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“No matter how much wishful thinking we do, the
theory of types is here to stay. There is no other way to
make sense of the foundations of mathematics. Russell
(with the help of Ramsey) had the right idea, and Curry
and Quine are very lucky that their unmotivated
formalistic systems are not inconsistent.”



Irom simple type theory to proof
assistants for higher-order logic

+ Russell (1910), Ramsey (1926), etc.
* Church’s typed A-calculus (1940) formalisation
“ base types including the Booleans, and function types

+ sets and specifications (e.g. N) coded as predicates (and
sometimes as types)

+ Wenzel (1997): axiomatic type classes



Advantages over dependent types

+ Simpler syntax, semantics, and therefore implementations

“ ... which therefore can give us more automation

+ Fewer surprises with hidden arguments, type checking

+ HOL is self-contained: inductive definitions, recursion, etc
are reducible to the base logic

+ Extensional equality for sets and functions



But 1s formalised maths possible?

Whitehead and Russell needed We have better formal
362 pages to prove 1+1=2! systems than theirs.

Godel proved that all reasonable But mathematicians also
formal systems must be incomplete! work from axioms!

Church proved that first-order We want to assist people,
logic is undecidable! not to replace them.




Mathematics 1in Isabelle/HOL.

Matrix theory, e.g¢. Perron—Frobenius
Jordan curve theorem e
Analytic number theory, eg
Central limit theorem e L s he
Residue theorem Nonstandard analysis
: Homology theor
Prime number theorem

Topology
Godel’s incompleteness theorems

Complex roots via Sturm sequences

Algebraic closure of a field

S ; . Measure, integration
Verification of the Kepler conjecture 5

and probability theory



Distinctive features of Isabelle/HOI.

+« Simple types with axiomatic type

2+ User-definable mathematical
classes

notation

+ Powerful automation: proots and

+ “Literate” proot documents can be
counterexamples

generated in LATgX

* Structured proof language +* An archive of over 600 proof

developments; 385 authors and

+ Interactive development e
b nearly 3 million lines of code

environment (PIDE)



Can we do set theory in higher-order logic?

+* HOL is actually weaker than Zermelo set theory
+ ... but we can simply add a type of ZF sets with the usual axioms.
* [our framework presupposes the axiom of choice]

+ ... and develop cardinals, ordinal arithmetic, order types and the rest.



Partiion notation: a — (f, y)"

[A]" denotes the set of unordered n-element sets of elements of A

if [a]" is partitioned (“coloured”) into two parts (0, 1) then there’s either

+ a subset B C a of order type [ whose n-sets are all coloured by 0
+ a subset C C a of order type Yy whose n-sets are all coloured by 1

Infinite Ramsey theorem: ® — (w, w)"



Krdos’ problem (for 2-element sets)

a — (a,2) is trivial a— (|a| + 1, w) fails for a > w

So which countable ordinals a satisty a — (@,3) ?

[t turns out that @ must be a power of @

In 1987, Erdss offered a $1000 prize for a full solution



Material formalised for this project

G- = (. m) (Specker)

W' T — (@', 2"  (Erdés and Milner)

0’ — (w”,m) (Milner, Larson)

Plus background theories: Cantor normal form for ordinals;
facts about order types; the Nash-Williams partition theorem

Project done with Mirna DZamonja and
Angeliki Koutsoukou-Argyraki



Paul FErdos and E. C. Milner, 1972

' T — (0'7% 2™ for @ an ordinal and n a natural number

“We have known this result since 1959”
(it's in Milner’s 1962 PhD thesis)

It's a five-page paper that needed a full-page correction in 1974.



We now conclude the proof of the theorem.
Since f is denumerable and nonzero, there is a sequence (y,:n<w) which repeats
each element of B infinitely often, i.e. such that

(11) {niy.=2}=R, (veB)

Since tp S=af, we may write S=S=(J (v € B)4,”(<).
Let n<w and suppose we have already chosen elements x; € S(i<n) and a subset

(12) S'" = U(» € B)AM(<)

of S of order type af3. Since « 1s right-SI, Ax:) contains a final section 4’ such that
A;:) N {xg, ..., Xx,_11<A4". By (10), there are x,, € A’, a strictly increasing map
g,:B—B and sets Af,"“’ (v € B) such that

(13) g.(y) =v: (<),

(14) Ay < Ky(x,) N 4G,  (vEB).
From the definition of A4’, it follows that

(15) X, € AW < S

and

(16) x;<x, if i<n and x,e4"

that there are x,, Af,") (v € B), S and g, such that (12)-(16) hold for n<w.
Let Z={x,:n<w}. If m<n<w, then by (15), (14), and (12) we have that



Key steps of Erdos and Milner’s proof

+ Every ordinal is a “strong type” (about 200 lines of machine proof)

* A “remark” about indecomposable ordinals (72 lines)

+ Akeylemma: af — (min(y, wp),2k) it a — (y, k) for k > 2
(about 960 lines)

14+an

%+ The main theorem w ool %N by induction on n (about 30 lines)

+ Larson’s corollary: W™ — (0", k) (about 35 lines)



Every ordinal 1s a “strong type”

We will say that § is a strong type if, whenever tp B=f and D < B,
then there are n<w and sets Dy, ..., D, < D such that

(5) tp D, is proposition strong ordertype eq:
6) if M < | assumes D: "D C elts /" and "Ord pB"
obtains L where "|J(List.set L) = D" "AX. X € List.set L = indecomposable (tp X)"
and "/AM. [M C D; AX. X € List.set L — tp (M N X) > tp X] = tp M = tp D"
proof -
define ¢ where "¢ = inv into D (ordermap D VWF)"
then have bij ¢: "bij betw ¢ (elts (tp D)) D"
using D bij betw inv into down ordermap bij by blast
have ¢ cancel left: "Ad. d € D = ¢ (ordermap D VWF d) = d"
by (metis D ¢ def bij betw inv into left down raw ordermap bij small iff range total on
have ¢ cancel right: "Avy. v € elts (tp D) = ordermap D VWF (y ~) = +"
by (metis ¢ def f inv into f ordermap surj subsetD)
have "small D" "D C ON"

using assms down elts subset ON [of #] by auto
then have ¢ less iff: "Ay 6. [y € elts (tp D); 6 € elts (tp D) = v v < ¢ § «— v < "
using ordermap mono less [of @~ VWF D] bij betw apply [OF bij ] VWF iff Ord less ¢ car




A remark about indecomposable ordinals

proposition indecomposable imp Ex less sets:

assumes indec: "indecomposable «" and "o > 1" and A: "tp A = " "small A" "A C ON"

and "x € A" and Al: "tp Al = " "Al C A"

obtains A2 where "tp A2 = a" "A2 C Al" "{x} <« A2"
proof -

have "Ord o"

using indec indecomposable imp Ord by blast
have "Limit "

by (simp add: assms indecomposable imp Limit)
define ©» where " = inv into A (ordermap A VWF)"
then have bij ¢: "bij betw ©» (elts «) A"

using A bij betw inv into down ordermap bij by blast

have bij om: "bij betw (ordermap A VWF) A (elts «)"
using A down ordermap bij by blast
define ~ where "+ = ordermap A VWF x"

/

have ~: "y € elts "
unfolding ~+ def using A <x € A> down by auto
then have "Ord ~"
using Ord in Ord <0rd o> by blast
define B where "B = ¢ = (elts (succ ~))"
show thesis
proof
have "small Al"
by (meson <small A> Al smaller than small)

then have "tp (Al - B) < tp Al"

[fxeAand A; C A, withtypeA,A, = q,
then there is A, C A, such that {x} < A,.



af —> (min(y, wp), 2k) it a —> (v, k)

= Assume there is no X € [af]** such that [X]? is 1-coloured
# Assume there is no C C af3 of order type y such that [C]? is 0-coloured
# Then show there is a Z C af of order type wf such that [Z]* is 0-coloured

this will require generating an w-chain of sets of type /3



theorem Erdos Milner aux:
assumes part: "partn lst VWF a [ord of nat k, ~] 2"
and indec: "indecomposable «" and "k > 1" "Ord ~" and (3: "3 € elts wl"
shows "partn lst VWF (a*3) [ord of nat (2*k), min ~ (w*B)] 2"

aff — (mun(y, wf), 2k)

proof (cases "a=1 Vv (3=0")
case True
show ?thesis
proof (cases "(3=0")
case True

if a — (v, k)

by (simp add: partn 1st triv0 [where 1=1])
next

case False

then obtain "a=1" "Ord 3"
by (meson ON imp Ord Ord wl True (3 elts subset ON)

then obtain i where "i < Suc (Suc 0)" "[ord of nat k, ~] ! i < "
using partn 1st VWF nontriv [OF part] by auto

then have "y < 1"
using <a=1> <k > 1> by (fastforce simp: less Suc eq)

then have "min ~ (w*3) < 1"
by (metis Ord 1 Ord w Ord linear le Ord mult <Ord (3> min def order trans)

by (auto simp: True <0rd (3> <B#0> <a=1> intro!: partn lst trivl [where 1i=1])
ged
next
case False
then have "a # 1" "3 # 0"
by auto



Equation (8) with 1ts one-line proof

(8)' If A < S, then there is X € |.
This follows from the hypothesi

have AkO: "dX € [Alsks. T ° [X]22~ C {0}" —<remark (8) about @{term"A C S"}>

if A aB: "A C elts (a*B3)" and ot: "tp A > a" for A

proof -

let ?g = "inv into A (ordermap A VWF)"

have

"small A"

using down that by auto

then
by
have
by
then
by
have
by
have
by
then
by
have

have inj g: "inj on ?g (elts «)"

(meson inj on inv 1into less eq V def ordermap surj ot subset trans)
Aless: "Ax y. [x € A; vy € A; x <y] = (x,y) € VWF"

(meson Ord in Ord VWF iff Ord less <Ord(a*3)> subsetD that(l))

have om A less: "Ax y. [x € A; y € A; x < y] = ordermap A VWF x < ordermap A VWF y!
(auto simp: <small A> ordermap mono less)

a sub: "elts a C ordermap A VWF ~ A"

(metis <«<small A> elts of set less eq V def ordertype def ot replacement)
g: "?9 € elts a — elts (a * /)"

(meson A a8 Pi I' o sub inv into into subset eq)

have fg: "f o (M. ?2g = X) € [elts al»2~ — {..<2}"

(rule nsets compose image funcset [OF f 1nj gl])

g less: "?g x < ?g y" if "x < y" "x € elts a" "y € elts a" for x vy

using Pi mem [OF g]

by

(meson A af Ord in Ord Ord not le ord <small A> dual order.trans elts subset ON inv

obtain i H where "i < 2" "H C elts a"
and ot eq: "tp H = [k,~y]!i" "(f o (AX. ?2g ~ X)) = (nsets H 2) C {i}"
using ii partn 1st E [OF part fgl by (auto simp: eval nat numeral)

then

by
then

consider (0) "i=0" | (1) "i=1"
linarith
show ?thesis

proof cases
case 0
then have "f ° [inv into A (ordermap A VWF) = H]»2~ C {O}"

using ot eq <H C elts a> «a sub by (auto simp: nsets def [of K] inj on inv into elim

moreover have "finite H AN card H = k"



theorem Erdos Milner:
assumes v: "v € elts wl"
shows "partn 1lst VWF (w](1 + v * ord of nat n)) [ord of nat (2”n), w](1l+v)] 2"
proof (induction n)
case 0
then show ?case
using partn 1st VWF degenerate [of 1 2] by simp
next
case (Suc n)
have "Ord v"
using Ord wl Ord in Ord assms by blast
have "1+v < p+1"
by (simp add: <Ord v> one V def plus 0Ord le)
then have [simp]: "min (w T (1 + 7)) (w* w T V) =w T (1+v)"
by (simp add: <«0rd v> oexp add min def)

have ind: "indecomposable (w T (1 + v * ord_of_nat n))" |\(I . f]jfli[
(simp add: N L aln eorem

by <0rd v> 1ndecomposable w power)
how ?

:rng ii;ies "ho= 0") Suppose (2) holds for some integer 2#>1. Applying the above theorem with
case True k=2" a=w""" f=w", y=0""", we see that (2) also holds with % replaced by
th how ?thesi . .y .

52 i; gog St niiz‘i_VWF_w_z h+1. Since (2) holds trivially for 2=1, it follows that (2) holds for all A< w.
hext

case False

then have "Suc 0 < 2 ©~ n"
using less 2 cases not less eq by fastforce

then have "partn lst VWF (w T (1 + v * n) * w T v) [ord of nat (2 * 2 * n), w T (1 + v)] 2"
using Erdos Milner aux [OF Suc ind, where g = "wlv"] <0rd v> v
by (auto simp: countable oexp)

then show ?thesis
using <0rd v> by (simp add: mult succ mult.assoc oexp add)

ged
ged



Jean lLarson, 1973

w® —> (w®”, m) for m a natural number

Proved by CC Chang in a 56-page paper (J. Com-
binatorial Theory A) and generalised by EC Milner

Simplified by Larson to 17 pages, including a new proof of w* — (w*, m)



A few key definitions

Work with finite increasing sequences

« Whn) = {(ag,ay,...,a, 1) :ay<a; < - <a, ; <w}hasorder type @"

« W=WO0)uW()uW2)U - has order type w®

Given f: [W]* — {0,1} such that there isno M € [W]" s.t. [M]? is 1-coloured

Show there is a X C W of order type w” such that [X 1% is 0-coloured



Interaction schemes

Forx,y € W, writex =a;*a, * --- *q, @@ and y = b, * b, * .-- * b,
putc = (la|,|la |l +|ayl,....la1| +|ay| + -+ + | a;, | CEPEETE)
define i({x,y}) =c*a;*d*b;*a, * b, * --- *q, * b, .

(this classifies how consecutive segments in x, y interact)

By Erd6s—Milner we can assume |x| < |y]|



T'he Nash-Wilhams partition theorem

Aset A C Wis thin if for all 5,¢ € A, the sequence s is not an initial segment of 7.

Given an infinite set M C w, a thin set A, a function
Hoise A sC ML = 101},

Then there exists ani € {0,1} and an infinite set N C M so that
h({s€A:s CN})C{i}.



The three maimm lemmas

Lemma 3.6. For every function g : [W]2 - {0, 1}, there exists an infi-
nite set N & w and a sequence {j, : k < w}, so that for any k < w with
k> 0, and any pair {x, y} of form k with (n;) <i({x, y}) & N,

gl{x, y})=J.

150 lines, using Nash-Williams

Lemma 3.7. For every infinite set N and every m, [ < w with [ > 0, 900 lines, including inductive
there is an m element set M, so that for every {x, y} & M, {x, y} has definitions of sequences

formland i({x, y}) € N.

Lemma 3.8. For any infinite set N C w there is a set X & W of type w"“
so that for any pair {x, y} € X, thereisan | < w, so that {x, y} isof

form land if 1> 0, then (n;) < i({x, y}) & N.

1700 lines: more sequences and
an order type calculation




... and the mam theorem

Now we finish the proof of Theorem 3.1 using these three lemmas.
First we apply Lemma 3.6 to f and obtain an infinite set NV and a se-
quence {j;: kK < w}. Then for each k < w with k > 0, we apply Lem-
ma 3.7 to k, m and {n;: k< /< w} and obtain an m element set M,

so that for any {x, y} C M, f({x, ¥}) =Jji. Thus we may conclude that
for any k < w with k> 0, j, = 0. Next we apply Lemma 3.8 to NV and o0
obtain a set X & W of type w®, so that for any {x, y} & X, there is an

| < w for which {x, y} has form / and if /> 0, then (n;) <i({x, y}) & N.
Thus on pairs {x, y} & X which are not of form O, f({x, y}) =j, = 0 for

some /. By assumption, for any pair {x, y} of form 0, f({x, y}) =0, so
f(IX1%) = {0}, and the theorem follows.



Why are these machine proofs so long?

“ The level of detail in published proofs varies immensely
“ ... plus my lack of expertise in the area

* “Obvious” claims—about order types, cardinality, combinatorial
intuitions— don’t have obvious proofs

“ And some of the constructions are gruesome



T'his sort of inductive definition 1s tricky!

Letd! =(n,,n,, ... ng)=(di,ds, ..., dy,;) and let aj be the se-
quence of the first d} elements of N greater than d} ,,. Now suppose
we have constructed d', ai, ..., d, a|. Let d'*! = (d}*!, ..., diY) be the
first K + 1 elements of N greater than the last element of al, and let a’*!
be the first d}*! elements of N greater than d%%} . This defines
dl,d?,. d’" ,al,a%, ...,a. Let the rest of the sequences be defined
in the order that follows so that for any i and J, g; is the sequence of
the least (d’ __1) elements of V all of which are larger than the larg-
est element of the sequence previously defined:

m 1 1 m m—1 1
(al )az,az,az, ey @y, A3, ey A 5 ecves Ay ooey Ay ,a',ﬁ,_l,akﬂ y sey Al gt -



Other formahisations within ALLEXANDRIA

+ Budan-Fourier Theorem and
Counting Real Roots

* Transcendence of Certain Infinite
Series (criteria by Han¢l and Rucki)

* Irrationality Criteria for Series by Localization of a Commutative Ring

Erdés and Straus + Projective Geometry

+ Irrational Rapidly Convergent

* Quantum Computation and
Series (a theorem by J. Hancl) Q %

Information

+ Counting Complex Roots + Grothendieck Schemes



Brief remarks on Grothendieck Schemes

# Build-up of mainstream structures % They said it couldn’t be done

in algebraic geometry: presheaves in simple type theory.
and sheaves of rings, locally
ringed spaces, affine schemes + But we did it faster and with less

manpower than the Lean guys.
* the spectrum of a ring is a locally

ringed space, hence an affine + One key technique: a structuring
scheme mechanism known as locales.”

* any affine scheme is a scheme + led by Anthony Bordg



What can mathematicians expect
from proof technology 1n the future!

« Ever-growing libraries of ~ * Detection of analogous

definitions and theorems developments, with hints
for proot steps

+ ... with advanced search
* Warnings of simple

* Verification of dull but omissions, e.g. “doesn’t §
necessary facts need to be compact?”
# ... and exhibiting + A careful and increasingly

counterexamples intelli gent assistant



