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Overview

Algebras as monoids–Sure! But spaces as monoids?
Hausdorff’s visionary remarks
Quantale-enriched categories
(Monad, Quantale)-enriched categories
The fundamental adjunction
Equationally defined properties for objects and morphisms
Trading convergence relations for closure operations
Comparison with the internal-category approach
Problems, projects, references
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The ubiquity of monoids

Mac Lane, “Categories for the Working Mathematician”, 1971,

Chapter VII, “Monoids”:

(M, m : M ⊗ M → M, e : I → M) in a monoidal category (C,⊗, I),

such as:

monoids (Set,×, 1), rings (AbGrp,⊗,Z), R-algebras (ModR,⊗,R),

monads (CC , ◦, IdC), etc, etc, ..., and

categories:
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Categories as monoids in the bicategory Span(Set)
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&& X × X ⇐⇒ X × X
homC && Set

C ×X C m && C ⇐⇒ hom(x , y)× hom(y , z)
mx,y,z && hom(x , z)

X i && C ⇐⇒ 1 ix && hom(x , x)
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When ∅ and 1 are the only values of homC, ...

... then C ↩→ X × X becomes a relation on X ,

and the mere existence of i and m becomes properties of the relation:

(R) 1X ⊆ C hom(x , x) = 1
(T) C ◦ C ⊆ C hom(x , y) ∧ hom(y , z) ≤ hom(x , z)

Equivalently:

C is a monoid (!) in Rel(X ), considered as a category with ⊆ as
morphisms and monoidal structure ◦, 1X .

(X ,C) is a lax Eilenberg-Moore algebra with respect to the
identity monad of the 2-category Rel of sets and relations.
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(Pre-)Ordered sets as a precursor to “spaces”?

Felix Hausdorff, “Grundzüge der Mengenlehre” (1914), ch. 7, p. 211,
on the Metric-Convergence-Neighbourhood trilogy:

“Welchen der drei [...] Grundbegriffe Entfernung, Limes, Umgebung man zur
Basis der Betrachtung wählen will, ist bis zu einem gewissen Grade
Geschmacksache. [...] Danach scheint die Entfernungstheorie die speziellste,
die Limestheorie die allgemeinste zu sein; auf der andern Seite bringt der
Limesbegriff sofort eine Beziehung zum Abzählbaren (zu Elementfolgen) in
die Theorie hinein, worauf die Umgebungstheorie verzichtet.”

“Which of the three [...] fundamental notions, distance, limit, neighbourhood,
one wants to choose as the basis of consideration is, to a certain degree, a
matter of taste. [...] Accordingly, the distance theory seems to be the most
special, the limit theory the most general one; on the other side, the notion of
limit brings immediately a connection with countability (with sequences of
elements) into the theory, which the neighbourhood theory foregoes.”
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Haudorff’s functional approach to ...

Order:

M × M → {<,>,=}, M × M → {<,>,=, ||}

Metric:

M × M → R

Convergence:

MN→* M ( ⇐⇒ MN × M → 2 = {true, false})

Neighbourhood systems:

M → 22M
( ⇐⇒ 2M × M → 2 = {true, false})

x *→ U(x)
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... and beyond, ...

“Nun steht einer Verallgemeinerung dieser Vorstellung nichts im Wege, und
wir können uns denken, daß eine beliebige Funktion der Paare einer Menge
definiert, d. h. jedem Paar (a, b) von Elementen einer Menge M ein
bestimmtes Element n = f (a, b) einer zweiten Menge N zugeordnet sei. In
noch weiterer Verallgemeinerung können wir eine Funktion der Elementtripel,
Elementfolgen, Elementkomplexe, Teilmengen u. dgl. von M in Betracht
ziehen.”

“Now there is no obstacle to generalizing this point of view, and we could
think that there be defined an arbitrary function of pairs of a set, i.e., that, to
every pair (a, b) of elements in a set M, there be assigned a certain element
n = f (a, b) in a second set N. In even further generalization we can consider
a function of triples of elements, sequences of elements, complexes
[= families] of elements, subsets of M, and the like.”
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... but he also cautions:

“Eine ganz allgemein gehaltene Theorie dieser Art würde natürlich erhebliche
Komplikationen bedingen und wenig positive Ausbeute liefern.”

“If kept very general, a theory of this type would of course cause considerable
complications and provide little positive outcome.”

Our general strategy (to keep excessive generality in check) is to
put structure on Hausdorff’s set N which is able to capture the syntax used in
the key axioms of the theory!

But we must decide early on whether to
keep N fixed, or let N “float” (together with M)?

Guided by our principal examples, we’ll keep it fixed, but there is work (by
Henriksen, Kopperman, Flagg, and others) that lets N change with M.
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Structure needed on Hausdorff’s set N

(Pre-)Ordered sets: N = 2 = (({true, false},=⇒),&, true)

true =⇒ x ≤ x
x ≤ y & y ≤ z =⇒ x ≤ z

(Lawvere-)Metric spaces: N = [0,∞] = (([0,∞],≥),+, 0)

0 ≥ d(x , x)
d(x , y) + d(y , z) ≥ d(x , z)

(Barr-)Topological spaces: N = 2 again, but entries are not just points

true =⇒ ẋ ⇝ x
X ⇝ y & y ⇝ z =⇒ ΣX ⇝ z

with x , z ∈ X , y ∈ UX , X ∈ UUX , A ∈ ẋ ⇐⇒ x ∈ A,
A ∈ ΣX ⇐⇒ {x ∈ UX | A ∈ x} ∈ X
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Quantales – taking the role of Hausdorff’s set N

V unital and (for convenience) commutative quantale

= complete lattice with a comm. monoid structure, V = (V,⊗, k), s.th.

u ⊗
!

i∈I

vi =
!

i∈I

u ⊗ vi

= a small, thin, symmetric monoidal-closed category

= a comm. monoid in the symmetric monoidal-closed category Sup

Some examples:

V = 2 with u ⊗ v = u & v , k = true (Boolean 2-chain)
V = [0,∞] with u ⊗ v = u + v , k = 0 (Lawvere quantale)
V any frame with u ⊗ v = u ∧ v , k = ⊤ (a cartesian quantale)
V = 2M , for any commutative monoid M (free quantale over M),

with A ⊗ B = {α · β | α ∈ A,β ∈ B}, k = {η}, η neutral in M
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One more quantale: {distance distribution functions}

[0,∞] ∼= [0, 1] = (([0, 1],≤), ·, 1)

∆ ∋ ϕ : [0,∞] → [0, 1] ϕ(β) = sup
α<β

ϕ(α)

(ϕ⊗ ψ)(γ) = sup
α+β=γ

ϕ(α)ψ(β) κ(α) =

"
0 if α = 0,
1 if α > 0.

[0,∞]
σ−−−−→ ∆

τ←−−−− [0, 1]

full embeddings whose values are step functions, defined by

σ(α)(γ) =

"
0 if γ ≤ α,

1 if γ > α,
τ(u)(γ) =

"
0 if γ = 0,
u if γ > 0.

ϕ = sup
α

σ(α)⊗ τ(ϕ(α)) : ∆ as a coproduct in Qnt !
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Quantale-enriched categories

(V,⊗, k) (commutative) quantale

V-relation r : X→* Y r : X × Y → V
s · r : X→* Z s ·r(x ,z)=

!

y

r(x ,y)⊗s(y ,z)

r◦ : Y→* X r◦(y , x) = r(x , y)

V-graph f◦ : X→* Y f◦(x , y) =

"
k if f (x) = y
⊥ else

f ◦ : Y→* X f ◦(y , x) = f◦(x , y)

V-category (X , a :X→* X ) k ≤ a(x , x) 1◦
X ≤ a

a(x , y)⊗ a(y , z) ≤ a(x , z) a · a ≤ a

V-functor (X ,a) f−→(Y ,b) a(x , y) ≤ b(fx , fy) a ≤ f ◦ ·b · f◦
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Some examples

V V-Cat

1 Set sets X

2 Ord (pre)ordered sets (X ,≤)

[0,∞] Met (generalized) metric spaces (X , d)

2M M-Ord M-scaled (pre)ordered sets (X , (≤α)α∈M)
x ≤η x (η neutral in M)
x ≤α y , y ≤β z ⇒ x ≤α·β z

∆ ProbMet probabilistic (gen’d) metric spaces (X , (pα)α≥0)
(pα(x , y) = prob’ty of d(x , y) < α, with d random)
p0(x , x) = 0, (α>0 =⇒ pα(x , x) = 1)
α+β ≤ γ =⇒ pα(x , y)·pβ(y , z) ≤ pγ(x , z)
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Where are Barr’s topological spaces?

Recall the Manes-Barr ultrafilter-convergence axioms on a set X :

for all x , z ∈ X , y ∈ UX , X ∈ UUX one must have :

true =⇒ ẋ ⇝ x , X ⇝ y & y ⇝ z =⇒ ΣX ⇝ z,

where (A ∈ ẋ ⇐⇒ x ∈ A) and (A ∈ ΣX ⇐⇒ {x ∈ UX | A ∈ x} ∈ X)

define the (unique) structure of the ultrafilter monad U on Set.

Challenge:

the relation ⇝: UX→* X needs to be extended to ⇝: UUX→* UX !

The Barr extension:

for r : X→* Y given by (X π1←− R π2−→ X ), define Ur : UX→* UY by

Ur = (Uπ2)◦ · (Uπ1)
◦
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Lax extensions of Set-monads

T = (T, m :TT→T, e : IdSet→T) monad on Set, equipped with

T̂ : V-Rel → V-Rel, a lax extension of T (Seal 2004), that is:
T̂ is a lax 2-functor, coinciding with T on objects;
(Tf )◦ ≤ T̂(f◦) and (Tf )◦ ≤ T̂(f ◦), for every map f of sets;
m◦ : T̂T̂ → T̂ and e◦ : IdV-Rel → T̂ are oplax nat. transformations

NOTE: Such lax extensions are in 1-1 correspondence with

monotone lax distributive laws λ : TPV → PVT of the

V-power-set monad, or discrete V-presheaf monad, (PV, s, y) over T:

PVX = VX , (PVf )(σ)(y) =
!

y∈f−1x

σ(x), (sXΣ)(x) =
!

σ∈VX

Σ(σ)⊗ σ(x)
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(T,V)-categories

(T,V)-Cat (X , a : TX→* X ) k ≤ a(eX (x), x)
T̂a(X, y)⊗ a(y, z) ≤ a(mX (X), z)

(X , a) f−→ (Y , b) a(x, y) ≤ b(Tf (x), f (y))

TTX

(mX )◦ ≥
''

T̂a && TX

a ≥
''

X
(eX )◦))

⑤⑤
⑤⑤
⑤⑤
⑤⑤

⑤⑤
⑤⑤
⑤⑤
⑤⑤

TX
(Tf )◦ &&

a ≤
''

TY

b
''

TX a
&& X X

f◦
&& Y

Equivalently: e◦
X ≤ a

a ◦ a ≤ a (Kleisli convolution)

a ≤ f ◦ · b · (Tf )◦

Kleisli for r : TX→* Y , s : TY→* Z : s ◦ r := s · T̂r · m◦
X : TX→* Z
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Some Examples

V, T, T̂ (T,V)-Cat
................ ................
V, Id, Id V-Cat

2, P = P2, P̂ (Seal 2004) Cls A ⊆ cA
A(P̂r)B⇔∀y ∈B ∃x ∈A (x r y) B ⊆ cA =⇒ cB ⊆ cA

2, U, U (Barr 1971) Top ẋ ⇝x
x(Ur)y⇔∀A∈x,B∈y∃x ∈A, y ∈B (x r y) X⇝y, y⇝z ⇒ ΣX⇝z

[0,∞], U, U (Clem.-Hofm. 2003) App a(ẋ , x) = 0

(Ur)(x, y) = sup
A∈x,B∈y

inf
x∈A,y∈B

r(x , y)

( sup
A∈X,B∈y

inf
x∈A,y∈B

a(x, y)) + a(y, z) ≥ a(ΣX, z)
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Some Properties

O : (T,V)-Cat → Set is topological; that is:

O is a faithful Grothendieck bifibration with (large-)complete fibres.

Equivalently:
Every family fi : X → O(Yi , bi), i ∈ I, has an O-cartesian lifting a;
a is the largest structure on X making all fi morphisms; explicitly:

a =
#

i∈I

f ◦i · b · (Tfi)◦

Consequently:
O has both adjoints; O ∼= (T,V)-Cat(E ,−), with E = ({∗}, e◦

{∗})

(T,V)-Cat is complete and cocomplete, with O (co)continuous

What about V as a (T,V)-category?
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A fundamental adjunction

The Set-monad T with its lax extension T̂ to V-Rel
may be considered as a (KZ-)monad on V-Cat (T 2009):

T(X , a0) = (TX , T̂a0)

If the Kleisli convolution is associative, then (Clementino-Hofm. 2009):

(X , a0, ξ)
✤ && (X , a0 · ξ◦)

(V-Cat)T
K

**
⊤ (T,V)-Cat

M

++

(TX , T̂a · m◦
X$ %& ',mX ) (X , a)✤))

=: â

In particular (Hofmann 2007): If the V-category (V, hom) has a “good”
T-structure ξ, then K makes V a (T,V)-category; plus: Barr extension!
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M ⊣ K is a factor of the E-M adjunction

(X , a) ✤ && (X , a · (eX )◦)

(V-Cat)T
K

**
⊤ (T,V)-Cat

M

,,

A◦
--

⊤ V-Cat

A◦
++

(X , e◦
X · T̂a0) (X , a0)

✤))

T = U, V = 2:

OrdCompHaus
--

⊤ Top
++

..
⊤ Ord

,,

K topologizes (X ,≤, ξ) by (x ⇝ y ⇐⇒ ξ(x) ≤ y); A◦ = Alexandroff
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A◦
++

(X , e◦
X · T̂a0) (X , a0)

✤))

T = U, V = 2:

OrdCompHaus
--

⊤ Top
++

..
⊤ Ord

,,

K topologizes (X ,≤, ξ) by (x ⇝ y ⇐⇒ ξ(x) ≤ y); A◦ = Alexandroff
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The greater picture (when T is flat and V integral)

(V-Cat)T
K

//

π0

00

⊢

%%

⊤ (T,V)-Cat
M

++

A◦
**⊤ V-Cat

A◦
11

⊢

22

π0

00

⊢ ⊢

SetT

d

33

⊢c

44

//⊤ Set

d

33

⊢c

55

66

OrdCompHaus
**

π0

00

⊢

22

⊤ Top66
**

β (X normal)

77

⊤ Ord++

π0

00

⊢

22

⊢ ⊢

CompHaus 88

⊢c

44

d

33

⊤
incl

99

⊤ Set66

⊢c

55

d

::
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Replacing inequalities by equalities: T1, core compact

(X , a : TX→* X )

(R) 1X ≤ a · (eX )◦ T1 : 1X ≥ a · (eX )◦

T = U,V = 2 : (ẋ ⇝ y ⇒ x = y)

(T) a · T̂a ≤ a · (mX )◦ core compact: a · T̂a ≥ a · (mX )◦

Pisani 1999: T = U,V = 2 : ΣX ⇝ z =⇒ ∃ y (X ⇝ y ⇝ z)
⇐⇒ ∀x ∈ B ⊆ X open

∃A ⊆ X open (x ∈ A ≪ B)
⇐⇒ X exponentiable in Top

NOTE: If we express
(R) and (T) equivalently as e◦

X ≤ a and a ◦ a ≤ a resp., and “strictify”
then, different properties will emerge: discrete and no condition at all!

Walter Tholen (York University) Monoidal Topology Topos Institute, 22 July 2021 23 / 39



Replacing inequalities by equalities: T1, core compact

(X , a : TX→* X )

(R) 1X ≤ a · (eX )◦ T1 : 1X ≥ a · (eX )◦

T = U,V = 2 : (ẋ ⇝ y ⇒ x = y)
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Replacing inequalities by equalities: proper, open

f : (X , a) → (Y , b)

f◦ ·a ≤ b ·(Tf )◦ proper: f◦ ·a ≥ b ·(Tf )◦
!

x∈f−1y

a(x, x) ≥ b(Tf (x), y))

Manes 1974: T = U,V = 2 : x && x

✤
✤
✤

f [x] && y

a·(Tf )◦ ≤ f ◦ ·b open: a·(Tf )◦ ≥ f ◦ ·b
!

x∈(Tf )−1y

a(x, x) ≥ b(y, f (x))

Möbus 1981: T = U,V = 2 : x

✤
✤
✤

&& x

y && f (x)
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Some stability properties for proper and open maps

Isomorphisms are proper/open
Proper/open maps are closed under composition
g · f proper/open, g injective =⇒ f proper/open
g · f proper/open, f surjective =⇒ g proper/open
f proper/open =⇒ every pullback of f is proper/open

Tychonoff-Frolı́k-Bourbaki Theorem V completely distributive:

fi : Xi → Yi proper (i ∈ I) =⇒
(

i∈I

fi :
(

i∈I

Xi →
(

i∈I

Yi proper

Proof: A straightforward two-line calculation!
Note that, by contrast (not by categorical dualization!), one has:

fi : Xi → Yi open (i ∈ I) =⇒
)

i∈I

fi :
)

i∈I

Xi →
)

i∈I

Yi open

Walter Tholen (York University) Monoidal Topology Topos Institute, 22 July 2021 25 / 39



Some stability properties for proper and open maps

Isomorphisms are proper/open
Proper/open maps are closed under composition
g · f proper/open, g injective =⇒ f proper/open
g · f proper/open, f surjective =⇒ g proper/open
f proper/open =⇒ every pullback of f is proper/open

Tychonoff-Frolı́k-Bourbaki Theorem V completely distributive:

fi : Xi → Yi proper (i ∈ I) =⇒
(

i∈I

fi :
(

i∈I

Xi →
(

i∈I

Yi proper

Proof: A straightforward two-line calculation!
Note that, by contrast (not by categorical dualization!), one has:

fi : Xi → Yi open (i ∈ I) =⇒
)

i∈I

fi :
)

i∈I

Xi →
)

i∈I

Yi open

Walter Tholen (York University) Monoidal Topology Topos Institute, 22 July 2021 25 / 39



Replacing inequalities by equalities: T2, compact

NOTE:
Maps of sets are Lawverian maps in V-Rel: f◦ ⊣ f ◦; conversely:
If r ⊣ s in V-Rel, then r = f◦, s = f ◦ for a unique map f , provided that:

k = ⊤ > ⊥ (V is “integral” and non-trivial)
u ∨ v = ⊤ and u ⊗ v = ⊥ =⇒ u = ⊤ or v = ⊤ (V is “lean”)

In what follows, we also silently assume:
k ≤

*
i∈I ui ⇐⇒ k ≤

*
i∈I ui ⊗ ui (V is “superior”)

All three are okay for V = 2, [0,∞], ∆, or any linearly ordered frame,
but not for V = 2M .

(X , a) Hausdorff: a · a◦ ≤ 1X (⊥ < a(z, x)⊗ a(z, y)) =⇒ x = y
(X , a) compact: 1TX ≤ a◦ · a ∀z ∈ TX (k ≤

*
x∈X a(z, x))
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Compact + Hausdorff = Eilenberg-Moore

T V (T,V)-CatComp (T,V)-CatHaus

Id 2 Ord Set ∼= {discretely ordered sets}
Id [0,∞] Met Set ∼= {discrete (gen’ed) metric spaces}
U 2 Comp Haus
U [0,∞] App0-Comp {approach spaces whose induced

pseudotopology is Hausdorff}

Manes’ Theorem generalized:

SetT = (T ,V )-CatCompHaus := (T ,V )-CatComp ∩ (T ,V )-CatHaus

Proof (Lawvere, Clementino-Hofmann, T)
(a · a◦ ≤ 1X and 1TX ≤ a◦ · a) ⇐⇒ a ⊣ a◦ ⇐⇒ a is a map.
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Tychonoff’s Theorem

V completely distributive

(∀i ∈ I : Xi = (Xi , ai) compact) =⇒ (X , a) =
+

i∈I Xi compact

Proof (Schubert 2005): For all z ∈ TX :

!

x∈X

a(z, x) =
!

x∈X

#

i∈I

ai(Tpi(z), pi(x)) =
#

i∈I

!

xi∈Xi

ai(Tpi(z), pi(x)) ≥ k

The product stability of proper morphisms follows similarly.
No surprise though, since under our silent hypotheses on T,V:

(X , a) → (1,⊤) proper ⇐⇒ (X , a) compact
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Kuratowski-Mrówka Theorem

Under mild hypotheses on T and V:

Theorem (Clementino-T 2007)

f : (X , a) → (Y , b) proper ⇐⇒ • f has compact fibres
• Tf : (X , â) → (Y , b̂) proper

(in Top, App, ...) ⇐⇒ • f has compact fibres
• f is closed

⇐⇒ f is stably closed
Corollary

X compact ⇐⇒ ∀Z : X × Z → Z closed (equ’ly: proper)

(X f−→ Y ) proper ⇐⇒ ∀(Z → Y ) : (X ×Y Z → Z ) closed (proper)
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Normal and extremally disconnected spaces

Recall:

(T,V)-Cat M−→ V-CatT → V-Cat, (X , a) *→ (TX , â,mX ) *→ (TX , â),

with â = (TX
m◦

X−−→ TTX T̂ a−−→ TX )

For T = U, V = 2 and X ∈ Top, the functor provides UX with the order

x ≤ y ⇐⇒ ∀A ⊆ X closed : (A ∈ x ⇒ A ∈ y)

Reminder:

X ∈ Top normal ⇐⇒ disjoint closed sets have disjoint nbhds in X

X extremally disconnected ⇐⇒ closures of open sets are open in X

Walter Tholen (York University) Monoidal Topology Topos Institute, 22 July 2021 30 / 39



Normal and extremally disconnected spaces

Recall:

(T,V)-Cat M−→ V-CatT → V-Cat, (X , a) *→ (TX , â,mX ) *→ (TX , â),
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The duality of normal vs extremally disconnected
X ∈ Top normal (X , a) ∈ (T ,V )-Cat normal

w

x

⑧
⑧

⑧
⑧

❃❃
❃❃

❃❃
❃❃

y

❄
❄
❄
❄

⑧⑧
⑧⑧
⑧⑧
⑧⑧

z

â · â◦ ≤ â◦ · â

X extremally disconnected (X , a) extremally disconnected
w

❄❄
❄❄

❄❄
❄❄

⑧⑧
⑧⑧
⑧⑧
⑧⑧

x

❃
❃

❃
❃ y

⑧
⑧
⑧
⑧

z

â◦ · â ≤ â · â◦

(X , a) ext. disc. in (T,V)-Cat ⇐⇒ (TX , â) ext.disc. in V-Cat
⇐⇒ (TX , â◦) normal in V-Cat
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Monoidal topology without convergence relations?

Cls c : PX → 2X (R) A ⊆ cA
(T) B ⊆ cA ⇒ cB ⊆ cA

Top c fin’ly additive: (A) c(A ∪ B) = cA ∪ cB
c(∅) = ∅

(C) f (cX A) ⊆ cY (fA)

[Seal 2009]
V-Cls c : PX → VX (R) ∀x ∈ A : k ≤ (cA)(x)
= (P,V)-Cat (T) (

#

y∈B

(cA)(y))⊗ (cB)(x) ≤ (cA)(x)

[Lai-T 2016]
V-Top c fin’ly additive: (A) c(A ∪ B)(x) = (cA)(x) ∨ (cB)(x)

c(∅)(x) = ⊥
(C) (cX A)(x) ≤ cY (fA)(fx)
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The cases V = [0,∞], or ∆, had been studied earlier:

[0,∞]-Cls

δ : X × PX → [0,∞] (R) ∀x ∈ A : 0 ≥ δ(x ,A)
δ(x ,A) = (cA)(x) (T) (sup

y∈B
δ(y ,A)) + δ(x ,B) ≥ δ(x ,A)

[0,∞]-Top =: App [Lowen 1989] (but his condition (T) is different!):

δ finitely additive (A) δ(x ,A ∪ B) = min{δ(x ,A), δ(x ,B)}
δ(x , ∅) = ∞

f : X → Y (C) δX (x ,A) ≥ δY (fx , fA)

∆-Top =: ProbApp [Jäger 2015]
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How to reconcile closure and ultrafilter convergence?

[Clementino-T 2003] For V completely distributive and r : X→* Y ,

define Ur : UX→* UY by

Ur(x, y) :=
#

A∈x,B∈y

!

x∈A,y∈B

r(x , y)

P and U interact via the V-relation εX : PX→* UX :

εX (A, x) =

"
k if A ∈ x

⊥ else

Obtain Aε : (U,V)-Cat → (P,V)-Cat, (X , a) *→ (X , ca = a ◦ εX )

(caA)(y) =
!

x∋A

a(x, y)

Aε has a right adjoint (X , c) *→ (X , ac), with ac(x, y) =
#

A∈x
(cA)(y)
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(U,V)-Cat∼= V-Top

Theorem [Lai-T 2016]

Let V be completely distributive. Then:

Aε : (U,V)-Cat ↩→ (P,V)-Cat = V-Cls

is a full coreflective embedding; its image is V-Top ∼= (U,V)-Cat.

Corollaries:
[Clementino-Hofmann 2003] [Jäger 2016],[Lai-T 2016]

App ∼= (U, [0,∞])-Cat ProbApp ∼= (U,∆)-Cat

0 ≥ a(ẋ , x) (R) κ ≤ a(ẋ , x)
( sup
A∈X,B∈y

inf
x∈A,y∈B

a(x, y)) + a(y, z) ≥ a(ΣX, z) (T) ...
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Away from Set: Burroni’s T-categories

C category with pullbacks, T = (T,m, e) monad on C; form

Cat(T):
A0

eA0

;;---
---

---
---

-

ι

''

1A

<<▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼

TA0 A1
d0)) c0 && A0

TA1

mA0
·Td0

==

A2
d1))

µ

==

c1 && A1

c0

==

Morphisms f = (f0, f1) : A → B preserve the structure, i.e. d0, co, ι, µ

Ord(T): T-categories with (d0, c0) jointly monic

EM(T): T-categories with A1 = TA0, d0 = 1TA0

Obtain: EM(T) −→ Ord(T) −→ Cat(T) −→ C
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Comparison with (T,V)-Cat

Burroni 1971:

C = Set, T laxly extended to Rel á la Barr. Then:

Ord(T) ∼= (T, 2)-Cat

In particular: Ord(U) ∼= Top

But what about arbitray quantales V, rather than 2?
For example: Is V-Cat of the form Ord(T), for some T? ...

While for every T, laxly extended to V-Rel, one can find a monad Π
laxly extendable to Rel (encoding both, T and V) such that
(Lowen-Vroegrijk 2008, Hofmann 2014)

(T,V)-Cat ∼= (Π, 2)-Cat,

the lax extension of Π is not á la Barr, and (Π, 2)-Cat ≇ Ord(Π).
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Questions, To-Do list

Is every topological category over Set of the form (T,V)-Cat?
If not, characterize the latter categories amongst the former.
Apply (T,V)-category theory in case of “probabilistic” quantales.
To which extent are (T,V)-categories covered by Burroni?
Pursue monoidal topology in Burroni’s context.
Apply the emerging theory in particular in topological algebra.
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