

INSTITUTE

Colloquium
2021 February 04



Outline

Introduction
m Personal history
m Plan

0/32



My personal history with math

I've always believed | could understand self, life, and world with math.

m We generally share experience and knowledge in “natural language”.
m Is any of it inherently precluded from mathematical expression?

1/32



My personal history with math

I've always believed | could understand self, life, and world with math.

m We generally share experience and knowledge in “natural language”.
m Is any of it inherently precluded from mathematical expression?

When | learned CT, | thought “this is where | can say it all.”

m It's a sublanguage of math that can talk about math.
m It's clean and principled and structural and expressive.

So | got to work trying to understand self, life, and world.

1/32



My personal history with ACT

What can we say about self, life, and world?
m | first assumed everything is information and communication.
m Pretend our minds are information-storage devices.
m How do we communicate with each other and with reality?
m Understand everything in terms of databases and data migration!
m (Categories, set-valued functors, parametric right adjoints.)

2/32



My personal history with ACT

What can we say about self, life, and world?

m | first assumed everything is information and communication.
m Pretend our minds are information-storage devices.
m How do we communicate with each other and with reality?
m Understand everything in terms of databases and data migration!

m (Categories, set-valued functors, parametric right adjoints.)

m But interacting processes didn't seem to fit nicely.

m So then | assumed everything is interacting dynamical systems.
m It's machines sending each other information, all the way down.

m But should they really be wired the same way forever?
2/32



My personal history with Poly

Then one day | met Poly and fell in love.

m It captures dynamical systems and “rewiring diagrams” .
m As a category it's exceptionally well-behaved.

3/32



My personal history with Poly

Then one day | met Poly and fell in love.

m It captures dynamical systems and “rewiring diagrams” .
m As a category it's exceptionally well-behaved.

The dynamics seemed to really be all about comonoids in Poly.

m Joachim Kock pointed me to R. Garner; | found his HoTTEST talk.
m Garner explained Ahman-Uustalu’s result: “comonoids = categories”
m Garner also explained that bimodules = parametric right adjoints.

3/32



My personal history with Poly

Then one day | met Poly and fell in love.

m It captures dynamical systems and “rewiring diagrams” .
m As a category it's exceptionally well-behaved.

The dynamics seemed to really be all about comonoids in Poly.

m Joachim Kock pointed me to R. Garner; | found his HoTTEST talk.
m Garner explained Ahman-Uustalu’s result: “comonoids = categories”
m Garner also explained that bimodules = parametric right adjoints.

Suddenly everything I'd been working on for 13 years came together.

m | was overwhelmed by Poly's elegance and capacity for application.
m It is extremely computational and hands-on...
m ...while displaying excellent formal properties.

3/32



Personal history

Toward metaphysics

| use Poly to help ground my thinking about self, life, and world.
m What does it mean that | can “manipulate objects”?
m How should | think about biological reproduction?
m If it's always now, how do | perceive events that “unfold over time"?
m What is survival? If we change over time, what survives?

4/32



Personal history

Toward metaphysics

| use Poly to help ground my thinking about self, life, and world.

m What does it mean that | can “manipulate objects”?

m How should | think about biological reproduction?

m If it's always now, how do | perceive events that “unfold over time"?
m What is survival? If we change over time, what survives?

I'm happy to talk with you about these ideas off-line.

4/32



Plan for the talk

Here's the plan for today's talk
m Theory
m Define Poly and one of its monoidal structures
m Comonoids = categories, coalgebras = copresheaves, etc
m Monoids generalize operads, algebras = operad-algebras, etc

5/32



Plan for the talk

Here's the plan for today's talk
m Theory
m Define Poly and one of its monoidal structures
m Comonoids = categories, coalgebras = copresheaves, etc
m Monoids generalize operads, algebras = operad-algebras, etc

m Applications
m Dynamical systems
m Databases
m Cellular automata
m Conclusion
m Upcoming events
® Summary

5/32



Plan for the talk

Here's the plan for today's talk
m Theory
m Define Poly and one of its monoidal structures
m Comonoids = categories, coalgebras = copresheaves, etc
m Monoids generalize operads, algebras = operad-algebras, etc

m Applications
m Dynamical systems
m Databases
m Cellular automata
m Conclusion
m Upcoming events
® Summary

Think of the talk as a calling card: reach out if you want to discuss!

5/32



Outline

Theory
= (Poly, y, <)
m Comonoids in Poly
m The framed bicategory P
m Monads in P generalize operads

5/32



(Poly, y, <)

Poly for experts

What I'll call the category Poly has many names.
m The free completely distributive category on one object;
m The free coproduct completion of Set®P;

m The full subcategory of [Set, Set| spanned by functors that preserve
connected limits;

m The full subcategory of [Set, Set| spanned by coproducts of repr'bles;

6/32



(Poly, y, <)

Poly for experts

What I'll call the category Poly has many names.
m The free completely distributive category on one object;
m The free coproduct completion of Set®P;
m The full subcategory of [Set, Set| spanned by functors that preserve
connected limits;
m The full subcategory of [Set, Set| spanned by coproducts of repr'bles;
m The category of typed sets and colax maps between them.

m Objects: pairs (S, 7), where S € Set and 7: S — Set.

m Morphisms (S,7) 2 (S8',7): pairs (¢1,¢"), where

S L s’

ot
\ /
T -

Set

But let’'s make this easier.
6/32



(Poly, y, <1)

What is a polynomial?

Algebraic Bundle Corolla forest

PUPTIPEN NP B v A

(v o oo o)

7/32



(Poly, y, <)

What is a polynomial?

Algebraic Bundle Corolla forest

PO HNPIED B N A

(v o oo oo

Interpretations:

m Each corolla in p is a decision; its leaves are the options.
m Each corolla in p is a position; its leaves are directions.

7/32



(Poly, y, <)

What is a morphism of polynomials?

Let p:=y3 +2y and g :=y* + 9%+ 2

q

Vi,

A morphism p 2, g delegates each p-decision to a g-decision, passing
back options:

Lo

SR /AN V1

1 3

Example: how to think of a map z% + »® — »>2.

8/32



(Poly, y, <)

The category of polynomials

Easiest description: Poly = “sums of representables functors Set — Set" .
m For any set S, let y° := Set(S, —), the functor represented by S.
m Def: a polynomial is a sum p = Z,-e,yp[i] of representable functors.
m Def: a morphism of polynomials is a natural transformation.
[

In Poly, + is coproduct and X is product.

9/32



(Poly, y, <)

Notation

We said that a polynomial is a sum of representable functors
p Z yP["].
iel
But note that / = p(1). So we can write

p Z yP["].

iep(1)

10/32



(Poly, y, <)

Composition monoidal structure (Poly, y, <)

The composite of two polynomial functors is again polynomial.
m Let's denote the composite of p and g by p<gq.
m Example: if p:=y%, g:=y+1, then pag=y?>+2y+1.
m This is a monoidal structure, but not symmetric. (q<p = y? +1)
m The identity functor y is the unit: p<y = p = y<p.

11/32



(Poly, y, <)

Composition monoidal structure (Poly, y, <)

The composite of two polynomial functors is again polynomial.
m Let's denote the composite of p and g by p<gq.
m Example: if p:=y%, g:=y+1, then pag=y?>+2y+1.
m This is a monoidal structure, but not symmetric. (q<p = y? +1)
m The identity functor y is the unit: p<y = p = y<p.

Why the we weird symbol < rather than o?

m We want to reserve o for morphism composition.
m The notation p < g represents trees with p under q.

11/32



(Poly, y, <)

Composition given by stacking trees

Suppose p = y?> +y and g = y3 + 1.

Draw the composite p < g by stacking g-trees on top of p-trees:

p<q

VooV NV NV

You can also read it as g feeding into p, which is how composition works.

12/32



Comonoids in Poly

Comonoids in (Poly, y, <)

In any monoidal category (171, /,®), one can consider comonoids.
m A comonoid is a triple (m, €, 0) satisfying certain rules, where
m m € 11l is an object, the carrier,
m ¢: m— [ is a map, the counit, and
B 6 m— m® mis a map, the comultiplication.

In (Poly, 7, <), comonoids are exactly categories!®

!Ahman-Uustalu. See my talk, https://www.youtube.com/watch?v=2mWnrgPIrIA
13/32



Comonoids in Poly

Comonoids in (Poly, y, <)

In any monoidal category (171, /,®), one can consider comonoids.
m A comonoid is a triple (m, €, 0) satisfying certain rules, where
m m € 11l is an object, the carrier,
m ¢: m— [ is a map, the counit, and
B 6 m— m® mis a map, the comultiplication.

In (Poly, 7, <), comonoids are exactly categories!®

m If C is a category, the corresponding comonoid is

= 30

icOb(C)

where ¢[i] is the set of morphisms in C that emanate from /.
B The counit €: ¢ — y assigns to each object an identity.
m The comult §: ¢ — ¢ < ¢ assigns codomains and composites.

!Ahman-Uustalu. See my talk, https://www.youtube.com/watch?v=2mWnrgPIrIA
13/32



Comonoids in Poly

Comonoid maps are “cofunctors”

In Poly, comonoids are categories, but their morphisms aren’t functors.
m A comonoid morphism ¢: C -+ @ is called a cofunctor.
m It includes a Poly map on carriers. For each object i € ¢(1), we get:
m an object j == ¢1(i) € 9(1) and
m for each emanating f € d[j], an emanating ¢*(f) € ¢[il.

i

14/32



Comonoids in Poly

Comonoid maps are “cofunctors”

In Poly, comonoids are categories, but their morphisms aren’t functors.
m A comonoid morphism ¢: C -+ @ is called a cofunctor.
m It includes a Poly map on carriers. For each object i € ¢(1), we get:
m an object j == ¢1(i) € 9(1) and
m for each emanating f € ?[j], an emanating cp?(f) € [i].
Example: what is a cofunctor C % yN ?
m It is trivial on objects. On morphisms...
m ..it assigns an emanating morphism (1) to each object i € ¢(1).

i

14/32



Comonoids in Poly

Comonoid maps are “cofunctors”

In Poly, comonoids are categories, but their morphisms aren't functors.
m A comonoid morphism ¢: C -+ @ is called a cofunctor.
m It includes a Poly map on carriers. For each object i € ¢(1), we get:
m an object j == ¢1(i) € 9(1) and
m for each emanating f € 0[j], an emanating cp?(f) € [i].
Example: what is a cofunctor C % yN ?
m It is trivial on objects. On morphisms...
m ..it assigns an emanating morphism (1) to each object i € ¢(1).

i
“That’s not what you do with a category!”

m Cofunctors are kinda weird right? A whole new world to explore.
m A cofunctor C - y" is like a vector field on the category.
m This hints at applications, which are coming soon.

14/32



The framed bicategory P

Bicomodules in (Poly, y, <)

Given comonoids C, D, a (C,D)-bicomodule is another kind of map.

m It's a polynomial m, equipped with two maps
cdm<+— m— m<«0

each cohering naturally with the comonoid structure ¢, 4.
m | denote this (C,D)-bicomodule m like so:

m

cH2q D or C<2a D

B The <'s at the ends help me remember the how the maps go.
m Maybe it looks like it's going the wrong way, but hold on.

15/32



The framed bicategory P

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m € oModg, which we've denoted
C<2q D
can be identified with parametric right adjoint functors (prafunctors)

D-Set % C-Set.

2Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYngn6eI
16/32


https://www.youtube.com/watch?v=tW6HYnqn6eI

The framed bicategory P

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m € oModg, which we've denoted
C<2q D
can be identified with parametric right adjoint functors (prafunctors)

D-Set % C-Set.

m From this perspective the arrow points in the expected direction.
m Check: oModg = C-Set.

2Garner's HOTTEST video, https://www.youtube . com/watch?v=tW6HYnqn6el
16/32


https://www.youtube.com/watch?v=tW6HYnqn6eI

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m € oModg, which we've denoted
C<"< D
can be identified with parametric right adjoint functors (prafunctors)
D-Set s C-Set.
m From this perspective the arrow points in the expected direction.
m Check: oModj = C-Set.

Prafunctors ¢ <—— @ generalize profunctors C — @:

m A profunctor C — @ is a functor C — (-Set)°P
m A prafunctor C <— D is a functor C — Coco((D-Set)°P)...
m ...where Coco is the free coproduct completion.

I'll explain how to think about it concretely when we get to applications.

2Garner's HOTTEST video, https://www.youtube . com/watch?v=tW6HYnqn6el
16/32


https://www.youtube.com/watch?v=tW6HYnqn6eI

The framed bicategory P

Poly comonoids, cofunctors, and bicomodules form a framed bicategory P.
m It's got a ton of structure, e.g. two monoidal structures, +, ®.
m Despite the last slide, it's actually not that hard to think about.
Here are some facts about ¢Mod, for categories C,D.
m »Mody = D-Set, copresheaves on @.
» 1Mody, = Coco((D-Set)°P).
m ¢Mod, = Cat(C,1Mody).

17/32



The framed bicategory P

Poly comonoids, cofunctors, and bicomodules form a framed bicategory P.
m It's got a ton of structure, e.g. two monoidal structures, +, ®.
m Despite the last slide, it's actually not that hard to think about.
Here are some facts about ¢Mod, for categories C,D.
m »Mody = D-Set, copresheaves on @.
» 1Mody, = Coco((D-Set)°P).
m ¢Mod, = Cat(C,1Mody).

We can think about 1Modg as something like a polynomial rig in @.
m If @ = Jis discrete, it's the rig of polynomials in variables (yj)je_j.
m So ;Mod; is /-many polynomials in J variables, as in Gambino-Kock.

17/32



The framed bicategory P

Poly comonoids, cofunctors, and bicomodules form a framed bicategory P.
m It's got a ton of structure, e.g. two monoidal structures, +, ®.
m Despite the last slide, it's actually not that hard to think about.
Here are some facts about ¢Mod, for categories C,D.
m »Mody = D-Set, copresheaves on @.
» 1Mody, = Coco((D-Set)°P).
m ¢Mod, = Cat(C,1Mody).

We can think about 1Modg as something like a polynomial rig in @.
m If D = Jis discrete, it's the rig of polynomials in variables (3/) e -
m So ;Mod; is /-many polynomials in J variables, as in Gambino-Kock.
m For general D, note that y~: D — (D-Set)°P is free limit completion.
m So just generalize from sums of M-products to sums of D-limits, e.g.

y?y? + 42lim(y? LN y© £ yb) € 1Mody

(Here, f: a — c and g: b — ¢ are morphisms in D).
17/32



Monads in P generalize operads

Operads as monads in P

In any framed bicategory, notation from [P, a monad (C, m,n, 1) consists of
An object C, the type

® a bimodule C <™« C, the carrier

m a 2-cell n: idc. = m, the unit

m a 2-cell u: mo m = m, the multiplication

m satisfying the usual laws.

3Not quite the standard definition of operad, but one | like better: the input to a
morphism is a set, rather than a list of objects. You can also talk about standard

operads and generalizations within the P setting; see Gambino-Kock.
18/32



Monads in P generalize operads

Operads as monads in P

In any framed bicategory, notation from [P, a monad (C, m,n, 1) consists of

m An object C, the type

® a bimodule C <™« C, the carrier

m a 2-cell n: idc. = m, the unit

m a 2-cell yu: mo m = m, the multiplication
m satisfying the usual laws.

In P, these generalize operads in a number of ways:
m When C 22 [ is discrete, nf, uf are isos, you get colored operads.3
m Relaxing discreteness of C, the input to a morphism can be...
m ... a diagram, rather than a mere set, of objects.

m Relaxing “iso” condition, composites and ids can have “weird" arities.

3Not quite the standard definition of operad, but one | like better: the input to a
morphism is a set, rather than a list of objects. You can also talk about standard

operads and generalizations within the P setting; see Gambino-Kock.
18/32



Monads in P generalize operads

Grothendieck sites give P-monads

Every Grothendieck site (C°P, J) has an associated monad my in P.
m A J-sheaf is an mj-algebra, but not all m-algebras are J-sheaves.
m An mj-algebra has existence, but not necess'ly uniqueness for gluing.

19/32



Monads in P generalize operads

Grothendieck sites give P-monads

Every Grothendieck site (C°P, J) has an associated monad mj in P.
m A J-sheaf is an mj-algebra, but not all m-algebras are J-sheaves.
m An mj-algebra has existence, but not necess'ly uniqueness for gluing.

To each Grothendieck top'y J, we need (m,n, 1) where C << C.
m The topology J assigns to each V € C a set Jy, “covering families” ...
® ... and each F € Jy is assigned a subfunctor Sg C C[V].
m From this data we define m € Poly:
m:= Z Z ySF.
Veob(C) Fedy
The Grothendieck top'y axioms endow the bimodule and monad structure.

19/32



Grothendieck sites give P-monads

Every Grothendieck site (C°P, J) has an associated monad mj in P.
m A J-sheaf is an mj-algebra, but not all m-algebras are J-sheaves.
m An mj-algebra has existence, but not necess'ly uniqueness for gluing.

To each Grothendieck top'y J, we need (m,n, 1) where C << C.
m The topology J assigns to each V € C a set Jy, “covering families” ...
® ... and each F € Jy is assigned a subfunctor Sg C C[V].
m From this data we define m € Poly:
m:= Z Z ySF.
Veob(C) Fedy
The Grothendieck top'y axioms endow the bimodule and monad structure.

An algebra structure mo P i> P assigns C+"ge «Pao
a section hy(F,s) € Py to each V-covering Uh
family F and matching family s of sections. P

19/32



Outline

Applications
m Dynamical systems
m Databases
m Cellular automata

19/32



Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:
m aset S, elements of which are called states,
m a function r: S — B, called readout, and . £
m a function u: S x A — S, called update.

It is initialized if it is equipped also with

m an element sy € S, called the initial state.

We refer to A as the input set, B as the output set, and (A, B) as the
interface of the Moore machine.

20/32



Dynamical systems

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:
m aset S, elements of which are called states,
m a function r: S — B, called readout, and 4 £
m a function u: S x A — S, called update.

It is initialized if it is equipped also with

m an element sy € S, called the initial state.

We refer to A as the input set, B as the output set, and (A, B) as the
interface of the Moore machine.

Dynamics: an (A, B)-Moore machine (S, u,r,sp) is a “stream transducer”:
m Given a list/stream [ag, a1, ...] of A’s...
m let spr1 = u(sn, an) and b, == r(sp).
m We thus have obtained a list/stream [bg, b1, ...] of B's.

20/32



Dynamical systems

Moore machines

Definition
Given sets A, B, an (A, B)-Moore machine consists of:
m aset S, elements of which are called states,
m a function r: S — B, called readout, and . £
m a function u: S x A — S, called update.
It is initialized if it is equipped also with
m an element sy € S, called the initial state.
We refer to A as the input set, B as the output set, and (A, B) as the
interface of the Moore machine.

Dynamics: an (A, B)-Moore machine (S, u,r,sp) is a “stream transducer”:
m Given a list/stream [ag, a1, ...] of A’s...
m let spr1 = u(sn, an) and b, == r(sp).
m We thus have obtained a list/stream [bg, b1, ...] of B's.

This all works because Sy° is a comonoid.
20/32



Dynamical systems

Moore machines as maps in Poly

We can understand Moore machines “T:}# in terms of polynomials.

® An uninitialized Moore machine r: S - Band u: SxA— Sis:
m A map of polynomials Sy> — By*.
m ( is the readout and ¢ is the update.

m Add initialization by giving a map y — Sy°.

21/32



Dynamical systems

Moore machines as maps in Poly

We can understand Moore machines “T:}# in terms of polynomials.

® An uninitialized Moore machine r: S - Band u: SxA— Sis:
m A map of polynomials Sy° — By”.
m ( is the readout and ¢ is the update.

m Add initialization by giving a map y — Sy°.

A p-dynamical system allows different input-sets at different positions.

m For arbitrary p € Poly we can interpret a map ¢: Sy° — p as:
® a readout: every state s € S gets a position i == ¢1(s) € p(1)
m an update: for every direction d € pli], a next state ©i(d) € S.

m Again, add initialization by giving a map y — Sy°.

21/32



Moore machines as maps in Poly

We can understand Moore machines “T:}# in terms of polynomials.

® An uninitialized Moore machiner: S > Band u: SxA— S is:
m A map of polynomials Sy° — By”.
m ( is the readout and ¢ is the update.
m Add initialization by giving a map y — Sy°.
A p-dynamical system allows different input-sets at different positions.
m For arbitrary p € Poly we can interpret a map ¢: Sy° — p as:
® a readout: every state s € S gets a position i == ¢1(s) € p(1)
m an update: for every direction d € pli], a next state ©i(d) € S.
m Again, add initialization by giving a map y — Sy°.
Even more general: Sy® — C for any category C.
m For example, a map Sy° — p can be identified with a cofunctor...
m ... Sy° —» Cofree,,, where Cofree,, is the cofree comonoid on p.

21/32



Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

Each box represents a monomial, e.g. p3 = Cy”*E € Poly.
m The whole interaction, p; sending outputs to p> and p3, etc....
m ... is captured by a map of polynomials p: p1 ® --- ® ps — q. *
m Given the positions (outputs) of each p;, we get an output of q...
m ... and when given an input of g, each p; gets an input.

*Here p ® p’ just multiplies positions and directions,

p@p = Z yp[ilx;a’[f'lo
(i,i")ep(1)xp' (1)

22/32



Dynamical systems

More general interaction

This whole picture represents one morphism in Poly.

Change
supplier!

m Let’s suppose the company chooses who it wires to; this is its mode.
m Then both suppliers have interface wy.
m Company interface is 2y": two modes, each of which is w-input.
m The outer box is just y, i.e. a closed system.
So the picture represents a map wy ® wy Q 2y" — y.
m That's a map 2w?y" — y.
m Equivalently, it's a function 2w? — w. Take it to be evaluation.

m In other words, the company’s choice determines which w it receives.
23/32



Dynamical systems

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.

m Discrete: N, reversible: Z, real-time: R.

m If T is a monoid and S is a set, a T-action on S is equivalently...
B ... amap S x T — § satisfying two laws, which is equivalently...
]

. a cofunctor Sy° — y T, as in our general definition above.

24/32



Categorical databases

One view on databases is that they're basically just copresheaves.

Employee Worksln Department
C = Mngr C ° ¢ ? °
'_ Admin

Department.Admin.WorksIn = idpepartment

A functor /: C — Set (i.e. C g 0) can be represented as follows:

Employee || Worksin Mngr
‘ ‘ 101 ‘

101
102

25 /32



Categorical databases

One view on databases is that they're basically just copresheaves.

Employee WorkslIn Department
— Admin

Department.Admin.WorksIn = idpepartment

A functor /: C — Set (i.e. C <—— 0) can be represented as follows:

Employee || Worksin | Mngr Department Secr
101 102 3

H 101 101 1

102

But where's the data? What are the employees names, etc.?

25 /32



Categorical databases

One view on databases is that they're basically just copresheaves.

Employee WorkslIn Department
— Admin

Department.Admin.WorksIn = idpepartment

More realistically, data should include attributes and look like this:

Employee || FName | Worksin | Mngr Department || DName Secr
Alan 101 2 101 Sales
Ruth 101 2 102
Sara 102 3

25 /32



Categorical databases

One view on databases is that they're basically just copresheaves.

Employee Worksln Department
C = Mngr C ° ¢ ? °
‘_ Admin

Department.Admin.WorksIn = idpepartment

More realistically, data should include attributes and look like this:

Employee || FName | Worksin | Mngr Department || DName Secr
Alan 101 2 101 Sales
Ruth 101 2 102
Sara 102 3

[ Assign a copresheaf T: Ob(C) — Set, e.g. T(Employee) = String.
m Using the canonical cofunctor C - Ob(C), attributes are given by a:

el g0

Lot
Ob(@)q?qo

25 /32



Data migration

The framed bicategory structure of P is very useful in databases.

m We hinted at this in the last slide, adding attributes via a cofunctor.
m But so-called data migration functors are precisely prafunctors.

26 /32



Data migration

The framed bicategory structure of P is very useful in databases.

m We hinted at this in the last slide, adding attributes via a cofunctor.
m But so-called data migration functors are precisely prafunctors.

A prafunctor C <P q Din ¢Mody can be understood as follows.

m First, it's a functor C — {Modg, so what's that?
m We said it's a formal coproduct of formal limits in @.
m A formal limit in @ is called a conjunctive query on @.

So a prafunctor 1 24 @ is a disjoint union of conjunctive queries.
Let's call @ a duc-query on @.

26 /32



Data migration

The framed bicategory structure of P is very useful in databases.

m We hinted at this in the last slide, adding attributes via a cofunctor.
m But so-called data migration functors are precisely prafunctors.

A prafunctor C <P 9 Din c¢Mody can be understood as follows.
m First, it's a functor C — {Modg, so what's that?
m We said it's a formal coproduct of formal limits in @.
m A formal limit in @ is called a conjunctive query on @.

m So a prafunctor 1 24 @ is a disjoint union of conjunctive queries.
Let's call @ a duc-query on @.

City in State in County>
o — [ ‘— [ J

Example: if © = < , a duc-query might be...

(City X stateCity) + (CityXstateCounty) + (CountyXstateCounty)

A general bimodule P € oMod is a C-indexed duc-query on .
26 /32



Cellular automata

Cellular automata

The last thing we'll discuss today is cellular automata.
m Here's a picture of a glider from Conway's Game of Life:

27 /32



Cellular automata

Cellular automata

The last thing we'll discuss today is cellular automata.
m Here's a picture of a glider from Conway's Game of Life:

m Gol takes place on a grid, a set V :=7Z x Z of “squares”
m Each square has neighbors; think of the grid as a graph A = V.
m Each square can be in one of two states: white or black.

27 /32



Cellular automata

Cellular automata

The last thing we'll discuss today is cellular automata.
m Here's a picture of a glider from Conway's Game of Life:

m Gol takes place on a grid, a set V :=7Z x Z of “squares”
m Each square has neighbors; think of the grid as a graph A = V.
m Each square can be in one of two states: white or black.
m The state at any square is updated according to a formula, e.g.
If the square is B and has 2 or 3 B neighbors, it stays B
If the square is [J and has 3 B neighbors, it turns B
Otherwise it turns / remains [J.

27 /32



Cellular automata

Cellular automata as algebras in P

How do we encode this in P?

m We encode the graph A = V as a prafunctor Vy << Vy
m Each v € V queries its neighbors (and itself).
m The carrier of the prafunctor for Gol is g := V°.

28/32



Cellular automata

Cellular automata as algebras in P

How do we encode this in P?
m We encode the graph A = V as a prafunctor Vy £ 4 Vy
m Each v € V queries its neighbors (and itself).
m The carrier of the prafunctor for GoL is g := V/°.
m We encode the color-set for each node as a prafunctor Vy <£90
m In Gol, each v € V gets the set 2; i.e. C:=2V.
m We encode the update formula as a map v of prafunctors
Vy 5 Vy < 0
ﬂu

C

28/32



Cellular automata

Cellular automata as algebras in P

How do we encode this in P?
m We encode the graph A = V as a prafunctor Vy 4 Vy

m Each v € V queries its neighbors (and itself).
m The carrier of the prafunctor for Gol is g := V#°.

m We encode the color-set for each node as a prafunctor Vy <£a0
m In Gol, each v € V gets the set 2; i.e. C:=2V.
m We encode the update formula as a map v of prafunctors
m And we encode the initial color setup as a point V — C:
v

a

Vy < Vy <}4442;44«ﬂ 0
ﬂu
C

From here you can iteratively “run” the cellular automaton.
28/32



Outline

A Conclusion
m Future outlook
m Summary

28/32



Future outlook

Future work

Our society is engaging in many unhealthy behaviors.

m We need to understand what healthy behavior is.
m What activities are necessary for survival?
m How should we communicate so that what needs to happen does?

29/32



Future outlook

Future work

Our society is engaging in many unhealthy behaviors.

m We need to understand what healthy behavior is.
m What activities are necessary for survival?
m How should we communicate so that what needs to happen does?

We can think about them mathematically and apply our results.

m If we make philosophical/mathematical progress, we can echo it in tech
m If we make technological progress, people will take it up.
m If people use healthier tech systems, it might help.

29/32



Future outlook

Future work

Our society is engaging in many unhealthy behaviors.

m We need to understand what healthy behavior is.
m What activities are necessary for survival?
m How should we communicate so that what needs to happen does?

We can think about them mathematically and apply our results.

m If we make philosophical/mathematical progress, we can echo it in tech
m If we make technological progress, people will take it up.
m If people use healthier tech systems, it might help.

It is as promising a direction as anything | know of.

29/32



Workshop on polynomial functors in March

Joachim Kock and | are organizing a Poly workshop.®
m Dates: March 15 - 19

m Speakers:
Thorsten Altenkirch Steve Awodey
Michael Batanin Bryce Clarke
Marcelo Fiore Richard Garner
David Gepner Helle Hvid Hansen
Rune Haugseng Bart Jacobs
André Joyal Fredrik Nordvall-Forsberg
Kristina Sojakova David Spivak
Ross Street Tarmo Uustalu

*https://topos.site/p-func-2021-workshop/
30/32


https://topos.site/p-func-2021-workshop/

Future outlook

Future Topos Institute colloquia

This is the first of a series of Topos Institute colloquia.
m More info here: https://topos.site/seminars/
m Next few speakers
m Richard Garner
m Gunnar Carlsson
m Samson Abramsky

Please join us!

31/32


https://topos.site/seminars/

Summary

Poly is a category of remarkable abundance.
m It's completely combinatorial.
m Calculations are concrete.
m Much is already familiar, e.g. (y + 1) = y? + 2y + 1.
m It's theoretically beautiful.
m Comonoids are categories, coalgebras are copresheaves.
m Monoids generalize operads.
m It's got a wide scope of applicatons.
m Databases and data migration.
m Dynamical systems and cellular automata.

A single setting for pursuing real philosophical and technological progress.

Thanks! Questions and comments welcome.

32/32



	Introduction
	Personal history
	Plan

	Theory
	(,y,)
	Comonoids in 
	The framed bicategory P
	Monads in P generalize operads

	Applications
	Dynamical systems
	Databases
	Cellular automata

	Conclusion
	Future outlook
	Summary


