$$\frac{COMODELS OF AN ALCEBRAIC THEOPY}{\frac{1}{2} Equational algebraic theories}$$
A signature is a set Σ of openhaus σ , each assigned an entry $|\sigma| \in \{S^{1N} - finiter, \}$.
Eq: the signature dor gauge Σ_{CP} is $\xi \cdot , e, (-)^{-1} \frac{3}{5} \sqrt{aritic 2, 0, 1}$
Given a sign. Σ and a set A , can recursively define set $Z(A)$ of Σ -tems with free verification in A :
Eq: $\Sigma_{CP}(\{x, y, z^3\}) \ni (x \cdot y) \cdot Z^{-1}$, $(y \cdot e^{-s}) \cdot (x \cdot x)$, ...
An alg. theory Ti is a signature Σ , fus a set of equation:
each eqn. is $s=t$ for some A and $S, t\in \Sigma(A)$.
Eq: T_{CP} involves equations $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, $x \cdot x^{-1} = e$, ...
If Ti is an alg theory, A a set, write $T(A)$ for set of T -terms will variables in A :
Eq: $T_{CP}(A)$ is the free group with gen, set A .
In computed science, we use algebraic theories T be encode

Eq: let V be a set. The they of V-ay input T_{in} has
one V-ay operation read, and no equations. See elements
of T_{in} (A) as programs returning vals in A as follows:
a
$$\in A \subseteq T(A)$$
 muss return a
read (AV . t_V) muss let v be read() in t_V
Eq: when V=IN, we have a program in T_{in} (IN):
read(AV . $read(AW$. $v+W$)) muss let v be read() in
let w be read() in
return $v+W$.
(do $v \leftarrow read()$
w $\leftarrow read()$
return $v+W$.
Eq: Let V be a set. Theory of a V-valued stack (Goneharov 2001)
has:
• unary operations pushv ($v \in V$)
• $V + E \perp 3$ -ay operation pop
interpreted os:

Equation are:
(for each ve V) push, (pop(
$$\vec{x}, y$$
)) = x_v pop(λv . push, (x), x) = x
pop(\vec{x} , pop(\vec{y}, z)) = pop(\vec{z}, z).

conterpretation Iread I:
$$S \rightarrow V \times S$$
, with no Suther
conditions. Think that Iread I takes a state s , and
girlds a new input value from V , and a next state s' .
Eg: A TI shuk - connected involves a set S of states, and
I path I: $S \rightarrow S \quad \forall v \in V$
I pop II: $S \rightarrow (V + \tilde{z} + 3) \times S$
 $st: 1) I pop I (I push, II(s)) = (V, s)$
 $2) II pop II (S) = (V, S') \Rightarrow I push, I(S') = s$
 $3) II pop II (S) = (L, S') \Rightarrow S' = S.$
In general (Power - Shkaravsha 2004, ...) if TI-terms
are programs interacting with an environment, Item TI-consolute
one incleanes of their environment. Moreover, the conterpretation
of a program te T(A) in a canoded (S, II:I) is a Surchism
II: $S \rightarrow A \times S$ running the computation f using state
Meetine (S, II:I), starting from some state $s \in S$, and retuing
a value in A and a Simt state $s' \in S$.
Eg: If have the program p=read (Iv. read(Iw. Y+w)) $\in T_{In}(N)$,
for the comodel with $S = \tilde{z}a, 5, cS$ and
II: read II: $a \mapsto (12, a)$
 $b \longmapsto (7, c)$
 $c \longmapsto (4, b)$

We have
$$[[p]]: S \longrightarrow [N \times S]$$

 $a \longmapsto (24, a)$
 $b \longmapsto (11, b)$
 $c \longmapsto (11, c)$

3) BEHAVIOUR CATEGORIES
(o moduls of any algebraic thy T, with their homomorphisms, form a caty Comod(TT).
THECHEM (G., 2020) For any alg thy TT, (succel(TT) is a preshead category EBT, Sct].
We call B_T the behaviour caty of TT. - we can calculate it vay explicitly!
Defin Behaviour caty B_{TT} of an alg thy TT has:
• objects are admissible behavious: families of firs
(
$$\beta_{A}$$
: T(A) $\longrightarrow A$) AESET
st:
 $\beta(a) = a \quad \forall ac A \subseteq TA$
 $\beta(t(\lambda a. u_{a})) = \beta(t(\lambda a. u_{B(D)}) \quad \dots \quad \beta(t \gg = u)$
 $= p(t \gg u_{B(t)}).$

where
$$\sim_{p}$$
 smallest equiv relation st $(t \gg = m) \sim_{p} (t \gg m_{pHI})$
Eq: For theory Π_{h} , behaviour caty looks like:
• objects are infinite words $W \in V^{IN}$
• maps $W \longrightarrow W'$ is ne IN st $\partial^{\circ}W = W'$.
Eq: For theory Π_{stack} , behaviour caty looks like: -
• objects: finite or infinite words $W \in V^{\leq W}$
• maps: *! map $W \longrightarrow W'$ if both are finite;
* no maps $W \longrightarrow W'$ if both are finite;
* no maps $W \longrightarrow W'$ if only one is shrite;
* $W \longrightarrow W'$, where W , W' infinite, is some $i \in \mathbb{Z}$
st for some ne IN, $\partial^{\circ}W = \partial^{n+i}W'$