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Outline of talk

I Report on Baez, Moeller, T. Schur functors and categorified
plethysm, https://arxiv.org/abs/2106.00190

I Goal: make explicit the rich plethora of structures on
representations of symmetric groups from a conceptual
2-categorical point of view

I Hazewinkel: “It seems unlikely that there is any object in
mathematics richer and/or more beautiful than this one [...]”

item Outline

1. Plethories
2. 2-plethories
3. Decategorify the simplest 2-plethory to get the most beautiful

object
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What is a plethory?

“Classically” (Tall-Wraith, Stacey-Whitehouse, Borger-Wieland), a
plethory consists of a (commutative) ring B

I Equipped with a lift Φ as in

Ring

Ring Set

URing

hom(B,−)

Φ

I Together with a comonad structure on Φ.

I Really, the same thing as a right adjoint comonad on Ring!
(notes 1, 2)
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Concrete description of lift
More concretely: the lift Φ in

Ring

Ring Set

URing

hom(B,−)

Φ

amounts to putting a ring structure on hom-sets hom(B,R),
naturally in R:

m(R) : hom(B,R)× hom(B,R)→ hom(B,R)

m(R) : hom(B + B,R)→ hom(B,R)

(coproduct in category of commutative rings: tensor product)

m(−) : hom(B ⊗ B,−)→ hom(B,−)

µ : B → B ⊗ B “comultiplication”
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Biring structure of plethory

I The lift Φ in
Ring

Ring Set

URing

hom(B,−)

Φ

is the same thing as endowing hom(B,−) with a (natural)
ring structure (ring operations hom(B,−)n → hom(B,−)).

I By Yoneda, the lift Φ is the same as endowing B with
co-operations, dual to ring operations:

1. Comultiplication µ : B → B ⊗ B,
2. Co-addition α : B → B ⊗ B
3. Co-zero o : B → Z (map to initial ring)
4. Co-one υ : B → Z
5. Co-negation ν : B → B

satisfying conditions dual to ring axioms.

“Biring” B: co-ring object in (+)-monoidal category of rings.
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Comonad structure of plethory(
Ring

Φ→ Ring
U→ Set

)
∼= (hom(B,−) : Ring→ Set)

Concretely, what is a comonad structure δ : Φ→ ΦΦ, ε : Φ→ 1?

UΦ
Uδ→ UΦΦ

hom(B,−) → hom(B,Φ−)
1 → hom(B,ΦB)
B → ΦB

(ring homomorphism). Underlying function: UB → hom(B,B).

UB → Ring(B,B)→ Set(UB,UB)

Binary operation (“plethysm”)

UB × UB → UB.

Theorem: Φ
δ→ ΦΦ is coassociative iff plethysm is associative

(notes 3, 4).
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Example

The simplest example: Φ = 1Ring : Ring→ Ring.

I What is the ring B for the following diagram?

Ring

Ring Set

URing

hom(B,−)

1

I B = Z[x ]. Because hom(Z[x ],R) ∼= UR.

I Here B ⊗ B ∼= Z[x1]⊗ Z[x2] ∼= Z[x1, x2].

I Coaddition α : B → B ⊗ B: the unique ring map
Z[x ]→ Z[x1, x2] that sends x to x1 + x2.

I Comultiplication µ : B → B ⊗ B: the map Z[x ]→ Z[x1, x2]
sending x to x1x2.

I Co-zero and co-one are the maps B → Z sending x 7→ 0, 1.
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Plethysm for Z[x ]

Here Φ = 1Ring. The map h : B → ΦB is the identity map:

Z[x ] → ΦZ[x ]
∼→ hom(Z[x ],Z[x ])

q(x) 7→ q(x) 7→ (x 7→ q(x))

xn 7→ q(x)n∑
n pnx

n 7→
∑

n pnq(x)n

p 7→ p(q(x))

Z[x ]× Z[x ]→ Z[x ]

(q(x), p(x)) 7→ p(q(x))

“Plethysm is substitution monoidal structure”.
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Definition of 2-rig

Categorifying the notion of rig: for us, a 2-rig is

I A Vect-enriched category C,
I Closed under absolute colimits (giving 2-additive structure)

1. Biproducts = direct sums A⊕ B,
2. Idempotent splittings: every idempotent e : A→ A factors as a

retraction r : A→ B followed by a section i : B → A, so that
e = ir and ri = 1B . In that case have a coequalizer

A
e→→

1A

A
r→ B.

I Equipped with a symmetric monoidal structure ⊗ in the
Vect-enriched sense (giving 2-multiplicative structure).

Here A⊗ B automatically preserves absolute colimits in each of
the separate arguments A,B, i.e., 2-distributivity is automatic in
this context.
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The free 2-rig

The initial 2-rig is Vec, the category of finite-dimensional vector
spaces. The (unique up to isomorphism) map Vec→ C sends the
1-dim space k to the monoidal unit I .

The free 2-rig on one generator: mimic the construction of the free
rig N[x ] on one generator.

Form N[x ] in two steps:

I First form the free commutative (multiplicative) monoid on
one generator x (monomials xn).

I Then form the free commutative (additive) monoid on that
(polynomials a0 + a1x + . . .+ anx

n with coefficients in N).
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The free 2-rig

Analogously, to form the free 2-rig Vec[x ] on one generator:

I First form the free symmetric monoidal category on one
generator (permutation groupoid P with objects [n],
non-empty homs are hom([n], [n]) = Sn),

I Then form the free Cauchy-complete Vect-enriched category
on that:

1. “Vectorialize” the homs Sn: get group algebras kSn.
2. Close up under finite direct sums:

hom(
∑
i

ai [i ],
∑
i

bj [i ]) =
∑
i

aibikSi

3. Close up under idempotent splittings. If char(k) = 0, one gets
arbitrary functors

P→ Vec

of finite support.
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Example
In k[S2], let σ be the transposition. Define idempotent maps
e−, e+ : k[S2]→ k[S2] given by multiplying by 1

2 (1± σ), e.g.,

e2
− =

(
1− σ

2

)2

=
1− 2σ + σ2

4
=

2− 2σ

4
=

1− σ
2

.

Let E− be the corresponding idempotent splitting (retract) in
Vec[x ]:

x⊗2 → E− → x⊗2.

If C is any 2-rig, with an object V , the 2-rig map Vec[x ]→ C that
sends x to V also sends the retract E− to a retract

V⊗2 → E−(V )→ V⊗2,

usually denoted E−(V ) = Λ2(V ). If E+ is the retract
corresponding to e+ = 1

2 (1 + σ), then we similarly have a retract
E+(V ) of V⊗2, usually denoted E+(V ) = S2(V ).
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corresponding to e+ = 1

2 (1 + σ), then we similarly have a retract
E+(V ) of V⊗2, usually denoted E+(V ) = S2(V ).
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2-birig structure
Analogous to the biring structure on Z[x ], there is a 2-birig
structure on Vec[x ]:
I (2-)coproducts of 2-rigs are like tensor products. If C and D

are 2-rigs, then their coproduct C �D is the closure under
biproducts, idempotent splittings of the tensor C ⊗ D, where

(C ⊗ D)((c1, d1), (c2, d2)) = C (c1, c2)⊗ D(d1, d2).

I We have Vec[x1]� Vec[x2] ' Vec[x1, x2]. This is the same as
the category of finitary functors

P× P→ Vec.

I The 2-birig co-addition is the unique 2-rig map
Vec[x ]→ Vec[x1, x2] that sends x to x1 ⊕ x2.

I Co-multiplication Vec[x ]→ Vec[x1, x2] sends x to x1 ⊗ x2.
I 2-birig co-zero, co-one Vec[x ]→ Vec send x to 0, k .
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2-plethysm structure

2Rig

2Rig Cat.

U2Rig

hom(B,−)

1

B = Vec[x ]

δ : 1→ 11 corresponds to a 2-rig map h = id : Vec[x ]→ 1Vec[x ].
This corresponds in turn to the canonical 2-rig map

Vec[x ] → 2Rig(Vec[x ],Vec[x ])

Q 7→ (x 7→ Q)

x⊗n 7→ Q⊗n∑
n anx

⊗n 7→
∑

n anQ
⊗n

(
A

r→ E
i→ A
)
7→ (A ◦ Q → E ◦ Q → A ◦ Q)
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2-plethysm structure

De-currying, we obtain a functor (2-plethysm)

Vec[x ]× Vec[x ]→ Vec[x ]

(Q,E ) 7→ E ◦ Q

Theorem: The 2-plethysm functor is associative up to coherent
isomorphism. It is part of a (plethystic) monoidal category
structure on Vec[x ]. (Compare “substitution product” of Joyal
species.)



Decategorification

The “trivial” 2-plethory 1 : 2Rig→ 2Rig descends, through
decategorification, to a highly nontrivial rig-plethory Rig→ Rig!

General idea: if B is a 2-rig, and if H(B) is the set of isomorphism
classes of objects of B, then ⊗ and ⊕ on B induce a rig structure
on H(B). This rig is denoted J(B).

Very roughly: have a product-preserving functor

J : 2Rig→ Rig

But what do we do with the 2-cells of 2Rig?

Definition: If C is a 2-category (a Cat-enriched category), then
Cho is the ordinary (Set-enriched) category obtained by applying

Cat
core→ Gpd

π0→ Set

to the Cat-valued homs of C.
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Decategorification

The 1-cells of Cho are the 2-isomorphism classes of 1-cells of C.

Proposition: If C is a category, regarded as an object of Catho,
then

hom(1,−) : Catho → Set

takes C to (π0core)(C ).

Corollary: If C is a 2-category, and c , d are objects, then

hom(1, C(c , d)) = Cho(c , d)

regarding the category C(c , d) as belonging to Catho.
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Decategorification

Proposition: There is a product-preserving lift J of the bottom
composite in

Rig

2Righo Catho Set

URig
J

Uho hom(1,−)

Namely, if R is a 2-rig, then Uho(R) is a rig object in Catho, and
the functor hom(1,−) is product-preserving (hence preserves rig
objects). Hence the set

H(R) = hom(1,Uho(R))

carries rig structure. This rig is J(R).

We let Λ+ = J(Vec[x ]).

H(R) ∼= hom(1, 2Rig(Vec[x ],R)) = 2Righo(Vec[x ],R)
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Λ+ is a birig
Theorem: J : 2Righo → Rig preserves copowers of Vec[x ]. (note
5)

For example, J(Vec[x ]�2) ∼= J(Vec[x ])⊗2 = Λ⊗2
+ .

This result allows us to define a birig structure on Λ+ = J(Vec[x ]).
For example, start with 2-coaddition

α : Vec[x ]→ Vec[x ]� Vec[x ]

Apply J:
J(α) : J(Vec[x ])→ J(Vec[x ]� Vec[x ])

Compose:

J(Vec[x ])
J(α)→ J(Vec[x ]� Vec[x ]) ∼= J(Vec[x ])⊗ J(Vec[x ])

co-add : Λ+ → Λ+ ⊗ Λ+
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Rig-plethory structure on Λ+

The birig structure on Λ+ provides a lift Φ

Rig

Rig Set

URig

hom(Λ+,−)

Φ

We want a comonad structure on Φ: a comultiplication
δ : Φ→ ΦΦ and counit ε : Φ→ 1Rig.

Recall that UΦ→ UΦΦ amounts to structure map

h : UΛ+ → Rig(Λ+,Λ+).
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Rig-plethory structure on Λ+ = J(Vec[x ])
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J

H

Uho hom(1,−)
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UΛ+ → Rig(Λ+,Λ+)
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Theorem: The (rig) map

UΛ+ → Rig(Λ+,Λ+)

gives rise to an associative plethystic multiplication

UΛ+ × UΛ+ → UΛ+,

compatibly with the birig structure (note 4), so that it defines a
coassociative transformation δ : Φ→ ΦΦ that is part of a
rig-plethory (a right adjoint comonad on Rig).

The ringification
Λ = Z⊗N Λ+

(the Grothendieck ring K0(Vec[x ])) similarly carries a canonical
plethory structure, i.e., there is a canonical lift Φ : Ring→ Ring of
hom(Λ,−) : Ring→ Set with a comonad structure. (note 6)

A λ-ring is then a Φ-coalgebra. (notes 7, 8)
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Thank you!



Notes

1. Or a left adjoint monad on Ring. (String diagrams show that
the left adjoint of a comonad carries a monad structure, and dually
the right adjoint of a monad carries a comonad structure; the
back-and forths are mutually inverse.) Moreover, in this case the
category of coalgebras of the comonad is equivalent to the
category of algebras of the monad: the forgetful functor from
either is both monadic and comonadic.

2. If Φ is a right adjoint, then so is UΦ, and any right adjoint to
Set is representable: UΦ ∼= hom(B,−). Conversely, by an adjoint
lifting theorem, any lift of a representable through U : Ring→ Set
must be a right adjoint. The same applies to any monadic
category U : C → Set in place of U : Ring→ Set.



Notes

3. Of course there is also the counit ε : Φ→ 1. We have
U1 ∼= hom(Z[x ],−). Thus

UΦ
Uε→ U1

hom(B,−) → hom(Z[x ],−)
Z[x ] → B.

The composite

1
dxe→ UZ[x ]→ UB

picks out an element ι of UB. This element is a unit for plethysm
iff ε obeys the comonad counit equations.



Notes
4. H : UΦ→ UΦΦ corresponding to h : B → ΦB is of the form
H = Uδ : UΦ→ UΦΦ, iff H preserves the ring operations (induced
from biring structure). E.g., here preservation of multiplication:

hom(B,−)2 hom(B,Φ−)2

hom(B,−) hom(B,Φ−)

h̃2

mult mult

h̃

In terms of co-multiplication µ, this is equivalent to

B ΦB

B ⊗ B Φ(B ⊗ B)

h

µ Φ(µ)

h(2)

, where

B B ⊗ B Φ(B ⊗ B)
i1,i2 h(2)

= B ΦB Φ(B ⊗ B)h Φ(i1),Φ(i2)



Notes

5. Theorem: Let n1, . . . , np be natural numbers. If char(k) = 0,
then every irrep of k[Sn1 × . . . Snp ] is a tensor product ρi ⊗ . . .⊗ ρp
of irreps ρi of k[Sni ] that are determined uniquely up to
isomorphism. �
Now J(Vec[x ]) is a free N-module on isomorphism classes of irreps
of symmetric groups, so that J(Vec[x ])⊗p is a free N-module on
p-tuples of such classes. Meanwhile J(Vec[x ]�p) consists of
isomorphism classes of functors P×p → Vec of finite support. The
canonical rig map

J(Vec[x ])⊗p → J(Vec[x ]�p)

is the N-module map that freely extends the mapping

([ρ1], . . . , [ρp]) 7→ [ρ1 ⊗ . . .⊗ ρp]

Since this mapping is a bijection by the theorem, the canonical rig
map is an isomorphism.



Notes

6. The main problem is to define the co-negation co-operation on
Λ. This is explained in section 7 of the paper, but in outline, one
considers the 2-rig G of Z2-graded Vec[x ]-objects (C0,C1), with
the usual symmetry that involves a sign change when permuting
homogeneous elements of odd degree. Then J(G) is a rig of pairs
([C0], [C1]) and there is a well-defined rig map

∂ : J(G)→ Λ

taking ([C0], [C1]) 7→ [C0]− [C1]. Form the 2-rig map
φ− : Vec[x ]→ G that takes x to (0, x). This behaves something
like a categorified co-negation. Form the rig composite

Λ+ = J(Vec[x ])
J(φ−)→ J(G)

∂→ Λ

and freely extend this rig map to a ring map Λ→ Λ. This gives the
desired co-negation on the biring Λ. The proof that this works uses
a “categorified Euler formula”.



Notes
7. Or again, as in Note 1, the algebras of a left adjoint monad.
This is the more usual tack taken (as in Borger-Wieland). The
point is that there is an equivalence between left adjoint
endofunctors on Ring and birings; since left adjoint endofunctors
compose, there is a monoidal structure on Ladj(Ring), which may
be transferred across the equivalence

Ladj(Ring) ' Biring

to give a monoidal product on Biring, usually denoted �. Then a
plethory may be defined to be a biring B with a �-monoid
structure. In that case, a λ-algebra may be defined to be an
algebra for the monad

Ψ = Λ�− : Ring→ Ring

that is left adjoint to the comonad Φ. Incidentally, this comonad is
know as the “big Witt functor W ”; W -coalgebras are the same as
Λ-algebras.



Notes

8. To be sure, this is not the usual way of presenting λ-rings! One
of the virtues however is making explicit the conceptual reason for
why the usual examples (virtual differences of group reps, of vector
bundles, etc.) form λ-rings: it’s because Vec[x ] acts tautologically
on any 2-rig via Schur functors, analogous to how the polynomial
ring Z[x ] acts tautologically on any ring R by the unique ring map
Z[x ]→ Func(R,R) sending x to 1R (where the codomain carries
the pointwise ring structure).

The usual way is to define a λ-ring as a ring R together a series of
operations λi : R → R that abstract exterior power operations
(exterior powers giving a main example of Schur functors). These
λ-operations obey a complicated set of equations which may be
found in many texts; we do not reproduce them here.


