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Background of this Talk

Much of the recent work presented here was performed in collaboration
with Manojna Namuduri and Xerxes Arsiwalla, e.g:

J. Gorard, M. Namuduri, X. D. Arsiwalla (2021),
https://arxiv.org/abs/2103.15820

J. Gorard, M. Namuduri, X. D. Arsiwalla (2020),
https://arxiv.org/abs/2010.02752

J. Gorard (2021), https://arxiv.org/abs/2102.09363

J. Gorard (2020), https://arxiv.org/abs/2011.12174

We will also present some forthcoming (and therefore necessarily more
speculative) work towards the end, e.g:

J. Gorard and X. D. Arsiwalla (WIP), A Multiway Categorical
Semantics for Petri Nets

J. Gorard and X. D. Arsiwalla (WIP), A Diagrammatic Reasoning
Language for Homotopy Type Theory
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Quantum Information from String Diagram Rewriting I

Figure: A linear transformation between finite-dimensional Hilbert spaces,
represented as a ZX-diagram.
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Quantum Information from String Diagram Rewriting II

Figure: Samples of the complete rule enumeration for the ZX-calculus, as
represented over all generators.
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Quantum Information from String Diagram Rewriting III

Figure: The multiway states graph corresponding to the first 2 steps in the
non-deterministic evolution history of the ZX-calculus multiway operator system
from a two-spider initial diagram.
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General Relativity from Hypergraph Rewriting I

Figure: Spatial hypergraphs corresponding to the initial hypersurface
configuration of the head-on collision of Schwarzschild black holes at time
t = 0M, with resolutions of 200, 400 and 800 vertices, respectively, colored using
the local curvature in the Schwarzschild conformal factor ψ.
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General Relativity from Hypergraph Rewriting II

Figure: Spatial hypergraphs corresponding to the intermediate hypersurface
configuration of the head-on collision of Schwarzschild black holes at time
t = 6M, with resolutions of 200, 400 and 800 vertices, respectively, colored using
the local curvature in the Schwarzschild conformal factor ψ.
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General Relativity from Hypergraph Rewriting III

Figure: Spatial hypergraphs corresponding to the final hypersurface configuration
of the head-on collision of Schwarzschild black holes at time t = 12M, with
resolutions of 200, 400 and 800 vertices, respectively, colored using the local
curvature in the Schwarzschild conformal factor ψ.
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General Relativity from Hypergraph Rewriting IV

Figure: Spatial hypergraphs corresponding to the post-ringdown hypersurface
configuration of the head-on collision of Schwarzschild black holes at time
t = 24M, with resolutions of 200, 400 and 800 vertices, respectively, colored
using the local curvature in the Schwarzschild conformal factor ψ.
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General Relativity from Hypergraph Rewriting V

Figure: Spatial hypergraphs corresponding to projections along the z-axis of the
initial hypersurface configuration of the head-on collision of Schwarzschild black
holes at time t = 0M, with resolutions of 200, 400 and 800 vertices, respectively,
colored and coordinatized using the local curvature in the Schwarzschild
conformal factor ψ.
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General Relativity from Hypergraph Rewriting VI

Figure: Spatial hypergraphs corresponding to projections along the z-axis of the
intermediate hypersurface configuration of the head-on collision of Schwarzschild
black holes at time t = 6M, with resolutions of 200, 400 and 800 vertices,
respectively, colored and coordinatized using the local curvature in the
Schwarzschild conformal factor ψ.
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General Relativity from Hypergraph Rewriting VII

Figure: Spatial hypergraphs corresponding to projections along the z-axis of the
final hypersurface configuration of the head-on collision of Schwarzschild black
holes at time t = 12M, with resolutions of 200, 400 and 800 vertices,
respectively, colored and coordinatized using the local curvature in the
Schwarzschild conformal factor ψ.
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General Relativity from Hypergraph Rewriting VIII

Figure: Spatial hypergraphs corresponding to projections along the z-axis of the
post-ringdown hypersurface configuration of the head-on collision of
Schwarzschild black holes at time t = 24M, with resolutions of 200, 400 and 800
vertices, respectively, colored and coordinatized using the local curvature in the
Schwarzschild conformal factor ψ.
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DPO Rewriting and the Wolfram Model I

We start with the category G:

E V ,

s

t
(1)

for objects E and V in ob (G), and morphisms s and t in hom (G).
Any given (multi-)graph G is a functor:

G : G→ Set, (2)

with the category of directed (multi-)graphs Graph given by the functor
category [G, Set].
Can be extended to undirected (multi-)graphs or (multi-)hypergraphs by
simply adding more morphisms to hom (G).
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DPO Rewriting and the Wolfram Model II

Figure: Two spatial hypergraphs, represented as finite collections of (un)ordered
relations {{1, 2} , {1, 3} , {2, 3} , {4, 1}} and {{1, 2, 3} , {3, 4, 5}}, respectively.

Jonathan Gorard (University of Cambridge jg865@cam.ac.uk)Fast Diagrammatic Reasoning and Compositional Approaches to Fundamental PhysicsApril 29, 2021 15 / 67

jg865@cam.ac.uk


DPO Rewriting and the Wolfram Model III

Definition

A rewrite rule is a span of monomorphisms ρ:

ρ = (l : K → L, r : K → R) . (3)

Definition

A rule match is a morphism m:

m : L→ G . (4)
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DPO Rewriting and the Wolfram Model IV

Definition

A rewrite rule ρ is applicable at match m if there exists a pair of pushout
diagrams:

L K R

G D H

m

l

n

r

p

g
h

(5)

We can extend these notions beyond the category Graph by considering
arbitrary adhesive and partial adhesive categories.
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DPO Rewriting and the Wolfram Model V

Definition

A van-Kampen square is a pushout f ′ : B → D, g ′ : C → D in hom (C) of
a span g : A→ B, f : A→ C in hom (C), such that, for every
commutative diagram:

B ′ A′

B A

D C

D ′ C ′,

f ′h

hB
gh

hA

fhf ′

g

f

g ′
hD

g ′
h

hC

(6)

such that pushouts and pullbacks are compatible.
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DPO Rewriting and the Wolfram Model VI

Specifically, the van-Kampen square conditions applies whenever the
subdiagrams:

B ′ A′

B A

hB

gh

hA

g

, and

A A′

C C ′

f

hA
fh

hC

, (7)

are both pullbacks.

Definition

An adhesive category is a category C that has pushouts along
monomorphisms, that has pullbacks, and in which all pushouts along
monomorphisms are van-Kampen squares.

Slice, coslice and functor categories always inherit adhesivity, but full
subcategories do not in general.
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DPO Rewriting and the Wolfram Model VII

Definition

A partial adhesive category is a full subcategory C′ of an adhesive category
C for which the embedding functor S :

S : C′ → C, (8)

preserves monomorphisms.

Definition

An S-span, for a partial adhesive category C′ with embedding functor S :
C′ → C, is a diagram consisting of two maps f , g in hom (C′) sharing a
common domain:

B A C ,
f

g
(9)

for which a pushout diagram exists, and is preserved by S .
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DPO Rewriting and the Wolfram Model VIII

Specifically, the diagram (an S-pushout):

A B

C P,

f

g p1

p2

(10)

should be preserved by the embedding functor.

Definition

An S-pushout complement, for a partial adhesive category C ′ with
embedding functor S : C′ → C, for a pair of morphisms with overlapping
domain and codomain m : C → A, g : A→ D in hom (C′), is a pair of
morphisms with overlapping codomain and domain f : C → B, n : B → D
in hom (C′) such that a pushout diagram exists, and is an S-pushout.
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DPO Rewriting and the Wolfram Model IX

Specifically, the following diagram should be an S-pushout:

C A

B D.

m

f g

n

(11)

Definition

An S-rule match, for a partial adhesive category C′ with embedding
functor S : C′ → C, of a rewrite rule ρ = (l : K → L, r : K → R), is a
monomorphism m : L→ G in hom (C′), for which the pair of morphisms
with overlapping codomain and domain l : K → L, m : L→ G in
hom (C′), have an S-pushout complement D for morphisms with
overlapping codomain and domain n : K → D, g : D → G in hom (C′).
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DPO Rewriting and the Wolfram Model X

Specifically, the S-pushout complement has the general form:

K L

D G

l

n m

g

. (12)

Definition

A rewrite rule ρ is S-applicable at an S-rule match m, for a partial
adhesive category C′ with embedding functor S : C′ → C, if there exists a
pair of S-pushout diagrams:

L K R

G D H

m

l

n

r

p

g
h

. (13)
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DPO Rewriting and the Wolfram Model XI

Figure: A hypergraph transformation rule, represented as a set substitution
system {{x , y} , {x , z}} → {{x , y} , {x ,w} , {y ,w} , {z ,w}}.

Figure: The hypergraphs obtained during the first four steps of evolution of the
set substitution system {{x , y} , {x , z}} → {{x , y} , {x ,w} , {y ,w} , {z ,w}},
assuming an initial condition consisting of a single vertex with two self-loops.
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DPO Rewriting and the Wolfram Model XII

Figure: The non-overlapping (spacelike-separated) subhypergraphs involved in the
rewrite events applied during the first four steps of evolution of the set
substitution system {{x , y} , {x , z}} → {{x , y} , {x ,w} , {y ,w} , {z ,w}},
assuming an initial condition consisting of a single vertex with two self-loops.
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Abstract Rewriting Structure and Multiway Systems I

If the rewrite relation →R in the abstract rewriting system (A,→R) is an
indexed union of subrelations:

→R=
⋃
i

(→i∈Λ) , (14)

with index set Λ, then we obtained the labeled state transition system
(A,Λ,→R), i.e. a bijective map P (Λ× A):

p 7→ {(α, q) ∈ Λ× A : p 7→α
R q} . (15)

Any such labeled state transition system is therefore described by an
F-coalgebra for the power set functor P (Λ× (−)).
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Abstract Rewriting Structure and Multiway Systems II

This correspondence holds because the power set construction on the
category Set is a covariant endofunctor P:

P : Set→ Set. (16)

Therefore, the abstract rewriting system (A,→R) is simply an object A
equipped with an additional morphism →R of the category Set:

→R : A→ PA. (17)
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Abstract Rewriting Structure and Multiway Systems III

Figure: The first 3 steps in the non-deterministic evolution history for the set
substitution rule {{x , y} , {y , z}} → {{w , y} , {y , z} , {z ,w} , {x ,w}}, as
represented by a multiway evolution graph.
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Abstract Rewriting Structure and Multiway Systems IV

Figure: The first 3 steps in the canonical evolution history for the set substitution
rule {{x , y} , {y , z}} → {{w , y} , {y , z} , {z ,w} , {x ,w}}, as represented by a
single path in the associated multiway evolution graph.
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Multiway Systems as Monoidal Categories I

A multiway evolution graph is a category C equipped with a monoidal
bifunctor ⊗:

⊗ : C× C→ C, (18)

reflecting the fact that multiway evolution edges can be composed in
parallel, as well as sequentially.
Since the multiway evolution edges can be inverted (by swapping L and R
in the rule ρ = (l : K → L, r : K → R)), our category C is also a dagger
category, since it comes equipped with a natural involutive functor †:

† : Cop → C, (19)

that is compatible with the monoidal structure ⊗.
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Multiway Systems as Monoidal Categories II

Since every hypergraph H = (V ,E ) possesses a corresponding dual
H∗ = (V ∗,E ∗) (which is itself involutive, i.e. (H∗)∗ ∼= H), such that
V ∗ = {ei}, where ei ∈ E , and E ∗ = {Xm}, where:

Xm = {ei |xm ∈ ei} , (20)

it follows that the dagger-symmetric monoidal category C is also compact
closed.
Specifically, for every object A in ob (C), there exists a corresponding dual
object A∗ in ob (C) that is unique up to canonical isomorphism.
This compact structure designates an additional pair of morphisms ηA (the
unit) and εA (the counit) in hom (C):

ηA : I → A∗ ⊗ A, and εA : A⊗ A∗ → I , (21)

such that the monoidal structure ⊗, the dagger structure † and the
compact structure (with unit η and counit ε) are all compatible.
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Monoidal Example: ZX-Calculus I

Figure: Multiway states graphs corresponding to the first 2 steps in the
non-deterministic evolution history of the ZX-calculus multiway operator system,
starting from a two-spider initial diagram, using only the (input arity 2 variants of
the) Z- and X-spider identity rules, respectively.
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Monoidal Example: ZX-Calculus II

Figure: The multiway states graph corresponding to the first 2 steps in the
non-deterministic evolution history of the composite ZX-calculus multiway
operator system, starting from a two-spider initial diagram, using both the (input
arity 2 variants of the) Z- and X-spider identity rules.
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Monoidal Example: ZX-Calculus III

Figure: The multiway states graph corresponding to the first 2 steps in the
non-determinsitic evolution history of the ZX-calculus multiway operator system,
starting from a composite four-spider initial diagram, using only the (input arity 2
variant of the) Z-spider identity rule.
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Monoidal Example: ZX-Calculus IV

Figure: The corresponding branchial graphs, as witnessed within the default
foliation of the multiway states graph for the ZX-calculus multiway operator
system, starting from a two-spider initial diagram, using only the (input arity 2
variants of the) Z- and X-spider identity rules, respectively.
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Monoidal Example: ZX Calculus V

Figure: The corresponding branchial graph, as witnessed within the default
foliation of the multiway states graph for the composite ZX-calculus multiway
operator system, starting from a two-spider initial diagram, using both of the
(input arity 2 variants of the) Z- and X-spider identity rules.
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Monoidal Example: ZX-Calculus VI

Figure: The corresponding branchial graph, as witnessed within the default
foliation of the multiway states graph for the ZX-calculus multiway operator
system, starting from a composite four-spider initial diagram, using only the
(input arity 2 variant of the) Z-spider identity rule.
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Causal Graphs as Partial Monoidal Categories I

Definition

A causal graph, denoted Gcausal = (Vcausal ,Ecausal), is a directed, acyclic
graph associated to a given multiway evolution history, in which every
vertex in Vcausal corresponds to a rewrite, and in which the directed edge
a→ b exists in Ecausal (for a, b ∈ Vcausal) if and only if:

In (b) ∩Out (a) 6= ∅. (22)

Thus, the transitive reduction of a causal graph yields the Hasse diagram
for a causal partial order relation ≺ in the set of rewrites C, such that:

@x , y ∈ C, such that x ≺ y and y ≺ x , (23)

and:

∀x , y , z ∈ C, x ≺ y and y ≺ z =⇒ x ≺ z . (24)
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Causal Graphs as Partial Monoidal Categories II

Figure: The causal graphs corresponding to the first 3 and 5 steps in the
deterministic evolution history for the set substitution rule
{{x , y} , {x , z}} → {{x , y} , {x ,w} , {y ,w} , {z ,w}}, respectively.
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Causal Graphs as Partial Monoidal Categories III

Definition

A partial functor F : B→ C between categories B (the domain of F ) and
C is a functor F̂ : A→ C, where A (the domain of definition of F ) is a
subcategory of B.

If the domain is a product category, then F is a partial bifunctor.
A causal graph is a category C equipped with a partial bifunctor ⊗ - the
partial monoidal structure:

⊗ : C× C→ C (25)

whose domain of definition dd (⊗) is a full subcategory of its domain,
along with a distinguished unit object I .
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Causal Graphs as Partial Monoidal Categories IV

Necessary conditions (Coecke and Lal):

(A, I ) ∈ dd (⊗) , (I ,A) ∈ dd (⊗) , and A⊗ I = A = I ⊗ A,
(26)

(A,B) , (A⊗ B,C ) ∈ dd (⊗) ⇐⇒ (B,C ) , (A,B ⊗ C ) ∈ dd (⊗) ,
(27)

for any objects A, B and C in ob (C). Moreover, whenever objects
A⊗ (B ⊗ C ) and (A⊗ B)⊗ C both exist, one has:

A⊗ (B ⊗ C ) = (A⊗ B)⊗ C . (28)
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Causal Graphs as Partial Monoidal Categories V

For any morphisms f , g and h in hom (C), whenever the morphisms
f ⊗ (g ⊗ h) and (f ⊗ g)⊗ h both exist, one has:

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h. (29)

Finally, whenever a pair of objects A and B exist in ob (C), such that:

(A,B) , (B,A) ∈ dd (⊗) , (30)

there exists a symmetry morphism σA,B of the form:

σA,B : A⊗ B → B ⊗ A, (31)

with the property that:

σA,B ◦ σB,A = idA⊗B . (32)
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Causal Graphs as Partial Monoidal Categories VI

In this way, our causal graphs are symmetric strict partial monoidal
categories (C,⊗, I ) (symmetric strict because the α, λ and ρ isomorphisms
are all identity isomorphisms).
We can think of these as being causal categories (CC,⊗, I ), for which
every object A in ob (CC) has at least one element:

CC (I ,A) 6= ∅, (33)

for which the unit object I in ob (CC) is terminal, i.e. for every object A in
hom (CC), there exists a unique morphism >A : A→ I , and for which the
monoidal product A⊗ B (for objects A and B in ob (CC)) exists if and
only:

CC (A,B) = [CC (I ,B)] ◦ >A, and CC (B,A) = [CC (I ,A)] ◦ >B .
(34)

Jonathan Gorard (University of Cambridge jg865@cam.ac.uk)Fast Diagrammatic Reasoning and Compositional Approaches to Fundamental PhysicsApril 29, 2021 43 / 67

jg865@cam.ac.uk


Multiway Evolution Causal Graphs

Figure: The multiway evolution causal graph corresponding to the first 4 steps in
the non-deterministic evolution history for the set substitution rule
{{x , y} , {z , y}} → {{x ,w} , {y ,w} , {z ,w}} (with state vertices shown in blue,
rewriting event vertices shown in yellow, evolution edges shown in gray and causal
edges shown in orange.
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A Categorical Semantics for Quantum Gravity?

Ultimately, out multiway evolution causal graphs appear to be (weak)
2-categories, with two different monoidal structures “knocking around”: a
dagger compact closed monoidal structure ⊗M on the 1-morphisms (from
the multiway evolution graph), and a symmetric strict partial monoidal
structure ⊗C on the 2-morphisms (from the causal graph).
Physical intuition: ⊗M encodes the “quantum” aspects of the formalism,
while ⊗C encodes the “relativistic” aspects of the formalism, with the
symmetry morphism σA,B of ⊗C encoding some kind of “spatial inversion”
operation, etc.
Can potentially be formalized in terms of double categories, bicategories,
...?
The coherence and compatibility conditions between ⊗M and ⊗C
effectively parametrize possible models for “quantum gravity”.

Jonathan Gorard (University of Cambridge jg865@cam.ac.uk)Fast Diagrammatic Reasoning and Compositional Approaches to Fundamental PhysicsApril 29, 2021 45 / 67

jg865@cam.ac.uk


Causal Semantics Example: ZX-Calculus I

Figure: A subgraph of the multiway evolution causal graph corresponding to the
first 2 steps in the non-deterministic evolution of the ZX-calculus multiway
operator system, starting from a two-spider initial diagram (with state vertices
shown in blue, rewriting event vertices shown in yellow, evolution edges shown in
gray and causal edges shown in orange), restricted here to use only Z-spider
identity rules.
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Causal Semantics Example: ZX-Calculus II

Figure: The multiway evolution causal graph corresponding to the first 2 steps in
the non-deterministic evolution of the ZX-calculus multiway operator system,
starting from a two-spider initial diagram (with state vertices shown in blue,
rewriting event vertices shown in yellow, evolution edges shown in gray and causal
edges shown in orange), with no restrictions.
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Equational Reasoning with Causal Structure I

By ordering equational terms using a selection function S based on their
causal edge density, we construct a refutation-complete proof calculus for
first-order diagrammatic logic (with equality) that generalizes the standard
Knuth-Bendix unfailing completion procedure.
Specifically, we introduce the inference rules of selective resolution:

Λ ∪ {u ≈ v} =⇒ Π

Λσ =⇒ Πσ , (35)

selective superposition:

Γ =⇒ ∆ ∪ {s ≈ t} {u [s ′] ≈ v} ∪ Λ =⇒ Π

{u [t]σ ≈ vσ} ∪ Γσ ∪ Λσ =⇒ ∆σ ∪ Πσ , (36)

and ordered resolution:

Γ =⇒ ∆ ∪ {P (s1, . . . , sn) ≈ tt} {P (t1, . . . , tn) ≈ tt} ∪ Λ =⇒ Π

Γσ ∪ Λσ =⇒ ∆σ ∪ Πσ .
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Equational Reasoning with Causal Structure II

Within these inference rules, u ≈ v is any occurrence of an equation
within the clause:

{u ≈ v} ∪ Λ =⇒ Π, (38)

that is maximal with respect to the selection function S .
A tedious and elaborate construction allows us to define a morphism Θ
between higher-order diagrammatic logics Ln and first-order multisorted
logic L1

sort (with equality):

Θ : Ln (S)→ L1
sort (Θ (S)) , (39)

mapping sets of formulas F in the higher-order logic Ln (S) to sets of
formulas in the first-order multisorted logic L1

sort (Θ (S)):

Θ : F (Ln (S))→ F (Lnsort (Θ (S))) . (40)
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Theorem-Proving over Wolfram Model Systems I

Figure: The first 4 steps in the non-deterministic evolution history for the set
substitution rule {{x , y} , {x , z}} → {{x , z} , {x ,w} , {y ,w}}, as represented by a
multiway evolution graph, with the path between states {{0, 0} , {0, 0}} and
{{0, 1} , {0, 3} , {1, 3} , {0, 2} , {0, 4} , {2, 4}} highlighted.
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Theorem-Proving over Wolfram Model Systems II

Figure: The proof graph corresponding to the proof of the proposition that state
{{0, 1} , {0, 3} , {1, 3} , {0, 2} , {0, 2} , {0, 4} , {2, 4}} is reachable from initial state
{{0, 0} , {0, 0}}, subject to the set substitution rule
{{x , y} , {x , z}} → {{x , z} , {x ,w} , {y ,w}}.

Jonathan Gorard (University of Cambridge jg865@cam.ac.uk)Fast Diagrammatic Reasoning and Compositional Approaches to Fundamental PhysicsApril 29, 2021 51 / 67

jg865@cam.ac.uk


Theorem-Proving over Wolfram Model Systems III

Figure: The first 3 steps in the non-deterministic evolution history for the set
substitution rule {{x , y} , {x , z}} → {{x , z} , {x ,w} , {y ,w} , {z ,w}}, as
represented by a multiway evolution graph, with the path between states
{{0, 0} , {0, 0}} and {{0, 1} , {0, 2} , {0, 2} , {1, 2} , {0, 1} , {0, 3} , {1, 3} , {1, 3}}
highlighted.
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Theorem-Proving over Wolfram Model Systems IV

Figure: The proof graph corresponding to the proof of the proposition that state
{{0, 1} , {0, 2} , {0, 2} , {1, 2} , {0, 1} , {0, 3} , {1, 3} , {1, 3}} is reachable from
initial state {{0, 0} , {0, 0}}, subject to the set substitution rule
{{x , y} , {x , z}} → {{x , z} , {x ,w} , {y ,w} , {z ,w}}.
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Theorem-Proving in the ZX-Calculus I

Figure: The statement of correctness for a complete quantum teleportation
protocol, represented as a theorem in the ZX-calculus.
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Theorem-Proving in the ZX-Calculus II

Figure: The proof graph corresponding to the proof of correctness for the
complete quantum teleportation protocol, subject to the rules of the ZX-calculus.
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Performance Test (Quantum Circuit Simplification) I

We test the algorithm against two common classes of circuit simplification
task in quantum information theory: the diagrammatic reduction of
Clifford circuits to a pseudo-normal form (graph state with local Cliffords),
and the diagrammatic simplification of non-Clifford circuits via reduction
of T-count.
These tests are performed using randomly-generated quantum circuits up
to 3000 gates in size, both with and without causal optimization, and
comparing both time complexity and proof complexity.
The method is found to comparable very favorably against pre-existing
software frameworks and algorithms, such as PyZX and Quantomatic.
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Performance Test (Quantum Circuit Simplification) II

Figure: Plots showing the time complexity (in seconds) of the automated
theorem-proving algorithm when reducing randomly-generated Clifford circuits
with sizes up to 3000 gates down to pseudo-normal form, both with (right) and
without (left) causal optimization.
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Performance Test (Quantum Circuit Simplification) III

Figure: Plots showing the proof complexity (in proof steps) of the proofs
generated by the automated theorem-proving algorithm when reducing
randomly-generated Clifford circuits with sizes up to 3000 gates down to
pseudo-normal form, both with (right) and without (left) causal optimization.

Jonathan Gorard (University of Cambridge jg865@cam.ac.uk)Fast Diagrammatic Reasoning and Compositional Approaches to Fundamental PhysicsApril 29, 2021 58 / 67

jg865@cam.ac.uk


Performance Test (Quantum Circuit Simplification) IV

Figure: Plots showing the time complexity (in seconds) of the automated
theorem-proving algorithm when minimizing the number of T-gates in
randomly-generated non-Clifford circuits, both with (right) and without (left)
causal optimization.
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Performance Test (Quantum Circuit Simplification) V

Figure: Plots showing the proof complexity (in proof steps) of the proofs
generated by the automated theorem-proving algorithm when minimizing the
number of T-gates in randomly-generated non-Clifford circuits, both with (right)
and without (left) causal optimization.
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Future Work: Petri Nets I

Dealing now with the adhesive HLR category PTNets...

Figure: Multiway states graph corresponding to the first step in the
non-deterministic evolution history of a Petri net multiway system.
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Future Work: Petri Nets II

Figure: Multiway states graph corresponding to the first 2 steps in the
non-deterministic evolution history of a Petri net multiway system.

(SPO works like a Petri net with read and reset arcs. DPO works like Petri
nets with read and inhibitor arcs.)
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Future Work: HoTT I

Proof graphs themselves are diagrammatic structures (i.e. labeled
digraphs). Can we define a corresponding reasoning language?

Figure: The proof graph corresponding to the proof of a simple proposition in
group theory.
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Future Work: HoTT II

Figure: Diagrammatic inference rules for the fusion/fission operation on
substitution lemmas.
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Future Work: HoTT III

Figure: Diagrammatic inference rules for the compatibility operation between
substitution lemmas and critical pair lemmas.
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Future Work: HoTT IV

A diagramatic reasoning language for mathematical proofs (and hence
homotopy type theory): each multiway system represents the homotopy
type for a given logical proposition.

Figure: Multiway states graph corresponding to the first 3 steps in the
non-deterministic evolution history of a proof graph multiway system.
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Code etc.

All code necessary to reproduce the simulations and visualizations
presented here is freely available on the open source Wolfram Function
Repository, e.g:

https://resources.wolframcloud.com/FunctionRepository/

resources/MultiwayOperatorSystem

https://resources.wolframcloud.com/FunctionRepository/

resources/MakeZXDiagram

https://resources.wolframcloud.com/FunctionRepository/

resources/FindWolframModelProof

https://resources.wolframcloud.com/FunctionRepository/

resources/QuantumDiscreteStateToZXDiagram

https://resources.wolframcloud.com/FunctionRepository/

resources/ZXDiagramToQuantumDiscreteState

etc.
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