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The law of large numbers

Theorem
Let (xn)n∈N be a sequence of real-valued independent random variables
with identical distribution and E[|x1|] <∞. Then

lim
n→∞

1
n

n∑
i=1

xi = E[x1]

with probability 1.

. Example: Upon repeatedly tossing a fair coin, the relative frequency
of heads approaches 1

2 with probability 1.

. But where are the categories?



Teaser
My goal is to explain this form of the law of large numbers:

Theorem/Definition
For every object X there is a partial morphism

resamp : XN → X

such that for every f : A→ X ,

f f · · ·

resamp

=

· · ·

f f f · · ·
· · ·



The big picture

Traditional probability theory Categorical probability theory

Analytic: Synthetic:
says what probabilities are says how probabilities behave

Analogous to number systems Analogous to abstract algebra

. There will be no numerical probabilities!

. I can say more about the motivations and scope of categorical
probability if there is need for discussion.



Definition
A Markov category is a symmetric monoidal category supplied with
copying and deleting operations on every object,

giving commutative comonoid structures

==
= =

which interact well with the monoidal structure, and such that for all f ,

=f



Semantics

There are many different (and interesting) Markov categories.

But for today, I have one particular intended semantics in mind:

Definition
BorelStoch is the category with:

. Standard Borel spaces as objects (finite sets, N and [0, 1]).

. Measurable Markov kernels as morphisms.

. Products of measurable spaces for ⊗.

BorelStoch encodes standard measure-theoretic probability.



Determinism

Definition
A morphism f : X → Y is deterministic if it commutes with copying,

f f
=

f

. Intuition: Applying f to copies of input = copying the output of f .

. Deterministic morphisms form a cartesian monoidal subcategory Cdet.

. BorelStochdet is the category of measurable functions between
standard Borel spaces.



Infinite tensor products

Let (Xn)n∈N be a family of objects.

For finite F ⊆ F ′ ⊆ N, we have projection morphisms⊗
n∈F ′

Xn −→
⊗
n∈F

Xn

given by composing with deletion for all n ∈ F ′ \ F , like this:

X1 Xn

X1

· · · · · ·



Infinite tensor products

Definition
The infinite tensor product

XN =
⊗
n∈N

Xn

is the limit of the finite tensor products X F :=
⊗

n∈F Xn if it exists and is
preserved by every −⊗ Y .

. Intuition: To map into an infinite tensor product, one needs to map
consistently into its finite subproducts.



Kolmogorov products

Definition
An infinite tensor product XN is a Kolmogorov product if the limit
projections πF : XN → X F are deterministic.

. This additional condition fixes the comonoid structure on XN.

. From now on: assume Markov category with countable Kolmogorov
products.

. Satisfied by BorelStoch (Kolmogorov extension theorem).



Positivity

Definition

C is positive if the following holds: if a composite gf is deterministic,
then also

g

f

g

=

f

f

. Intuition: If a deterministic process has a random intermediate result,
then that result can be computed independently from the process.

. Positivity implies that every isomorphism is deterministic.

. Not every Markov category is positive.



Partial morphisms

. In the law of large numbers, the limit

lim
n→∞

1
n

n∑
i=1

xi

does not always exist.

. This suggests the need for partial morphisms in categorical
probability.

. Under certain “partializability” conditions we indeed get a monoidal
restriction category.



Partial morphisms

Definition
A positive Markov category is partializable if deterministic monos are
closed under

. pullbacks,

. tensor products.

. In BorelStoch, the deterministic subobjects of X are the
measurable sets S ⊆ X .

. This is a deep fact of descriptive set theory!

. Thanks to it, one can show that BorelStoch is partializable.



Resampling

. In statistics, resampling is a set of methods to estimate
generalization (e.g. cross-validation).

. Here, I mean something different but closely related:

Resampling =
Pick an element from an infinite sequence

uniformly at random

. This doesn’t make literal sense since there is no uniform
distribution on N.

. But it can be made to work for some sequences (xn).

. Thus we get a partial morphism

resamp : XN → X .



Resampling

. In BorelStoch, we would want to define

resamp(S | (xn)) := lim
n→∞

1
n

n∑
i=1

1S(xi )

whenever this limit exists for all measurable S .

. For finite n, this indeed corresponds to choosing an element from a
finite sequence uniformly at random.

. The problem is that the resulting

resamp(− | (xn))

would not always be a probability measure.

. Can be fixed by imposing uniform existence of the limits.



Back to the law of large numbers

We can now understand the following:

Theorem
In BorelStoch, every f : A→ X satisfies

f f · · ·

resamp

=

· · ·

f f f · · ·
· · ·

This statement encodes the Glivenko–Cantelli theorem on the
convergence of the empirical distribution, a strong law of large numbers.



Coin example

· · ·

resamp

=

· · ·

· · ·
· · ·

. Interpretation: flipping infinitely many fair coins and then picking a
random one makes the latter

. independent of, and

. identically distributed as

the others.



Coin example

· · ·

resamp

=

· · ·

· · ·
· · ·

. In terms of random outcomes ci ∈ { , }, this equation says

lim
n→∞

1
n

n∑
i=1

1 (ci ) =a.s. P[ ] =
1
2
,

an instance of the law of large numbers.



Summary
. Markov categories = emerging framework for synthetic probability.

. We have abstract versions of some theorems of probability and
statistics:

. 0/1-laws of Kolmogorov and Hewitt-Savage,

. Fisher factorization theorem on sufficient statistics,

. Blackwell-Sherman-Stein theorem on informativeness of statistical
experiments,

. de Finetti theorem on exchangeable distributions.

. We should try to add the law of large numbers to this list!

. There are further hints of connections with ergodic theory.



Bonus slides: Why categorical probability?

In no particular order:

. Applications to probabilistic programming.

. Prove theorems in greater generality and with more intuitive proofs.

. Reverse mathematics: sort out interdependencies between theorems.

. Ultimately, prove theorems of higher complexity?

. Simpler teaching of probability theory. (String diagrams!)

. Different conceptual perspective on what probability is.



Discrete probability theory as a Markov category

One of the paradigmatic Markov categories is FinStoch, the category of
finite sets and stochastic matrices: a morphism f : X → Y is

(f (y |x))x∈X ,y∈Y ∈ RX×Y

with
f (y |x) ≥ 0,

∑
y

f (y |x) = 1.

Composition is the Chapman-Kolmogorov formula,

(gf )(z |x) :=
∑
y

g(z |y) f (y |x).

A morphism p : 1→ X is a probability distribution.

A general morphism X → Y has many names: Markov kernel,
probabilistic mapping, communication channel, . . .



The monoidal structure implements stochastic independence,

(g ⊗ f )(xy |ab) := g(x |a) f (y |b).

The copy maps are

copyX : X −→ X × X , copyX (x1, x2|x) =

{
1 if x1 = x2 = x ,

0 otherwise.

The deletion maps are the unique morphisms X → 1.



. Works just the same with “probabilities” taking values in any
semiring R .

. Taking R to be the Boolean semiring B = {0, 1} with

1+ 1 = 1

results in the Kleisli category of the nonempty finite powerset monad.

⇒ We get a Markov category for non-determinism.

. Measure-theoretic probability: Kleisli category of the Giry monad.



Almost sure equality

Definition
Let p : A→ X and f , g : X → Y .

f and g are equal p-almost surely, f =p-a.s. g , if

p

f

=
p

g

. Intuition: f and g behave the same on all inputs produced by p.

. In BorelStoch, coincides with the standard notion of a.s. equality.

. Other concepts relativize similarly with respect to p-almost surely.



Conditionals

Definition
A Markov category has conditionals if for every f : A→ X ⊗ Y there is
f|X : X ⊗ A→ Y with

X

f|X

=f

f
A

X Y

Y

A

. Intuition: The outputs of f can be generated one at a time.



Bayesian inversion

Every s : X → Y has a Bayesian adjoint s† : Y → X satisfying:

p

p

=

s s†

X Y X Y

s

The Bayesian adjoint s† depends on p.



The causality axiom

Definition
C is causal if

f

h1

=g

f

h2

g implies

f

h1

=g

f

h2

g

. Intuition: The choice between h1 and h2 in the “future” of g does
not influence the “past” of g .

. Not every Markov category is causal.



The causality axiom

Definition
C is causal if

f

h1

=g

f

h2

g implies

f

h1

=g

f

h2

g

. Intuition: The choice between h1 and h2 in the “future” of g does
not influence the “past” of g .

. Not every Markov category is causal.



Representability

Definition
A Markov category C is representable if for every X ∈ C there is PX ∈ C
and a natural bijection

Cdet(−,PX ) ∼= C(−,X ),

and a.s.-compatibly representable if this respects p-a.s. equality for
every p.

. Intuition: PX is space of probability measures on X .

. Under the bijection, the deterministic id : PX → PX corresponds to

sampX : PX → X ,

the map that returns a random sample from a distribution.



Kleisli categories are Markov categories

Proposition
Let

. D be a category with finite products,

. P a commutative monad on D with P(1) ∼= 1.

Then the Kleisli category Kl(P) is a Markov category in the obvious way.

Examples:

. Kleisli category of the Giry monad, other related monads for
measure-theoretic probability.

. Kleisli category of the non-empty power set monad, which is (almost)
Rel.

The proposition still holds when D is merely a Markov category itself!



Categories of comonoids

Proposition
Let C be any symmetric monoidal category. Then the category with:

. Commutative comonoids in C as objects,

. Counital maps as morphisms,

. The specified comultiplications as copy maps,

is a Markov category.

A good example is Vectopk for a field k :

. The comonoids correspond to commutative k-algebras of k-valued
random variables.

. We obtain algebraic probability theory with “random variable
transformers” as morphisms (formal opposites of Markov kernels).



Diagram categories and ergodic theory

Proposition
Let D be any category and C a Markov category. The category in which

. Objects are functors D→ Cdet,

. Morphisms are natural transformations with components in C.

With the poset D = Z, we get a category of discrete-time stochastic
processes.

This generalizes an observation going back to (Lawvere, 1962).

We can also take D = BG for a group G , resulting in categories of
dynamical systems with deterministic dynamics but stochastic morphisms.



Hyperstructures: categorical algebra in Markov categories

A group G is a monoid G together with (−)−1 : G → G such that

(−)−1 = (−)−1=

This equation can be interpreted in any Markov category! (Together with
the bialgebra law.)



. More generally, one can consider models of any algebraic theory in any
Markov category.

. In Kleisli categories of probability-like monads, these are known as
hyperstructures.

. Peter Arndt’s suggestion:

Develop categorical algebra for hyperstructures in terms of Markov
categories!



The synthetic Kolmogorov zero–one law

Theorem
Let XI be a Kolmogorov product of a family (Xi )i∈I .

If
. p : A→ XI makes the Xi independent and identically distributed, and

. s : XI → T is such that

πF

p

s

A

XF T

displays XF ⊥ T ||A for every finite F ⊆ I ,

then ps is deterministic.



The classical Hewitt–Savage zero-one law

Theorem
Let (xn)n∈N be independent and identically distributed random variables,
and S any event depending only on the xn and invariant under finite
permutations.

Then P(S) ∈ {0, 1}.



The synthetic Hewitt–Savage zero-one law

Theorem
Let J be an infinite set and C a causal Markov category. Suppose that:

. The Kolmogorov power X⊗J := limF⊆J finite X
⊗F exists.

. p : A→ X⊗J displays the conditional independence ⊥i∈J Xi ‖A.

. s : X J → T is deterministic.

. For every finite permutation σ : J → J, permuting the factors
σ̃ : X⊗J → X⊗J satisfies

σ̃p = p, sσ̃ = s.

Then sp is deterministic.

Proof is by string diagrams, but far from trivial!



Detour: random measures

. Suppose that I hand you a coin (which may be biased).

. How much would you bet on the outcome

heads, tails, tails

when the coin is flipped 3 times?

⇒ Surely the same as you would bet on

tails, tails, heads.

. Your bets satisfy permutation invariance. Can we say more?



Classical de Finetti theorem

A sequence (xn)n∈N of random variables on a space X is exchangeable if
their distribution is invariant under finite permutations σ,

P[]
[
x1 ∈ Sσ(1), . . . , xn ∈ Sσ(n)

]
= P[] [x1 ∈ S1, . . . , xn ∈ Sn] .

Theorem
If (xn) is exchangeable, then there is a measure µ on PX such that

P[] [x1 ∈ S1, . . . , xn ∈ Sn] =

∫
p(x1 ∈ S1) · · · p(xn ∈ Sn)µ(dp).

Idea: sequence of tosses of a coin with unknown bias!



The de Finetti theorem

Assumption: All three axioms above hold. (True for BorelStoch.)

Definition
p : A→ XN is exchangeable if it is invariant under composing with finite
permutations.

Sampling N times gives a morphism PX → XN given by

sampsamp · · ·



The de Finetti theorem

Theorem
For every exchangeable p : A→ XN there is q : A→ PX such that

sampsamp · · ·

q

p =

· · ·

. Intuition: The probabilities associated to your bets arise from
sampling from a random distribution.


