
Reasoning in an ∞-topos with
homotopy type theory

Dan Christensen
University of Western Ontario

∞-Topos Institute, April 1, 2021

Outline:

Introduction to homotopy type theory

Examples of applications to ∞-toposes

1 / 23

2 / 23

Motivation for Homotopy Type Theory

People study type theory for many reasons. I’ll highlight two:

Its intrinsic homotopical/topological content. Things we prove in
type theory are true in any ∞-topos.

Its suitability for computer formalization.

This talk will focus on the first point.

So, what is an ∞-topos?

3 / 23

∞-toposes

An ∞-category has objects, (1-)morphisms between objects,
2-morphisms between 1-morphisms, etc., with all k-morphisms
invertible for k > 1.

Alternatively: a category enriched over spaces.

The prototypical example is the ∞-category of spaces.

An ∞-topos is an ∞-category C that shares many properties of the
∞-category of spaces:

C is presentable. In particular, C is cocomplete.

C satisfies descent. In particular, C is locally cartesian closed.

Examples include Spaces, slice categories such as Spaces/S1, and
presheaves of Spaces, such as G-Spaces for a group G.

If C is an ∞-topos, so is every slice category C/X.

4 / 23

History of (Homotopy) Type Theory

Dependent type theory was introduced in the 1970’s by Per
Martin-Löf, building on work of Russell, Church and others.

In 2006, Awodey, Warren, and Voevodsky discovered that
dependent type theory has homotopical models, extending
1998 work of Hofmann and Streicher.

At around this time, Voevodsky discovered his univalance axiom.
And in 2011, higher inductive types were introduced by Bauer,
Lumsdaine, Shulman, and Warren.

Homotopy type theory is type theory augmented with these
principles.

Recently, it was shown using work of many people (Shulman,
Lumsdaine, Kapulkin, de Boer, Brunerie, Anel, Biedermann,
Finster, Joyal, etc.) that homotopy type theory has models in
all ∞-toposes.

5 / 23

Background on Type Theory

First order logic can be used to study many theories: the theory of
groups, Peano arithmetic, set theory (e.g., ZFC), etc.

In contrast, type theory is not a general framework for studying
axiomatic systems, but instead unifies set theory and logic so that
they live at the same level. (More on this later.)

In type theory, the basic objects are called types.
The notation x : A means that x is an element of the type A.

Initially, types were thought of as sets, but in this talk we will think
of them as spaces or as objects in an ∞-topos.

6 / 23

Background on Type Theory II

Like first order logic, type theory is a syntactic theory in which
certain expressions are well-formed, and there are inference rules
that tell you how to produce new expressions (i.e., theorems) from
existing expressions.

A

A =⇒ B

B

First order logic

a : A

f : A→ B

f(a) : B

Type theory

There are also rules for introducing new types from existing types.
These are called type constructors and correspond to common
constructions in mathematics (and to the rules of logic).

Examples include function types, coproducts, products, the natural
numbers, etc. We’ll discuss these in more detail now.

7 / 23

Type Constructors: Function types

For any two types A and B, there is a function type denoted
A→ B. In an ∞-topos, this is the internal hom BA.

If f(a) is an expression of type B whenever a is of type A,
then we get a function A→ B sending a to f(a).

Examples:

The identity function idA sends a in A to a.

For fixed b : B, there is a constant function sending
everything in A to b.

There is a function of type

(A→ B)→ ((B → C)→ (A→ C))

defined by
f 7→ (g 7→ (a 7→ g(f(a)))).

This is composition of functions.
8 / 23

Type Constructors: Coproduct

Most constructions in type theory are defined inductively.

Example: given types A and B, there is a coproduct type A+B
which is generated by elements of the form inl a and inr b.

“Generated” means that it satisfies a weak universal property:

A

inl
��

∀

''
A+B

∃ // C

B

inr

OO

∀

77

This corresponds to the categorical coproduct in an ∞-topos.

9 / 23

Type Constructors: ∅, 1, ×, N
Here are other types defined by such induction principles:

The empty type ∅ is a weakly initial object (“free on no
generators”): for any C, there is a map ∅→ C.

The one point type 1 is “free on one generator ∗”: given c : C,
there is a map f : 1→ C with f(∗) = c.

The product A×B of two types is generated by all pairs (a, b):
given g : A→ (B → C), we get f : A×B → C with
f(a, b) = g(a)(b).

The type of natural numbers N is generated by 0 : N and
succ : N→ N: given c0 : C and cs : N× C → C, we get
f : N→ C with f(0) = c0 and f(succ n) = cs(n, f(n)).

Note the preference for constructions defined by mapping out.

When the induction principles are generalized to dependent types,
uniqueness will follow.

10 / 23

Dependent Types

We assume given a universe type U closed under the type forming
operations, and therefore can write X : U to indicate that X is a
(small) type.

The above structure is enough to construct types that depend on
elements of other types.

Examples:

a 7→ B : A −→ U (a constant type family)

n 7→ Bn : N −→ U (Bn+1 := B ×Bn, inductively)

(A,B) 7→ A+B : U× U −→ U

parity : N −→ U

with parity(n) = ∅ for n even and 1 for n odd.

These dependent types are one of the key ideas in type theory.
A dependent type A→ U corresponds to a map E → A in an
∞-topos, and so slice categories are a crucial tool.

11 / 23

Dependent Sums and Products

Given a type family B : A→ U, the dependent sum
∑
a:A

B(a) is freely
generated by pairs (a, b) with b : B(a).

The dependent sum has a projection map

pr1 :
∑
a:A

B(a) −→ A

sending (a, b) to a.

In an ∞-topos, the dependent sum of the family E → A is just E.

There is also a dependent product
∏
a:A

B(a). Its elements are

functions f sending each a : A to an f(a) : B(a).

In an ∞-topos, the dependent product of a family E → A is given
by applying the right adjoint to pullback along A→ 1.

12 / 23

Propositions as Types: Curry-Howard

A type can be thought of as a proposition, which is true when
inhabited:

Types ←→ Propositions

∅ ←→ false

1 ←→ true

P ×Q ←→ P and Q

P +Q ←→ P or Q

P → Q ←→ P implies Q∏
x:A

P (x) ←→ ∀xP (x)

∑
x:A

P (x) ←→ ∃xP (x)

13 / 23

Example Proof

As an example, how would we prove modus ponens:

(A and (A =⇒ B)) =⇒ B?

In type theory, this proposition is represented by the type

(A× (A −→ B)) −→ B.

We prove it by giving an element. By the inductive definition of the
product, it’s enough to give an element of B for each pair (a, f) in
A× (A→ B). We simply give f(a):

(a, f) 7→ f(a)

Put another way, modus ponens and the evaluation map are the
same thing in type theory.

More complicated theorems have more complicated proofs!

We’ve talked about many propositions, but what about: a = b?
14 / 23

Identity Types

Given a type A, the identity type of A is a type family A×A→ U

whose values are written a = b for a, b : A.

This type family is inductively generated by “reflexivity” elements
of the form refla : a = a for each a : A.

An element p of type a = b can be thought of as a proof that a
equals b.

In an ∞-topos, this type family is represented by the diagonal map
A→ A×A.

Therefore, two elements a, a′ : A are equal if the corresponding maps
1→ A are homotopic.

15 / 23

Using the Identity Type

It was a remarkable insight of Martin-Löf that equality can be
defined by induction! Many properties follow immediately.

Symmetry: (a = b)→ (b = a).

Proof. To define a function from the type family a = b to another
type family, it’s enough to define it on refla : a = a.
In this case, the target is also a = a, so we send refla to refla.

One can similarly prove:

Functions respect equality: For f : A→ B, (a = b)→ (f(a) = f(b)).

16 / 23

Doing Mathematics

With the foundation presented so far, all of the usual constructions
of mathematics can be done, with types thought of as sets.

For example, one can construct the real numbers and do analysis;
one can prove theorems in algebra; and one can define topological
spaces and simplicial sets, and prove the standard results about
them.

Major results include:

The four-colour theorem (Gonthier).

The Feit-Thompson odd-order theorem (Gonthier et al).

Kepler’s sphere packing conjecture (Hales et al).

A C compiler that has been proven correct and is used in
industry (Leroy et al).

And lots more.

17 / 23

Equivalences

Let’s continue to think of a type as a homotopical object.

We say that f : A→ B is an equivalence if it has left and right
inverses. That is,

IsEquivf :=

(∑
g:B→A

(gf = idA)

)
×

(∑
h:B→A

(fh = idB)

)
.

The type of equivalences from A to B is

(A ' B) :=
∑

f :A→B

IsEquivf.

Do ∞-toposes satisfy any properties that the set theoretic
interpretation does not satisfy?

18 / 23

The Univalence Axiom

For types A and B in U, we define a function

ω : (A = B)→ (A ' B)

by sending reflA to idA.

The Univalence Axiom says that ω is an equivalence for all A and B.

This is an assertion about the universe U, and it does not hold in the
standard set-theoretic model.

Voevodsky showed that simplicial sets has a univalent universe.
Recent work of Shulman (building on work of others) shows that
this is true in any ∞-topos.

If ω is an equivalence, then there is an inverse map

(A ' B) −→ (A = B)

which implies that equivalent types are equal.
19 / 23

Higher Inductive Types

Also motivated by the simplicial set model, Bauer, Lumsdaine,
Shulman, and Warren introduced higher inductive types in 2011.

In an inductive type (like A+B, N,
∑

aB(a), a = b, etc.),
we freely throw in elements of a type.

In a higher inductive type (HIT), we are also allowed to freely throw
in paths, paths between paths, etc.

Example: The circle S1 is the HIT generated by an element
base : S1 as well as a path loop : base = base.

It was shown by Lumsdaine and Shulman that a large class of HITs
can be modelled in any ∞-topos.

For example, S1 corresponds to the suspension of 1 + 1, defined as
the usual homotopy pushout.

20 / 23

Homotopy groups

Let the type X have a basepoint x0. We define the loop space of X
at x0 to be the type

ΩX := (x0 = x0).

In an ∞-topos, this corresponds to the homotopy pullback

ΩX

��

// X

∆
��

1
(x0,x0) // X ×X

Then, for n : N, we can define the nth homotopy group to be

πn(X,x0) := π0(ΩnX),

where π0 is defined as a certain HIT.

As usual, one can prove that this is a group for n ≥ 1 and is abelian
for n ≥ 2.

21 / 23

Consequences of Univalence and HITS

Assuming Univalence, one can prove π1(S1) = Z, π3(S2) = Z,
π4(S2) = Z/2, the Freudenthal suspension theorem, the
Blakers-Massey Theorem, and many other results.

The proofs of these results in type theory imply them for spaces
(without having to even define “space”).

But the same proofs imply these results in all ∞-toposes, so the
theorems are much more general.

The price we pay for this generality is that we need to make purely
homotopical arguments, and we can’t use the law of excluded
middle, the axiom of choice, or Whitehead’s theorem, since these
aren’t true in every ∞-topos.

This means that in some cases new proofs are needed.

22 / 23

More results

Here is a summary of some of my work in HoTT:

The Hurewicz theorem: For X (n− 1)-connected,
πn(X)ab ∼= Hn(X). (Joint with L. Scoccola).

One can localize a type X at a prime p. For X simply connected
and n ≥ 1, πn(X(p)) is the algebraic localization of πn(X).
(Joint with Opie, Rijke, Scoccola.)

Given a reflection L onto a subuniverse of U (the analog of a
reflective subcategory), there is a reflection L′ onto the
subuniverse of types with L-local identity types.
(Joint with Opie, Rijke, Scoccola.)

Non-accessible localizations: A general technique for producing a
reflective subuniverse from a “large” amount of data, extending
work of Casacuberta, Scevenels, Smith for spaces.

Thanks!
23 / 23

