
Poly: a category of remarkable abundance

David I. Spivak

February 4, 2021

Colloquium
2021 February 04

Introduction

Outline

1 Introduction
Personal history
Plan

2 Theory

3 Applications

4 Conclusion

0 / 32

Introduction Personal history

My personal history with math

I’ve always believed I could understand self, life, and world with math.

We generally share experience and knowledge in “natural language”.

Is any of it inherently precluded from mathematical expression?

When I learned CT, I thought “this is where I can say it all.”

It’s a sublanguage of math that can talk about math.

It’s clean and principled and structural and expressive.

So I got to work trying to understand self, life, and world.

1 / 32

Introduction Personal history

My personal history with math

I’ve always believed I could understand self, life, and world with math.

We generally share experience and knowledge in “natural language”.

Is any of it inherently precluded from mathematical expression?

When I learned CT, I thought “this is where I can say it all.”

It’s a sublanguage of math that can talk about math.

It’s clean and principled and structural and expressive.

So I got to work trying to understand self, life, and world.

1 / 32

Introduction Personal history

My personal history with ACT

What can we say about self, life, and world?

I first assumed everything is information and communication.

Pretend our minds are information-storage devices.

How do we communicate with each other and with reality?

Understand everything in terms of databases and data migration!

(Categories, set-valued functors, parametric right adjoints.)

But interacting processes didn’t seem to fit nicely.

So then I assumed everything is interacting dynamical systems.

It’s machines sending each other information, all the way down.

X1

X2

X3

X4

X5

But should they really be wired the same way forever?

2 / 32

Introduction Personal history

My personal history with ACT

What can we say about self, life, and world?

I first assumed everything is information and communication.

Pretend our minds are information-storage devices.

How do we communicate with each other and with reality?

Understand everything in terms of databases and data migration!

(Categories, set-valued functors, parametric right adjoints.)

But interacting processes didn’t seem to fit nicely.

So then I assumed everything is interacting dynamical systems.

It’s machines sending each other information, all the way down.

X1

X2

X3

X4

X5

But should they really be wired the same way forever?
2 / 32

Introduction Personal history

My personal history with Poly

Then one day I met Poly and fell in love.

It captures dynamical systems and “rewiring diagrams”.

As a category it’s exceptionally well-behaved.

The dynamics seemed to really be all about comonoids in Poly.

Joachim Kock pointed me to R. Garner; I found his HoTTEST talk.

Garner explained Ahman-Uustalu’s result: “comonoids = categories”

Garner also explained that bimodules = parametric right adjoints.

Suddenly everything I’d been working on for 13 years came together.

I was overwhelmed by Poly’s elegance and capacity for application.

It is extremely computational and hands-on...

...while displaying excellent formal properties.

3 / 32

Introduction Personal history

My personal history with Poly

Then one day I met Poly and fell in love.

It captures dynamical systems and “rewiring diagrams”.

As a category it’s exceptionally well-behaved.

The dynamics seemed to really be all about comonoids in Poly.

Joachim Kock pointed me to R. Garner; I found his HoTTEST talk.

Garner explained Ahman-Uustalu’s result: “comonoids = categories”

Garner also explained that bimodules = parametric right adjoints.

Suddenly everything I’d been working on for 13 years came together.

I was overwhelmed by Poly’s elegance and capacity for application.

It is extremely computational and hands-on...

...while displaying excellent formal properties.

3 / 32

Introduction Personal history

My personal history with Poly

Then one day I met Poly and fell in love.

It captures dynamical systems and “rewiring diagrams”.

As a category it’s exceptionally well-behaved.

The dynamics seemed to really be all about comonoids in Poly.

Joachim Kock pointed me to R. Garner; I found his HoTTEST talk.

Garner explained Ahman-Uustalu’s result: “comonoids = categories”

Garner also explained that bimodules = parametric right adjoints.

Suddenly everything I’d been working on for 13 years came together.

I was overwhelmed by Poly’s elegance and capacity for application.

It is extremely computational and hands-on...

...while displaying excellent formal properties.

3 / 32

Introduction Personal history

Toward metaphysics

I use Poly to help ground my thinking about self, life, and world.

What does it mean that I can “manipulate objects”?

How should I think about biological reproduction?

If it’s always now, how do I perceive events that “unfold over time”?

What is survival? If we change over time, what survives?

I’m happy to talk with you about these ideas off-line.

4 / 32

Introduction Personal history

Toward metaphysics

I use Poly to help ground my thinking about self, life, and world.

What does it mean that I can “manipulate objects”?

How should I think about biological reproduction?

If it’s always now, how do I perceive events that “unfold over time”?

What is survival? If we change over time, what survives?

I’m happy to talk with you about these ideas off-line.

4 / 32

Introduction Plan

Plan for the talk

Here’s the plan for today’s talk

Theory

Define Poly and one of its monoidal structures

Comonoids = categories, coalgebras = copresheaves, etc

Monoids generalize operads, algebras = operad-algebras, etc

Applications

Dynamical systems

Databases

Cellular automata

Conclusion

Upcoming events

Summary

Think of the talk as a calling card: reach out if you want to discuss!

5 / 32

Introduction Plan

Plan for the talk

Here’s the plan for today’s talk

Theory

Define Poly and one of its monoidal structures

Comonoids = categories, coalgebras = copresheaves, etc

Monoids generalize operads, algebras = operad-algebras, etc

Applications

Dynamical systems

Databases

Cellular automata

Conclusion

Upcoming events

Summary

Think of the talk as a calling card: reach out if you want to discuss!

5 / 32

Introduction Plan

Plan for the talk

Here’s the plan for today’s talk

Theory

Define Poly and one of its monoidal structures

Comonoids = categories, coalgebras = copresheaves, etc

Monoids generalize operads, algebras = operad-algebras, etc

Applications

Dynamical systems

Databases

Cellular automata

Conclusion

Upcoming events

Summary

Think of the talk as a calling card: reach out if you want to discuss!

5 / 32

Theory

Outline

1 Introduction

2 Theory
(Poly, y, /)
Comonoids in Poly
The framed bicategory P
Monads in P generalize operads

3 Applications

4 Conclusion

5 / 32

Theory (Poly, y, /)

Poly for experts

What I’ll call the category Poly has many names.

The free completely distributive category on one object;

The free coproduct completion of Setop;

The full subcategory of [Set,Set] spanned by functors that preserve
connected limits;

The full subcategory of [Set,Set] spanned by coproducts of repr’bles;

The category of typed sets and colax maps between them.

Objects: pairs (S , τ), where S ∈ Set and τ : S → Set.

Morphisms (S , τ)
ϕ−→ (S ′, τ ′): pairs (ϕ1, ϕ

]), where

S S ′

Set

τ

ϕ1

τ ′

ϕ]

But let’s make this easier.

6 / 32

Theory (Poly, y, /)

Poly for experts

What I’ll call the category Poly has many names.

The free completely distributive category on one object;

The free coproduct completion of Setop;

The full subcategory of [Set,Set] spanned by functors that preserve
connected limits;

The full subcategory of [Set,Set] spanned by coproducts of repr’bles;

The category of typed sets and colax maps between them.

Objects: pairs (S , τ), where S ∈ Set and τ : S → Set.

Morphisms (S , τ)
ϕ−→ (S ′, τ ′): pairs (ϕ1, ϕ

]), where

S S ′

Set

τ

ϕ1

τ ′

ϕ]

But let’s make this easier.
6 / 32

Theory (Poly, y, /)

What is a polynomial?

Algebraic Bundle Corolla forest

y2 + 3y + 2

•

•
•

•

•

•

•

•

•

• •
π • • • • • •

Interpretations:

Each corolla in p is a decision; its leaves are the options.

Each corolla in p is a position; its leaves are directions.

7 / 32

Theory (Poly, y, /)

What is a polynomial?

Algebraic Bundle Corolla forest

y2 + 3y + 2

•

•
•

•

•

•

•

•

•

• •
π • • • • • •

Interpretations:

Each corolla in p is a decision; its leaves are the options.

Each corolla in p is a position; its leaves are directions.

7 / 32

Theory (Poly, y, /)

What is a morphism of polynomials?

Let p := y3 + 2y and q := y4 + y2 + 2

•
1
•
2
•
3

p

•
1
•
2
•
3
•
4

q

A morphism p
ϕ−→ q delegates each p-decision to a q-decision, passing

back options:

•
1

•
1

•
2

•
1

•
3

•
4

Example: how to think of a map y2 + y6 → y52.

8 / 32

Theory (Poly, y, /)

The category of polynomials

Easiest description: Poly = “sums of representables functors Set→ Set”.

For any set S , let yS := Set(S ,−), the functor represented by S .

Def: a polynomial is a sum p =
∑

i∈I y
p[i] of representable functors.

Def: a morphism of polynomials is a natural transformation.

In Poly, + is coproduct and × is product.

9 / 32

Theory (Poly, y, /)

Notation

We said that a polynomial is a sum of representable functors

p ∼=
∑
i∈I

yp[i].

But note that I ∼= p(1). So we can write

p ∼=
∑

i∈p(1)

yp[i].

10 / 32

Theory (Poly, y, /)

Composition monoidal structure (Poly, y, /)

The composite of two polynomial functors is again polynomial.

Let’s denote the composite of p and q by p / q.

Example: if p := y2, q := y + 1, then p / q ∼= y2 + 2y + 1.

This is a monoidal structure, but not symmetric. (q / p ∼= y2 + 1)

The identity functor y is the unit: p / y ∼= p ∼= y / p.

Why the we weird symbol / rather than ◦?
We want to reserve ◦ for morphism composition.

The notation p / q represents trees with p under q.

11 / 32

Theory (Poly, y, /)

Composition monoidal structure (Poly, y, /)

The composite of two polynomial functors is again polynomial.

Let’s denote the composite of p and q by p / q.

Example: if p := y2, q := y + 1, then p / q ∼= y2 + 2y + 1.

This is a monoidal structure, but not symmetric. (q / p ∼= y2 + 1)

The identity functor y is the unit: p / y ∼= p ∼= y / p.

Why the we weird symbol / rather than ◦?
We want to reserve ◦ for morphism composition.

The notation p / q represents trees with p under q.

11 / 32

Theory (Poly, y, /)

Composition given by stacking trees

Suppose p := y2 + y and q := y3 + 1.

•
1
•
2

p

•
1
•
2

q

Draw the composite p / q by stacking q-trees on top of p-trees:

•
• •

•
• •

•
• •

•
• •

•
•

•
•

p / q

You can also read it as q feeding into p, which is how composition works.

12 / 32

Theory Comonoids in Poly

Comonoids in (Poly, y, /)

In any monoidal category (M, I ,⊗), one can consider comonoids.

A comonoid is a triple (m, ε, δ) satisfying certain rules, where

m ∈M is an object, the carrier,

ε : m→ I is a map, the counit, and

δ : m→ m ⊗m is a map, the comultiplication.

In (Poly, y, /), comonoids are exactly categories!1

If C is a category, the corresponding comonoid is

c :=
∑

i∈Ob(C)

yc[i]

where c[i] is the set of morphisms in C that emanate from i .

The counit ε : c→ y assigns to each object an identity.

The comult δ : c→ c / c assigns codomains and composites.

1Ahman-Uustalu. See my talk, https://www.youtube.com/watch?v=2mWnrgPIrlA
13 / 32

Theory Comonoids in Poly

Comonoids in (Poly, y, /)

In any monoidal category (M, I ,⊗), one can consider comonoids.

A comonoid is a triple (m, ε, δ) satisfying certain rules, where

m ∈M is an object, the carrier,

ε : m→ I is a map, the counit, and

δ : m→ m ⊗m is a map, the comultiplication.

In (Poly, y, /), comonoids are exactly categories!1

If C is a category, the corresponding comonoid is

c :=
∑

i∈Ob(C)

yc[i]

where c[i] is the set of morphisms in C that emanate from i .

The counit ε : c→ y assigns to each object an identity.

The comult δ : c→ c / c assigns codomains and composites.
1Ahman-Uustalu. See my talk, https://www.youtube.com/watch?v=2mWnrgPIrlA

13 / 32

Theory Comonoids in Poly

Comonoid maps are “cofunctors”

In Poly, comonoids are categories, but their morphisms aren’t functors.

A comonoid morphism ϕ : C 9 D is called a cofunctor.

It includes a Poly map on carriers. For each object i ∈ c(1), we get:

an object j := ϕ1(i) ∈ d(1) and

for each emanating f ∈ d[j], an emanating ϕ]i (f) ∈ c[i].

Example: what is a cofunctor C
ϕ9 yN ?

It is trivial on objects. On morphisms...

...it assigns an emanating morphism ϕ]i (1) to each object i ∈ c(1).

“That’s not what you do with a category!”

Cofunctors are kinda weird right? A whole new world to explore.

A cofunctor C 9 yN is like a vector field on the category.

This hints at applications, which are coming soon.

14 / 32

Theory Comonoids in Poly

Comonoid maps are “cofunctors”

In Poly, comonoids are categories, but their morphisms aren’t functors.

A comonoid morphism ϕ : C 9 D is called a cofunctor.

It includes a Poly map on carriers. For each object i ∈ c(1), we get:

an object j := ϕ1(i) ∈ d(1) and

for each emanating f ∈ d[j], an emanating ϕ]i (f) ∈ c[i].

Example: what is a cofunctor C
ϕ9 yN ?

It is trivial on objects. On morphisms...

...it assigns an emanating morphism ϕ]i (1) to each object i ∈ c(1).

“That’s not what you do with a category!”

Cofunctors are kinda weird right? A whole new world to explore.

A cofunctor C 9 yN is like a vector field on the category.

This hints at applications, which are coming soon.

14 / 32

Theory Comonoids in Poly

Comonoid maps are “cofunctors”

In Poly, comonoids are categories, but their morphisms aren’t functors.

A comonoid morphism ϕ : C 9 D is called a cofunctor.

It includes a Poly map on carriers. For each object i ∈ c(1), we get:

an object j := ϕ1(i) ∈ d(1) and

for each emanating f ∈ d[j], an emanating ϕ]i (f) ∈ c[i].

Example: what is a cofunctor C
ϕ9 yN ?

It is trivial on objects. On morphisms...

...it assigns an emanating morphism ϕ]i (1) to each object i ∈ c(1).

“That’s not what you do with a category!”

Cofunctors are kinda weird right? A whole new world to explore.

A cofunctor C 9 yN is like a vector field on the category.

This hints at applications, which are coming soon.

14 / 32

Theory The framed bicategory P

Bicomodules in (Poly, y, /)

Given comonoids C,D, a (C,D)-bicomodule is another kind of map.

It’s a polynomial m, equipped with two maps

c /m←− m −→ m / d

each cohering naturally with the comonoid structure ε, δ.

I denote this (C,D)-bicomodule m like so:

c

.

/m d or C

.

/m
D

The /’s at the ends help me remember the how the maps go.

Maybe it looks like it’s going the wrong way, but hold on.

15 / 32

Theory The framed bicategory P

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m ∈ CModD, which we’ve denoted

C

. /m
D

can be identified with parametric right adjoint functors (prafunctors)

D-Set
M−→ C-Set.

From this perspective the arrow points in the expected direction.

Check: CMod0
∼= C-Set.

Prafunctors C

. / D generalize profunctors C D:

A profunctor C D is a functor C → (D-Set)op

A prafunctor C . / D is a functor C → Coco
(
(D-Set)op

)
...

...where Coco is the free coproduct completion.

I’ll explain how to think about it concretely when we get to applications.

2Garner’s HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI
16 / 32

https://www.youtube.com/watch?v=tW6HYnqn6eI

Theory The framed bicategory P

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m ∈ CModD, which we’ve denoted

C

. /m
D

can be identified with parametric right adjoint functors (prafunctors)

D-Set
M−→ C-Set.

From this perspective the arrow points in the expected direction.

Check: CMod0
∼= C-Set.

Prafunctors C

. / D generalize profunctors C D:

A profunctor C D is a functor C → (D-Set)op

A prafunctor C . / D is a functor C → Coco
(
(D-Set)op

)
...

...where Coco is the free coproduct completion.

I’ll explain how to think about it concretely when we get to applications.

2Garner’s HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI
16 / 32

https://www.youtube.com/watch?v=tW6HYnqn6eI

Theory The framed bicategory P

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m ∈ CModD, which we’ve denoted

C

. /m
D

can be identified with parametric right adjoint functors (prafunctors)

D-Set
M−→ C-Set.

From this perspective the arrow points in the expected direction.

Check: CMod0
∼= C-Set.

Prafunctors C

. / D generalize profunctors C D:

A profunctor C D is a functor C → (D-Set)op

A prafunctor C . / D is a functor C → Coco
(
(D-Set)op

)
...

...where Coco is the free coproduct completion.

I’ll explain how to think about it concretely when we get to applications.

2Garner’s HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI
16 / 32

https://www.youtube.com/watch?v=tW6HYnqn6eI

Theory The framed bicategory P

The framed bicategory P
Poly comonoids, cofunctors, and bicomodules form a framed bicategory P.

It’s got a ton of structure, e.g. two monoidal structures, +,⊗.

Despite the last slide, it’s actually not that hard to think about.

Here are some facts about CModD for categories C,D.

DMod0
∼= D-Set, copresheaves on D.

1ModD
∼= Coco

(
(D-Set)op

)
.

CModD
∼= Cat(C, 1ModD).

We can think about 1ModD as something like a polynomial rig in D.

If D = J is discrete, it’s the rig of polynomials in variables (yj)j∈J .

So IModJ is I -many polynomials in J variables, as in Gambino-Kock.

For general D, note that y− : D → (D-Set)op is free limit completion.

So just generalize from sums of D-products to sums of D-limits, e.g.

yaya + 42 lim(ya
f−→ yc

g←− yb) ∈ 1ModD

(Here, f : a→ c and g : b → c are morphisms in D).

17 / 32

Theory The framed bicategory P

The framed bicategory P
Poly comonoids, cofunctors, and bicomodules form a framed bicategory P.

It’s got a ton of structure, e.g. two monoidal structures, +,⊗.

Despite the last slide, it’s actually not that hard to think about.

Here are some facts about CModD for categories C,D.

DMod0
∼= D-Set, copresheaves on D.

1ModD
∼= Coco

(
(D-Set)op

)
.

CModD
∼= Cat(C, 1ModD).

We can think about 1ModD as something like a polynomial rig in D.

If D = J is discrete, it’s the rig of polynomials in variables (yj)j∈J .

So IModJ is I -many polynomials in J variables, as in Gambino-Kock.

For general D, note that y− : D → (D-Set)op is free limit completion.

So just generalize from sums of D-products to sums of D-limits, e.g.

yaya + 42 lim(ya
f−→ yc

g←− yb) ∈ 1ModD

(Here, f : a→ c and g : b → c are morphisms in D).

17 / 32

Theory The framed bicategory P

The framed bicategory P
Poly comonoids, cofunctors, and bicomodules form a framed bicategory P.

It’s got a ton of structure, e.g. two monoidal structures, +,⊗.

Despite the last slide, it’s actually not that hard to think about.

Here are some facts about CModD for categories C,D.

DMod0
∼= D-Set, copresheaves on D.

1ModD
∼= Coco

(
(D-Set)op

)
.

CModD
∼= Cat(C, 1ModD).

We can think about 1ModD as something like a polynomial rig in D.

If D = J is discrete, it’s the rig of polynomials in variables (yj)j∈J .

So IModJ is I -many polynomials in J variables, as in Gambino-Kock.

For general D, note that y− : D → (D-Set)op is free limit completion.

So just generalize from sums of D-products to sums of D-limits, e.g.

yaya + 42 lim(ya
f−→ yc

g←− yb) ∈ 1ModD

(Here, f : a→ c and g : b → c are morphisms in D).
17 / 32

Theory Monads in P generalize operads

Operads as monads in P

In any framed bicategory, notation from P, a monad (C,m, η, µ) consists of

An object C, the type

a bimodule C

. /m
C, the carrier

a 2-cell η : idc ⇒ m, the unit

a 2-cell µ : m ◦m⇒ m, the multiplication

satisfying the usual laws.

In P, these generalize operads in a number of ways:

When C ∼= I is discrete, η], µ] are isos, you get colored operads.3

Relaxing discreteness of C, the input to a morphism can be...

... a diagram, rather than a mere set, of objects.

Relaxing “iso” condition, composites and ids can have “weird” arities.

3Not quite the standard definition of operad, but one I like better: the input to a
morphism is a set, rather than a list of objects. You can also talk about standard
operads and generalizations within the P setting; see Gambino-Kock.

18 / 32

Theory Monads in P generalize operads

Operads as monads in P

In any framed bicategory, notation from P, a monad (C,m, η, µ) consists of

An object C, the type

a bimodule C

. /m
C, the carrier

a 2-cell η : idc ⇒ m, the unit

a 2-cell µ : m ◦m⇒ m, the multiplication

satisfying the usual laws.

In P, these generalize operads in a number of ways:

When C ∼= I is discrete, η], µ] are isos, you get colored operads.3

Relaxing discreteness of C, the input to a morphism can be...

... a diagram, rather than a mere set, of objects.

Relaxing “iso” condition, composites and ids can have “weird” arities.

3Not quite the standard definition of operad, but one I like better: the input to a
morphism is a set, rather than a list of objects. You can also talk about standard
operads and generalizations within the P setting; see Gambino-Kock.

18 / 32

Theory Monads in P generalize operads

Grothendieck sites give P-monads

Every Grothendieck site (Cop, J) has an associated monad mJ in P.

A J-sheaf is an mJ -algebra, but not all mJ -algebras are J-sheaves.

An mJ -algebra has existence, but not necess’ly uniqueness for gluing.

To each Grothendieck top’y J, we need (m, η, µ) where C

. /m
C.

The topology J assigns to each V ∈ C a set JV , “covering families”...

... and each F ∈ JV is assigned a subfunctor SF ⊆ C[V].

From this data we define m ∈ Poly:

m :=
∑

V∈Ob(C)

∑
F∈JV

ySF .

The Grothendieck top’y axioms endow the bimodule and monad structure.

An algebra structure m ◦ P h−→ P assigns
a section hV (F , s) ∈ PV to each V -covering
family F and matching family s of sections.

C C 0. /m

. /

P

. /P

h

19 / 32

Theory Monads in P generalize operads

Grothendieck sites give P-monads

Every Grothendieck site (Cop, J) has an associated monad mJ in P.

A J-sheaf is an mJ -algebra, but not all mJ -algebras are J-sheaves.

An mJ -algebra has existence, but not necess’ly uniqueness for gluing.

To each Grothendieck top’y J, we need (m, η, µ) where C

. /m
C.

The topology J assigns to each V ∈ C a set JV , “covering families”...

... and each F ∈ JV is assigned a subfunctor SF ⊆ C[V].

From this data we define m ∈ Poly:

m :=
∑

V∈Ob(C)

∑
F∈JV

ySF .

The Grothendieck top’y axioms endow the bimodule and monad structure.

An algebra structure m ◦ P h−→ P assigns
a section hV (F , s) ∈ PV to each V -covering
family F and matching family s of sections.

C C 0. /m

. /

P

. /P

h

19 / 32

Theory Monads in P generalize operads

Grothendieck sites give P-monads

Every Grothendieck site (Cop, J) has an associated monad mJ in P.

A J-sheaf is an mJ -algebra, but not all mJ -algebras are J-sheaves.

An mJ -algebra has existence, but not necess’ly uniqueness for gluing.

To each Grothendieck top’y J, we need (m, η, µ) where C

. /m
C.

The topology J assigns to each V ∈ C a set JV , “covering families”...

... and each F ∈ JV is assigned a subfunctor SF ⊆ C[V].

From this data we define m ∈ Poly:

m :=
∑

V∈Ob(C)

∑
F∈JV

ySF .

The Grothendieck top’y axioms endow the bimodule and monad structure.

An algebra structure m ◦ P h−→ P assigns
a section hV (F , s) ∈ PV to each V -covering
family F and matching family s of sections.

C C 0. /m

. /

P

. /P

h

19 / 32

Applications

Outline

1 Introduction

2 Theory

3 Applications
Dynamical systems
Databases
Cellular automata

4 Conclusion

19 / 32

Applications Dynamical systems

Moore machines

Definition

Given sets A,B, an (A,B)-Moore machine consists of:

a set S , elements of which are called states,
a function r : S → B, called readout, and
a function u : S × A→ S , called update.

S
A B

It is initialized if it is equipped also with

an element s0 ∈ S , called the initial state.

We refer to A as the input set, B as the output set, and (A,B) as the
interface of the Moore machine.

Dynamics: an (A,B)-Moore machine (S , u, r , s0) is a “stream transducer”:

Given a list/stream [a0, a1, . . .] of A’s...

let sn+1 := u(sn, an) and bn := r(sn).

We thus have obtained a list/stream [b0, b1, . . .] of B’s.

This all works because SyS is a comonoid.

20 / 32

Applications Dynamical systems

Moore machines

Definition

Given sets A,B, an (A,B)-Moore machine consists of:

a set S , elements of which are called states,
a function r : S → B, called readout, and
a function u : S × A→ S , called update.

S
A B

It is initialized if it is equipped also with

an element s0 ∈ S , called the initial state.

We refer to A as the input set, B as the output set, and (A,B) as the
interface of the Moore machine.

Dynamics: an (A,B)-Moore machine (S , u, r , s0) is a “stream transducer”:

Given a list/stream [a0, a1, . . .] of A’s...

let sn+1 := u(sn, an) and bn := r(sn).

We thus have obtained a list/stream [b0, b1, . . .] of B’s.

This all works because SyS is a comonoid.

20 / 32

Applications Dynamical systems

Moore machines

Definition

Given sets A,B, an (A,B)-Moore machine consists of:

a set S , elements of which are called states,
a function r : S → B, called readout, and
a function u : S × A→ S , called update.

S
A B

It is initialized if it is equipped also with

an element s0 ∈ S , called the initial state.

We refer to A as the input set, B as the output set, and (A,B) as the
interface of the Moore machine.

Dynamics: an (A,B)-Moore machine (S , u, r , s0) is a “stream transducer”:

Given a list/stream [a0, a1, . . .] of A’s...

let sn+1 := u(sn, an) and bn := r(sn).

We thus have obtained a list/stream [b0, b1, . . .] of B’s.

This all works because SyS is a comonoid.
20 / 32

Applications Dynamical systems

Moore machines as maps in Poly

We can understand Moore machines SA B in terms of polynomials.

An uninitialized Moore machine r : S → B and u : S × A→ S is:

A map of polynomials SyS → ByA.
ϕ1 is the readout and ϕ] is the update.

Add initialization by giving a map y→ SyS .

A p-dynamical system allows different input-sets at different positions.

For arbitrary p ∈ Poly we can interpret a map ϕ : SyS → p as:

a readout: every state s ∈ S gets a position i := ϕ1(s) ∈ p(1)

an update: for every direction d ∈ p[i], a next state ϕ]s(d) ∈ S .

Again, add initialization by giving a map y→ SyS .

Even more general: SyS 9 C for any category C.

For example, a map SyS → p can be identified with a cofunctor...

... SyS 9 Cofreep,, where Cofreep is the cofree comonoid on p.

21 / 32

Applications Dynamical systems

Moore machines as maps in Poly

We can understand Moore machines SA B in terms of polynomials.

An uninitialized Moore machine r : S → B and u : S × A→ S is:

A map of polynomials SyS → ByA.
ϕ1 is the readout and ϕ] is the update.

Add initialization by giving a map y→ SyS .

A p-dynamical system allows different input-sets at different positions.

For arbitrary p ∈ Poly we can interpret a map ϕ : SyS → p as:

a readout: every state s ∈ S gets a position i := ϕ1(s) ∈ p(1)

an update: for every direction d ∈ p[i], a next state ϕ]s(d) ∈ S .

Again, add initialization by giving a map y→ SyS .

Even more general: SyS 9 C for any category C.

For example, a map SyS → p can be identified with a cofunctor...

... SyS 9 Cofreep,, where Cofreep is the cofree comonoid on p.

21 / 32

Applications Dynamical systems

Moore machines as maps in Poly

We can understand Moore machines SA B in terms of polynomials.

An uninitialized Moore machine r : S → B and u : S × A→ S is:

A map of polynomials SyS → ByA.
ϕ1 is the readout and ϕ] is the update.

Add initialization by giving a map y→ SyS .

A p-dynamical system allows different input-sets at different positions.

For arbitrary p ∈ Poly we can interpret a map ϕ : SyS → p as:

a readout: every state s ∈ S gets a position i := ϕ1(s) ∈ p(1)

an update: for every direction d ∈ p[i], a next state ϕ]s(d) ∈ S .

Again, add initialization by giving a map y→ SyS .

Even more general: SyS 9 C for any category C.

For example, a map SyS → p can be identified with a cofunctor...

... SyS 9 Cofreep,, where Cofreep is the cofree comonoid on p.

21 / 32

Applications Dynamical systems

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

p1

p2

p3

p4

p5

q

A

B

C

(ϕ)

Each box represents a monomial, e.g. p3 = CyAB ∈ Poly.

The whole interaction, p1 sending outputs to p2 and p3, etc....

... is captured by a map of polynomials ϕ : p1 ⊗ · · · ⊗ p5 → q. 4

Given the positions (outputs) of each pi , we get an output of q...

... and when given an input of q, each pi gets an input.
4Here p ⊗ p′ just multiplies positions and directions,

p ⊗ p′ =
∑

(i,i′)∈p(1)×p′(1)

y
p[i]×p′[i′].

22 / 32

Applications Dynamical systems

More general interaction

Supplier 1

Supplier 2

Company

w

•

Supplier 1

Supplier 2

Company

w

•

Change
supplier!

This whole picture represents one morphism in Poly.

Let’s suppose the company chooses who it wires to; this is its mode.

Then both suppliers have interface wy.

Company interface is 2yw : two modes, each of which is w -input.

The outer box is just y, i.e. a closed system.

So the picture represents a map wy⊗ wy⊗ 2yw → y.

That’s a map 2w2yw → y.

Equivalently, it’s a function 2w2 → w . Take it to be evaluation.

In other words, the company’s choice determines which w it receives.
23 / 32

Applications Dynamical systems

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T .

Discrete: N, reversible: Z, real-time: R.

If T is a monoid and S is a set, a T -action on S is equivalently...

... a map S × T → S satisfying two laws, which is equivalently...

... a cofunctor SyS 9 yT , as in our general definition above.

24 / 32

Applications Databases

Categorical databases

One view on databases is that they’re basically just copresheaves.

C :=
Employee
•

Department
•

WorksIn
Mngr

Admin

Department.Admin.WorksIn = idDepartment

A functor I : C → Set (i.e. C . /I 0) can be represented as follows:

Employee WorksIn Mngr
1 101 2
2 101 2
3 102 3

Department Secr
101 1
102 3

25 / 32

Applications Databases

Categorical databases

One view on databases is that they’re basically just copresheaves.

C :=
Employee
•

Department
•

WorksIn
Mngr

Admin

Department.Admin.WorksIn = idDepartment

A functor I : C → Set (i.e. C . /I 0) can be represented as follows:

Employee WorksIn Mngr
1 101 2
2 101 2
3 102 3

Department Secr
101 1
102 3

But where’s the data? What are the employees names, etc.?

25 / 32

Applications Databases

Categorical databases

One view on databases is that they’re basically just copresheaves.

C :=
Employee
•

Department
•

WorksIn
Mngr

Admin

Department.Admin.WorksIn = idDepartment

More realistically, data should include attributes and look like this:

Employee FName WorksIn Mngr
1 Alan 101 2
2 Ruth 101 2
3 Sara 102 3

Department DName Secr
101 Sales 1
102 IT 3

25 / 32

Applications Databases

Categorical databases

One view on databases is that they’re basically just copresheaves.

C :=
Employee
•

Department
•

WorksIn
Mngr

Admin

Department.Admin.WorksIn = idDepartment

More realistically, data should include attributes and look like this:

Employee FName WorksIn Mngr
1 Alan 101 2
2 Ruth 101 2
3 Sara 102 3

Department DName Secr
101 Sales 1
102 IT 3

Assign a copresheaf T : Ob(C)→ Set, e.g. T (Employee) = String.

Using the canonical cofunctor C 9 Ob(C), attributes are given by α:

C 0

Ob(C) 0

\

. /I

⇓α

. /
T

25 / 32

Applications Databases

Data migration

The framed bicategory structure of P is very useful in databases.

We hinted at this in the last slide, adding attributes via a cofunctor.

But so-called data migration functors are precisely prafunctors.

A prafunctor C . /P
D in CModD can be understood as follows.

First, it’s a functor C → 1ModD, so what’s that?

We said it’s a formal coproduct of formal limits in D.

A formal limit in D is called a conjunctive query on D.

So a prafunctor 1 . /
Q

D is a disjoint union of conjunctive queries.

Let’s call Q a duc-query on D.

Example: if D =

(
City
• in−→ State• in←−

County
•
)

, a duc-query might be...

(City×StateCity) + (City×StateCounty) + (County×StateCounty)

A general bimodule P ∈ CModD is a C-indexed duc-query on D.

26 / 32

Applications Databases

Data migration

The framed bicategory structure of P is very useful in databases.

We hinted at this in the last slide, adding attributes via a cofunctor.

But so-called data migration functors are precisely prafunctors.

A prafunctor C . /P
D in CModD can be understood as follows.

First, it’s a functor C → 1ModD, so what’s that?

We said it’s a formal coproduct of formal limits in D.

A formal limit in D is called a conjunctive query on D.

So a prafunctor 1 . /
Q

D is a disjoint union of conjunctive queries.

Let’s call Q a duc-query on D.

Example: if D =

(
City
• in−→ State• in←−

County
•
)

, a duc-query might be...

(City×StateCity) + (City×StateCounty) + (County×StateCounty)

A general bimodule P ∈ CModD is a C-indexed duc-query on D.

26 / 32

Applications Databases

Data migration

The framed bicategory structure of P is very useful in databases.

We hinted at this in the last slide, adding attributes via a cofunctor.

But so-called data migration functors are precisely prafunctors.

A prafunctor C . /P
D in CModD can be understood as follows.

First, it’s a functor C → 1ModD, so what’s that?

We said it’s a formal coproduct of formal limits in D.

A formal limit in D is called a conjunctive query on D.

So a prafunctor 1 . /
Q

D is a disjoint union of conjunctive queries.

Let’s call Q a duc-query on D.

Example: if D =

(
City
• in−→ State• in←−

County
•
)

, a duc-query might be...

(City×StateCity) + (City×StateCounty) + (County×StateCounty)

A general bimodule P ∈ CModD is a C-indexed duc-query on D.
26 / 32

Applications Cellular automata

Cellular automata

The last thing we’ll discuss today is cellular automata.

Here’s a picture of a glider from Conway’s Game of Life:

GoL takes place on a grid, a set V := Z× Z of “squares”

Each square has neighbors; think of the grid as a graph A⇒ V .

Each square can be in one of two states: white or black.

The state at any square is updated according to a formula, e.g.

If the square is � and has 2 or 3 � neighbors, it stays �.
If the square is � and has 3 � neighbors, it turns �.
Otherwise it turns / remains �.

27 / 32

Applications Cellular automata

Cellular automata

The last thing we’ll discuss today is cellular automata.

Here’s a picture of a glider from Conway’s Game of Life:

GoL takes place on a grid, a set V := Z× Z of “squares”

Each square has neighbors; think of the grid as a graph A⇒ V .

Each square can be in one of two states: white or black.

The state at any square is updated according to a formula, e.g.

If the square is � and has 2 or 3 � neighbors, it stays �.
If the square is � and has 3 � neighbors, it turns �.
Otherwise it turns / remains �.

27 / 32

Applications Cellular automata

Cellular automata

The last thing we’ll discuss today is cellular automata.

Here’s a picture of a glider from Conway’s Game of Life:

GoL takes place on a grid, a set V := Z× Z of “squares”

Each square has neighbors; think of the grid as a graph A⇒ V .

Each square can be in one of two states: white or black.

The state at any square is updated according to a formula, e.g.

If the square is � and has 2 or 3 � neighbors, it stays �.
If the square is � and has 3 � neighbors, it turns �.
Otherwise it turns / remains �.

27 / 32

Applications Cellular automata

Cellular automata as algebras in P

How do we encode this in P?

We encode the graph A⇒ V as a prafunctor Vy

.

/
g

Vy

Each v ∈ V queries its neighbors (and itself).

The carrier of the prafunctor for GoL is g := Vy9.

We encode the color-set for each node as a prafunctor Vy

.

/C 0

In GoL, each v ∈ V gets the set 2; i.e. C := 2V .

We encode the update formula as a map u of prafunctors

28 / 32

Applications Cellular automata

Cellular automata as algebras in P

How do we encode this in P?

We encode the graph A⇒ V as a prafunctor Vy

.

/
g

Vy

Each v ∈ V queries its neighbors (and itself).

The carrier of the prafunctor for GoL is g := Vy9.

We encode the color-set for each node as a prafunctor Vy
. /C 0

In GoL, each v ∈ V gets the set 2; i.e. C := 2V .

We encode the update formula as a map u of prafunctors

Vy Vy 0. /g. /

C

. /
C

u

28 / 32

Applications Cellular automata

Cellular automata as algebras in P

How do we encode this in P?

We encode the graph A⇒ V as a prafunctor Vy

. /
g

Vy

Each v ∈ V queries its neighbors (and itself).

The carrier of the prafunctor for GoL is g := Vy9.

We encode the color-set for each node as a prafunctor Vy

. /C 0

In GoL, each v ∈ V gets the set 2; i.e. C := 2V .

We encode the update formula as a map u of prafunctors

And we encode the initial color setup as a point V → C :

Vy Vy 0. /g. /
C

. /
C

. /

V

u

i

From here you can iteratively “run” the cellular automaton.
28 / 32

Conclusion

Outline

1 Introduction

2 Theory

3 Applications

4 Conclusion
Future outlook
Summary

28 / 32

Conclusion Future outlook

Future work

Our society is engaging in many unhealthy behaviors.

We need to understand what healthy behavior is.

What activities are necessary for survival?

How should we communicate so that what needs to happen does?

We can think about them mathematically and apply our results.

If we make philosophical/mathematical progress, we can echo it in tech

If we make technological progress, people will take it up.

If people use healthier tech systems, it might help.

It is as promising a direction as anything I know of.

29 / 32

Conclusion Future outlook

Future work

Our society is engaging in many unhealthy behaviors.

We need to understand what healthy behavior is.

What activities are necessary for survival?

How should we communicate so that what needs to happen does?

We can think about them mathematically and apply our results.

If we make philosophical/mathematical progress, we can echo it in tech

If we make technological progress, people will take it up.

If people use healthier tech systems, it might help.

It is as promising a direction as anything I know of.

29 / 32

Conclusion Future outlook

Future work

Our society is engaging in many unhealthy behaviors.

We need to understand what healthy behavior is.

What activities are necessary for survival?

How should we communicate so that what needs to happen does?

We can think about them mathematically and apply our results.

If we make philosophical/mathematical progress, we can echo it in tech

If we make technological progress, people will take it up.

If people use healthier tech systems, it might help.

It is as promising a direction as anything I know of.

29 / 32

Conclusion Future outlook

Workshop on polynomial functors in March

Joachim Kock and I are organizing a Poly workshop.5

Dates: March 15 – 19

Speakers:

Thorsten Altenkirch Steve Awodey
Michael Batanin Bryce Clarke
Marcelo Fiore Richard Garner
David Gepner Helle Hvid Hansen
Rune Haugseng Bart Jacobs
André Joyal Fredrik Nordvall-Forsberg
Kristina Sojakova David Spivak
Ross Street Tarmo Uustalu

5https://topos.site/p-func-2021-workshop/
30 / 32

https://topos.site/p-func-2021-workshop/

Conclusion Future outlook

Future Topos Institute colloquia

This is the first of a series of Topos Institute colloquia.

More info here: https://topos.site/seminars/

Next few speakers

Richard Garner

Gunnar Carlsson

Samson Abramsky

Please join us!

31 / 32

https://topos.site/seminars/

Conclusion Summary

Summary

Poly is a category of remarkable abundance.

It’s completely combinatorial.

Calculations are concrete.

Much is already familiar, e.g. (y + 1)2 ∼= y2 + 2y + 1.

It’s theoretically beautiful.

Comonoids are categories, coalgebras are copresheaves.

Monoids generalize operads.

It’s got a wide scope of applicatons.

Databases and data migration.

Dynamical systems and cellular automata.

A single setting for pursuing real philosophical and technological progress.

Thanks! Questions and comments welcome.

32 / 32

	Introduction
	Personal history
	Plan

	Theory
	(,y,)
	Comonoids in
	The framed bicategory P
	Monads in P generalize operads

	Applications
	Dynamical systems
	Databases
	Cellular automata

	Conclusion
	Future outlook
	Summary

