Topos theory and measurability

Asgar Jamneshan

Koç University

Topos Institute Colloquium

15/04/2021

The measurability problem

Source/Base probability space of, well states

- X_{ω} sets
- aw numbers
- Tw topologies
- · Hw DeieBert spaces
- · Uw Hw Hu operators

Assignment w Ĕ=o mea surance LOGICAL MANIPULATIONS

- · Theorems
- · Lemmas
- Corollaries
 Constructions

OUTPUT

- · Yw other Sets
- . Aw Rimits
- · 2 w eigenvalues
- · Bu optimiters

Assignment w hoo measusable?

I. Example: Stochastic optimization

- $\omega \in \Omega$ state in a probability space, $\omega \mapsto C(\omega) \subset \mathbb{R}^d$ is a set-valued map and $F : \Omega \times \mathbb{R}^d \to \mathbb{R}$ a bivariate function.
- When is $\omega \mapsto Sol(\omega) = \inf\{F(\omega, x) : x \in C(\omega)\}$ measurable?
- If *F* is measurable in ω for each x ∈ ℝ^d and continuous in x for each ω ∈ Ω and ω ↦ C(ω) is measurable and compact-valued, then the answer is YES by a measurable selection theorem.

Rockafellar & Wets "Variational Analysis"

 (X, X, μ) probability space and $T : X \to X$ measure-preserving.

Furstenberg's multiple recurrence theorem: For all $k \ge 1$, every $E \in X$ with $\mu(E) > 0$ there exists $n \ge 1$ such that

$$\mu(E \cap T^n(E) \cap T^{2n}(E) \cap \ldots \cap T^{(k-1)n}(E)) > 0.$$

Furstenberg "Recurrence in Ergodic Theory and Combinatorial Number Theory"

Furstenberg-Zimmer structure theorem

Xn

Assumptions of the pointwise approach

Assumptions which guarantee a countable measure-theoretic complexity:

- Range: Polish spaces such as separable Banach spaces, compact metric spaces
- Base probability space: Countably generated, standard Borel, measure-theoretic complete
- Acting groups (in dynamics): Second-countability such as countable discrete groups, Polish groups

Descriptive set theory (Kechris)

Abstraction and Deletion

Basic properties

- If (X, μ) is **PrbAlg**^{op}-space, then X is automatically a complete Boolean algebra.
- Null set issues are excluded for **PrbAlg**^{op}-spaces.
- Integral: For **AbsMes**-morphisms $f : X \to \mathcal{B}(\mathbb{R})$ with $f^*([0,\infty)) = 1$ define

.

$$\int f d\mu \coloneqq \int \mu(f^*(x,\infty)) dx$$

Fremlin "Measure algebras"

- Fix a base probability algebra (X, μ) .
- Consider (X, \leq) as a small category where $E \leq F$ iff $E \wedge F = E$.
- The map

 $E \mapsto K(E) = \{(E_n) \text{ countable partition of } E\}$

is a Grothendieck basis on X.

- Let $\mathbf{Sh}(X)$ be the Grothendieck topos of sheaves on the site (X, K).
- Sh(X) is Boolean, has a natural numbers object, and satisfies the axiom of choice.
- We have a full mathematical discourse inside **Sh**(*X*) (related to the transfer principle for Boolean-valued models).

Some examples of sheaves

- For any AbsMes-space K, the hom-set Cond_X(K) := Hom_{AbsMes}(X → K) has the structure of a sheaf on the site (X, K).
- If K is the power set of the natural numbers N, then Cond_X(N) is the natural numbers object in Sh(X).
- If K = B(C^d), then Cond_X(K) is the *d*-dimensional complex Euclidean space inside Sh(X).
- If K is the Baire σ-algebra of a compact Hausdorff group, then Cond_X(K) is a compact Hausdorff group inside Sh(X).

A solution to the measurability problem

Conditional analysis as a tool to interpret the internal discourse of $\mathbf{Sh}(X)$

- Constructing by hand a conditional reasoning from first things by developing a conditional form of set theory first.
- Conditionalizing proofs of uncountable measure-theoretic complexity. For example, a conditional version of the axiom of choice for general conditional sets.
- Based on a conditional form of set theory (naive set theory in **Sh**(*X*)), develop a conditional topology, conditional functional analysis and conditional measure theory, etc.

Theorem

Let Ω be a probability space and L^0 space of random variables $f : \Omega \to \mathbb{R}$ (identified with respect to almost sure equality). Let (x_n) be a sequence in L^0 such that $|x_n| \le M$ almost surely for some $M \in L^0$. Then there exist a sequence of measurable functions $N_k : \Omega \to \mathbb{N}$ with $N_1 < N_2 < \ldots$ and $x \in L^0$ such that $x_{N_k} = \sum x_n \mathbb{1}_{N_k=n} \to x$ almost surely.

Proof: Set $x = \lim_{n \to \infty} \inf_{m \ge n} x_m$ almost everywhere. By induction, $N_0 = 0$ and for $k \ge 1$

 $N_k(\omega) = \min\{m \in \mathbb{N} : m > N_{k-1}(\omega), x_m(\omega) \le x(\omega) + 1/n\}.$

- Let (X, μ) be an arbitrary probability algebra, Γ an arbitrary discrete group,
 T : Γ → Aut(X, μ) a group homomorphism introducing a measure-preserving dynamical structure on (X, μ), and K be an arbitrary compact Hausdorff abelian group with Baire σ-algebra Ba(K).
- A family ρ = (ρ_γ)_{γ∈Γ} of elements of Cond_X(K) is said to be a <u>K-valued cocycle</u> if for all γ₁, γ₂ ∈ Γ it holds that

$$ho_{\gamma_1+\gamma_2} =
ho_{\gamma_1} \circ T^{\gamma_2} +
ho_{\gamma_2}$$

• A cocycle ρ is a K-valued coboundary if there exists g in $Cond_X(K)$ such that for all $\gamma \in \Gamma$

$$\rho_{\gamma} = \boldsymbol{g} \circ \boldsymbol{T}^{\gamma} - \boldsymbol{g}$$

The uncountable Moore-Schmidt theorem

Theorem (J. and Tao)

A cocycle ρ is a K-valued coboundary if and only if $\hat{k} \circ \rho = (\hat{k} \circ \rho_{\gamma})_{\gamma \in \Gamma}$ is a \mathbb{T} -valued cocycle for all characters $\hat{k} \in \hat{K}$.

An important ingredient in the proof is the Pontryagin duality between compact and discrete abelian groups in the internal discourse of Sh(X):

Theorem (J. and Tao)

There is a Sh(X)-Pontryagin duality between the Sh(X)-compact Hausdorff abelian group $Cond_X(K)$ and the Sh(X)-discrete Hausdorff abelian group $Cond_X(\hat{K})$.

Comments on the proof

The result is not stated in this way in our paper. We show that the classical Pontryagin duality *ι* : *K* → T^K lifts to

$$\mathrm{Cond}(\iota)(\mathrm{Cond}_X(K)) = \{(\theta_{\hat{k}})_{\hat{k} \in \hat{K}} \in \mathrm{Cond}_X(\mathbb{T})^{\hat{K}} : \theta_{\hat{k}_1 + \hat{k}_2} = \theta_{\hat{k}_1} + \theta_{\hat{k}_2} \text{ for all } \hat{k}_1, \hat{k}_2 \in \hat{K}\}$$

- As for the Sh(X)-Pontryagin duality, need to show how to lift the classical topologies to Sh(X)-topologies, verify Sh(X)-compactness (needs Sh(X)-Tychonoff's theorem), define Sh(X)-Pontryagin duality and then use the above lifting result to conclude. Heavy use of results in conditional topology. (Unpublished notes)
- It is crucial to use Baire measurability.

Theorem (J.)

Let Γ be an arbitrary group. Let (X, μ, T) be an arbitrary probability algebra Γ -dynamical system. Then there are an ordinal number β and for each ordinal number $\alpha \leq \beta$ a system $(Y_{\alpha}, \nu_{\alpha}, S_{\alpha})$ with the following properties.

(i) $Y_{\emptyset} = \{0, 1\}$

(ii) For any successor ordinal $\alpha + 1 \leq \beta$, $(Y_{\alpha+1}, v_{\alpha+1}, S_{\alpha+1})$ is a compact extension of $(Y_{\alpha}, v_{\alpha}, S_{\alpha})$.

(iii) For any limit ordinal $\alpha \leq \beta$, Y_{α} is generated by $\bigcup_{\alpha' < \alpha} Y_{\alpha'}$.

(vi) (X, μ, T) is a weakly mixing extension of $(Y_{\beta}, \nu_{\beta}, S_{\beta})$.

For any Γ -system (X, μ, T), we have the decomposition

$$L^2(X) = \mathbb{W}\mathbb{M}_{\Gamma}(X) \oplus \mathbb{A}\mathbb{P}_{\Gamma}(X)$$

Using Hilbert space and spectral theory we can characterize the structured part $AP_{\Gamma}(X)$ in terms of

- (a) Finite-dimensional invariant subspaces
- (b) Totally bounded orbits
- (c) Invariant Hilbert-Schmidt operators
- (d) Under ergodicity assumption, translations on homogeneous spaces

Theorem (J.)

For an arbitrary group Γ and (X, μ, T) an extension of (Y, ν, S) , we have the decomposition

 $L^{2}(X) = WM_{\Gamma}(X|Y) \oplus AP_{\Gamma}(X|Y)$

We can characterize the relatively structured part $AP_{\Gamma}(X|Y)$ in terms of

- (a) Finite-dimensional invariant submodules
- (b) Conditionally totally bounded orbits
- (c) Invariant conditional Hilbert-Schmidt operators
- (d) Under ergodicity assumption, as an isometric group extension $X = Y \times_{\rho} K/H$

Sh(Y)-Hilbert space and spectral theory

• We can form the conditional Hilbert space

$$L^{2}(X|Y) = \{f \in \operatorname{Cond}_{X}(\mathbb{C}) : \mathbb{E}(|f|^{2}|Y) < \infty\}$$

This is a sheaf on (Y, K) and a Hilbert space in **Sh**(Y) with **Sh**(Y)-inner product $\mathbb{E}(f\bar{g}|Y)$.

• Consider the relative tensor product

$$L^{2}(X \times_{Y} X | Y) = \{ f \in \operatorname{Cond}_{X \times_{Y} X}(\mathbb{C}) : \mathbb{E}(|f|^{2} | Y) < \infty \}$$

This is a sheaf on (Y, K) and represents the **Sh**(Y)-Hilbert Schmidt operators on the **Sh**(Y)-Hilbert space $L^2(X|Y)$.

- The relative dichotomy and the characterizations of compact extensions are the reflection of the classical dichotomy in the internal discourse of **Sh**(*Y*).
- Non-ergodic case requires a much stronger use of the internal logic of **Sh**(Y)..

- The algebra of conditional sets, and the concepts of conditional topology and compactness, Drapeau, J., Karliczek, and Kupper
- Sheaves and conditional sets, J.
- An uncountable Moore-Schmidt theorem, J. and Tao
- An uncountable Furstenberg-Zimmer structure theory, J.

Thanks for listening!