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Models of HoTT from QMC

Quillen model categories are used to model homotopy theory.
They can also be used to model Homotopy Type Theory.

I Hofmann-Streicher groupoid model can be viewed post hoc
in terms of a QMS on Gpd. This also works for GpdC

(stacks as in Shulman’s Topos Colloquium)

I A-Warren: models in general WFS and QMC (Id)

I Van den Berg-Garner: special WFS on sSet and Spaces (Π)

I Voevodsky: the Kan QMS on sSet (U)

I Shulman: every ∞-topos models HoTT

At each step, a more specialized QMC led to “better” models,
with Id,Σ,Π and eventually univalent U.

Finally, Shulman showed just what was needed to build a model.



QMC from models of HoTT

One can also reverse the model construction, in a certain sense:
start from a model of HoTT and construct from it a QMC.

We then have the following:

Conjecture

The resulting QMC presents an ∞-topos.

This reinforces the idea of HoTT as the internal language of
∞-topoi, just as IHOL is the internal language of 1-topoi.

HoTT/∞-topos :: IHOL/topos

It also gives a strange new way of constructing a QMC,
using ideas from type theory (today’s main emphasis).



Models of HoTT

The models of HoTT that we start with are formulated in IHOL
or extensional type theory. This is like a translation of one logical
system into another. These models can even be formalized.

We can also describe this kind of model construction semantically
in an elementary topos.

Definition (pace Orton-Pitts)

A premodel of HoTT in a topos E consists of (I,Φ,V), where:

I I is an interval 1⇒ I
(that is tiny (−)I a (−)I and ...)

I Φ is a representable class of monos Φ ↪→ Ω
(that is a dominance and ...)

I V̇→ V is a universal small map,
(that is closed under Σ,Π and ...)

We will instead use this set-up to construct a QMS on E .



QMS from a premodel

The construction of a QMS (C,W,F) from a premodel (I,Φ,V)
has so far been done for the following cases of a topos E :

Cubical sets E = SetC
op

for C:

I Dedekind cubes (Sattler)

I Cartesian cubes (A)

I Cartesian cubes with equivariance (ACCRS)

Other examples in progress include:

I cubical realizability (AAFS)

I (higher) stacks (Coquand)

I simplicial and cubical (pre)sheaves

I quasi-categories



The premodel (I,Φ,V) in E

For today, the topos E will be the Dedekind cubical sets

E = SetC
op

where C ↪→ Cat is the full subcategory on the finite powers of 2.
This fp-category C is the Lawvere theory of distributive lattices.

The interval I = y(2) therefore has connections,

∧,∨ : I× I // I ,

in addition to the endpoints,

δ0, δ1 : 1 // I .

This is because I× I = y(2)× y(2) ∼= y(2× 2) and 1 ∼= y(1).

Moreover I is indeed tiny, since C is closed under finite products.



The premodel (I,Φ,V) in E

The subobject Φ ↪→ Ω is called the cofibration classifier.
Logically, it determines a modal operator cof : Ω→ Ω on
propositions. It will determine which monos are cofibrations in
our model structure. The dominance law

cof(p) ∧ (p ⇒ cof(q))⇒ cof(p ∧ q)

will imply that these monos are closed under composition.

For today, we will take Φ = Ω to be simply all monos.

For some applications other choices are better. For example, one
can take those monos m : A� B in SetC

op
whose components

mc : A(c)� B(c) are complemented subobjects in Set. This
condition is non-trivial if Set is not assumed to be boolean, as in
realizability or constructive mathematics, or in a relative setting
where e.g. Set = Sh(X ) (simplicial sheaves).



The premodel (I,Φ,V) in E

For V̇→ V we take a (Hofmann-Streicher) universe determined by
a large enough cardinal κ. Thus let Setκ ↪→ Set be the full
subcategory of sets of size < κ, called small. Then let:

V(c) = {S : (C/c)op // Setκ},
the set of small presheaves on C/c

V̇(c) = {Ṡ : (C/c)op // ˙Setκ},
the set of small pointed presheaves on C/c .

Definition
An object A in E is small if its values A(c) are small, for all c ∈ C.
A map A→ X in E is small if its fibers Ax = x∗A are small,
for all x : y(c)→ X .



The premodel (I,Φ,V) in E

Proposition

For every small map A→ X there is a classifying map a : X → V
fitting into a pullback diagram of the form:

A

��

// V̇

��

X a
// V

The universe V is closed under Σ and Π because small maps are
closed under the adjoints Σ a ∗ a Π to pullback along small maps.



QMS on E from (I,Φ,V)

A Quillen model structure (C,W,F) is then constructed in 3 steps:

1. use Φ to determine a wfs (C,TFib),

2. use (1) and I to determine a wfs (TCof,F),

3. let W = TFib ◦ TCof and show 3-for-2.

It is mainly the third step that involves new ideas from type theory.



QMS on E from (I,Φ,V)

Specifically, we use a universal fibration U̇� U as follows.

(i) construct U̇� U as V̇→ V equipped with a
type of fibration structures,

(ii) show that U̇� U is univalent,

(iii) univalence implies that U is fibrant,

(iv) fibrant U implies 3-for-2 for W.

The idea of getting a QMS from univalence is due to Sattler.



1. The cofibration wfs (C,TFib)

The cofibrations C are just the monos C � D (for today).

The trivial fibrations TFib are the maps T → X with the
right lifting property against the cofibrations.

C��

��

// T

����

D //

??

X



1. The cofibration wfs (C,TFib)

Using the classifier Φ for C, one can show:

Proposition

A map T → X is in TFib iff it can be equipped with a coherent
choice α of diagonal fillers for all cofibrations c : C � In
(and all filling problems).

C ′��

��

// C��

��

// T

�� ��

Im //

αc′

77

In //

αc

??

X

Such an α is then an algebraic structure on T → X , and there is a
classifying type TFib(T )→ X for such structures.



2. The fibration wfs (TCof,F)

The fibrations F are defined in terms of the trivial fibrations by

f ∈ F iff (δ⇒ f ) ∈ TFib

where δ⇒(−) is the pullback-hom functor E2 → E2 given by an
endpoint δ : 1→ I.

The trivial cofibrations TCof are maps with the LLP against F .

Small generators: For c : C � In a cofibration and δ : 1→ I an
endpoint, let

c ⊗ δ : [c]� In × I

be the (partial) open box with [c] = In +C (C × I).

( Think: t� � )



2. The fibration wfs (TCof,F)

Again we have:

Proposition

A map F → X is in F iff it can be equipped with a coherent choice
α of diagonal fillers for all open boxes [c] (and all filling problems),

[c ′]
��

��

// [c]
��

��

// F

����

Im × I //

αc′

55

In × I //

αc

<<

X

for all maps Im → In.

Such an α is again an algebraic structure on F → X , and again
there is a classifying type Fib(F )→ X for such structures.



3. The weak equivalences W

Definition
A map w : A→ B is a weak equivalence if it factors as a trivial
cofibration followed by a trivial fibration.

A ��

tc
��

w // B

·
tf

?? ??

It is then easy to show:

Proposition

TCof =W ∩ C
TFib =W ∩F

Corollary

If W satisfies 3-for-2, then (C,W,F) is a QMS on E .



(i) A universal fibration U̇� U

Definition
A universal fibration is a small fibration U̇� U such that every
small fibration A� X is a pullback of U̇� U along a classifying
map X → U.

A

����

// U̇

����

X // U

We will construct a universal fibration using the classifying type for
fibration structures.



(i) A universal fibration U̇� U

For any A→ X there is a classifying type for fibration structures,

Fib(A) // X ,

sections of which correspond to fibration structures α on A→ X .

A

��

Fib(A) // X

α

��

NB: Fib(A)→ X is small when A→ X is small.



(i) A universal fibration U̇� U

The map Fib(A)→ X is stable under pullback,

f ∗Fib(A) ∼= Fib(f ∗A).

Thus the bottom square below is also a pullback.

f ∗A

��

// A

��

Y
f

// X

Fib(f ∗A)

OO

// Fib(A)

OO

The construction of Fib(A) uses the root functor (−)I a (−)I.



(i) A universal fibration U̇� U

Now let U be the type of fibration structures on V̇→ V,

U = Fib(V̇) // V.

Then define U̇→ U by pulling back the universal small map:

U̇

��

// V̇

��

U // V



(i) A universal fibration U̇� U

Since Fib(−) is stable under pullback, the lower square below is a
pullback.

U̇

��

// V̇

��

U //

��

V

Fib(U̇)

OO

// Fib(V̇)

OO

Since U = Fib(V̇), there is a section of Fib(U̇) (namely ∆U).

So U̇→ U is a fibration.



(i) A universal fibration U̇� U

A fibration structure α on a small map A→ X then gives rise
to a factorization (a, α) of its classifying map a : X → V.

A

����

// V̇

��

Fib(A)

""

// Fib(V̇)

""
X a

//
α

UU

(a,α)

<<

V



(i) A universal fibration U̇� U

A fibration structure α on a small map A→ X gives rise to a
factorization (a, α) of its classifying map a : X → V,

A

��

//

""

V̇

��

U̇

��

<<

Fib(A)

""

// Fib(V̇)

""
X a

//
α

UU

(a,α)

<<

V

which then classifies it as a fibration, since Fib(V̇) = U.



(i) The universal fibration U̇� U in type theory

The type of fibration structures Fib(A) is an example of
type-theoretic thinking.

It can be constructed as the “type of proofs that A is a fibration”
using the propositions-as-types idea (as explained in Emily Riehl’s
Topos Colloquium).

A fibration on X is then a pair (A, α) consisting of a small family
A : X → V together with a proof α : Fib(A) that A is a fibration.

The universal fibration U̇� U is therefore

U =
∑
A:V

Fib(A) ,

U̇ =
∑

(A,α):U

A .



(i) The universal fibration U̇� U in type theory

Recall that the stability of Fib(A) under pullback required

f ∗Fib(A) = Fib(f ∗A) (∗)

for any f : Y → X . Indeed, we have a map

Fib : V // V
for which

Fib(A) = Fib ◦ A .

So (∗) is as simple as:

f ∗Fib(A) = Fib(A) ◦ f
= (Fib ◦ A) ◦ f
= Fib ◦ (A ◦ f )

= Fib(A ◦ f )

= Fib(f ∗A) .



(ii) Univalence

The universal fibration U̇� U is univalent if the type of (based)
equivalences Eq→ U is a trivial fibration.

(Once we have the QMS this will imply

Id(A,B) ' Eq(A,B)

by the interpretation of IdU as the pathspace UI.)

That Eq→ U is in TFib means it has the RLP against C:

C ′��

��

A′'B′ // Eq

��

C

A'B

>>

B
// U



(ii) Univalence

Definition (EEP)

The equivalence extension property says that weak equivalences
extend along cofibrations C ′� C as follows: given fibrations
A′ � C ′ and B � C and a weak equivalence w ′ : A′ ' B ′,
where B ′ = C ′ ×C B,

A′

����

∼
w ′

  

// A

����

∼
w

��

B ′

~~~~

// B

����

C ′ // // C

there is a fibration A� C and a weak equivalence w : A ' B,
which pulls back to w ′.



(ii) Univalence

Voevodsky proved this for simplicial sets and Kan fibrations, to
give the following.

Theorem (Voevodsky)

There is a universal small Kan fibration U̇� U in simplicial sets
that is univalent.

Coquand later gave a constructive proof for cubical sets, using type
theoretic reasoning.

We have adapted Coquand’s proof to a new homotopical one that
holds in many QMCs (without using 3-for-2).



(iii) U is fibrant

From univalence, we can show that the base object U is fibrant.

Theorem
The universe U is fibrant.

Voevodsky proved this directly for Kan simplicial sets using
minimal fibrations, which are specific to that setting.

Shulman gave a general proof from univalence, but it uses
3-for-2 for W, and so cannot be used here.

Coquand gave a proof from univalence that avoids 3-for-2, using
a type theoretic reduction of fibrancy to Kan composition.

We have a new general proof from univalence that avoids 3-for-2.



(iii) U is fibrant

It suffices to show:

Proposition

The evaluation at an endpoint UI // U is a trivial fibration.

Proof.
We need to solve the following filling problem for any cofibration c .

C��

c

��

a // UI

Uδ

��

Z

??

b
// U



(iii) U is fibrant

Transposing by I and using the classifying property of U gives the
following equivalent problem.

A0

��

����

// A

��

����

C��

c

��

C0

// C × I
��

c×I

��

B

����

// D

����

Z
Z0

// Z × I



(iii) U is fibrant

Now apply the functor (−)× I to the left face to get:

A0

��

����

// A

��

����

A0 × I

wwww

��

C��

c

��

C0

// C × I
��

��

B

����

// D

����

B × I

wwww

Z
Z0

// Z × I



(iii) U is fibrant

Now apply the functor (−)× I to the left face to get:

A0

��

����

// A

��

����

e
∼

// A0 × I

wwww

��

C

c

��

C0

// C × I

��

B

����

// D

����

B × I

wwww

Z
Z0

// Z × I

There is a weak equivalence e : A
∼−→ A0 × I, to which we can

apply the EEP.



(iii) U is fibrant

Now apply the functor (−)× I to the left face to get:

A0

��

����

// A

��

����

e
∼

// A0 × I

wwww

��

C

c

��

C0

// C × I

��

B

����

// D

����

∼
// B × I

wwww

Z
Z0

// Z × I

There is a weak equivalence e : A ' A0 × I, to which we can apply
the EEP. This produces the required fibration D � Z × I.



(iv) From fibrancy of U to 3-for-2

Finally, we can apply the following.

Proposition (Sattler)

The weak equivalences satisfy 3-for-2 if the fibrations extend
along the trivial cofibrations.

A

����

// A′

����

X // ∼
// X ′

This is called the fibration extension property.



(iv) From fibrancy of U to 3-for-2

Lemma
Given a universal fibration U̇� U, the FEP holds if U is fibrant.

A

%%
����

// A′

������

X

%%

// ∼ // X ′

��

U̇

��

U



Discussion: The big picture

There are currently two very different ways to model HoTT:

Logical/Type-Theoretic/Syntactic: In HOL or extensional DTT,
axiomatize (what we called) a premodel. Translate the language of
HoTT (intensional MLTT) into the resulting axiomatic theory.

Geometric/Homotopical/Semantic: Use a special kind of QMC
(roughly, a type-theoretic model topos à la Shulman) to interpret
intensional MLTT, using a univalent universal fibration.

I did not explain how to actually carry out either of these
interpretations. I just described the basic set-up for each.
In each case, a lot more work is required to actually give a
sound interpretation, i.e. a model.



Discussion: The big picture

What I did do in this talk was show how to turn a “logical” model
into a “geometric” one.

More precisely, we showed how to turn a presentation of a logical
model (described here as a premodel) into a presentation of a
geometric model (a QMS).

A missing final step in the comparison would now be something
like the following.

Theorem (-ish)

The resulting geometric model is “equivalent” to the logical one
that we started from: the interpretation of HoTT into the QMS
validates all the same judgements as the interpretation into the
logical theory (maybe up to ...).

Something like this will almost certainly be true, once we get the
definitions right.



Discussion: The big picture

This then begs the following:

Question
Which geometric models admit such a logical presentation?

Since the QMCs that we are using as geometric models describe
∞-topoi, we are in effect asking which ∞-topoi admit such a
logical presentation.

Moreover, a logical presentation can be described as a certain kind
of structured 1-topos, as we saw. So we can also formulate the
question entirely semantically: Which ∞-topoi can be presented in
this way by a premodel in a 1-topos?

My own guess would be that only a narrow range of all possible
∞-topoi admit such a description in terms of a structured 1-topos.



Thanks!


