From 2-rigs to λ -rings

Todd Trimble

Western Connecticut State University Department of Mathematics

August 5, 2021

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Report on Baez, Moeller, T. Schur functors and categorified plethysm, https://arxiv.org/abs/2106.00190

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Report on Baez, Moeller, T. Schur functors and categorified plethysm, https://arxiv.org/abs/2106.00190

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Goal: make explicit the rich plethora of structures on representations of symmetric groups from a conceptual 2-categorical point of view

- Report on Baez, Moeller, T. Schur functors and categorified plethysm, https://arxiv.org/abs/2106.00190
- Goal: make explicit the rich plethora of structures on representations of symmetric groups from a conceptual 2-categorical point of view
- Hazewinkel: "It seems unlikely that there is any object in mathematics richer and/or more beautiful than this one [...]"

- Report on Baez, Moeller, T. Schur functors and categorified plethysm, https://arxiv.org/abs/2106.00190
- Goal: make explicit the rich plethora of structures on representations of symmetric groups from a conceptual 2-categorical point of view
- Hazewinkel: "It seems unlikely that there is any object in mathematics richer and/or more beautiful than this one [...]"

item Outline

- 1. Plethories
- 2. 2-plethories
- Decategorify the simplest 2-plethory to get the most beautiful object

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What is a plethory?

"Classically" (Tall-Wraith, Stacey-Whitehouse, Borger-Wieland), a **plethory** consists of a (commutative) ring B

Equipped with a lift Φ as in

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What is a plethory?

"Classically" (Tall-Wraith, Stacey-Whitehouse, Borger-Wieland), a **plethory** consists of a (commutative) ring B

Equipped with a lift Φ as in

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Together with a comonad structure on Φ.

What is a plethory?

"Classically" (Tall-Wraith, Stacey-Whitehouse, Borger-Wieland), a **plethory** consists of a (commutative) ring B

Equipped with a lift Φ as in

- Together with a comonad structure on Φ.
- Really, the same thing as a right adjoint comonad on Ring! (notes 1, 2)

More concretely: the lift Φ in

amounts to putting a ring structure on hom-sets hom(B, R), naturally in R:

m(R): hom $(B, R) \times$ hom $(B, R) \rightarrow$ hom(B, R)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

More concretely: the lift Φ in

amounts to putting a ring structure on hom-sets hom(B, R), naturally in R:

m(R): hom $(B, R) \times$ hom $(B, R) \rightarrow$ hom(B, R)

m(R): hom $(B + B, R) \rightarrow hom(B, R)$

More concretely: the lift Φ in

amounts to putting a ring structure on hom-sets hom(B, R), naturally in R:

m(R): hom $(B, R) \times$ hom $(B, R) \rightarrow$ hom(B, R)

 $m(R): \hom(B+B,R) \to \hom(B,R)$ (coproduct in category of commutative rings: tensor product)

More concretely: the lift Φ in

amounts to putting a ring structure on hom-sets hom(B, R), naturally in R:

m(R): hom $(B, R) \times$ hom $(B, R) \rightarrow$ hom(B, R)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $m(R) : hom(B + B, R) \rightarrow hom(B, R)$ (coproduct in category of commutative rings: tensor product) $m(-) : hom(B \otimes B, -) \rightarrow hom(B, -)$

More concretely: the lift Φ in

amounts to putting a ring structure on hom-sets hom(B, R), naturally in R:

m(R): hom $(B, R) \times$ hom $(B, R) \rightarrow$ hom(B, R)

m(R): hom $(B + B, R) \rightarrow hom(B, R)$ (coproduct in category of commutative rings: tensor product) m(-): hom $(B \otimes B, -) \rightarrow hom(B, -)$

 $\mu: B \to B \otimes B \quad \text{``comultiplication''}$

Biring structure of plethory

The lift Φ in

is the same thing as endowing hom(B, -) with a (natural) ring structure (ring operations hom $(B, -)^n \to \text{hom}(B, -)$).

Biring structure of plethory

The lift Φ in

is the same thing as endowing hom(B, -) with a (natural) ring structure (ring operations hom $(B, -)^n \to \text{hom}(B, -)$).

By Yoneda, the lift Φ is the same as endowing B with co-operations, dual to ring operations:

- 1. Comultiplication $\mu: B \to B \otimes B$,
- 2. Co-addition $\alpha: B \to B \otimes B$
- 3. Co-zero $o: B \to \mathbb{Z}$ (map to initial ring)
- 4. Co-one $v: B \to \mathbb{Z}$
- 5. Co-negation $\nu: B \rightarrow B$

satisfying conditions dual to ring axioms.

Biring structure of plethory

The lift Φ in

is the same thing as endowing hom(B, -) with a (natural) ring structure (ring operations hom $(B, -)^n \to \text{hom}(B, -)$).

By Yoneda, the lift Φ is the same as endowing B with co-operations, dual to ring operations:

- 1. Comultiplication $\mu: B \to B \otimes B$,
- 2. Co-addition $\alpha: B \to B \otimes B$
- 3. Co-zero $o: B \to \mathbb{Z}$ (map to initial ring)
- 4. Co-one $v: B \to \mathbb{Z}$
- 5. Co-negation $\nu: B \to B$

satisfying conditions dual to ring axioms.

"Biring" B: co-ring object in (+)-monoidal category of rings.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

$$\left(\mathsf{Ring} \xrightarrow{\Phi} \mathsf{Ring} \xrightarrow{U} \mathsf{Set}\right) \cong (\mathsf{hom}(B, -) : \mathsf{Ring} \to \mathsf{Set})$$

Concretely, what is a comonad structure $\delta: \Phi \rightarrow \Phi\Phi, \varepsilon: \Phi \rightarrow \mathbf{1}$?

$$\left(\operatorname{\mathsf{Ring}} \xrightarrow{\Phi} \operatorname{\mathsf{Ring}} \xrightarrow{U} \operatorname{\mathsf{Set}}\right) \cong \left(\operatorname{\mathsf{hom}}(B,-) : \operatorname{\mathsf{Ring}} \to \operatorname{\mathsf{Set}}\right)$$

Concretely, what is a comonad structure $\delta: \Phi \rightarrow \Phi\Phi, \varepsilon: \Phi \rightarrow \mathbf{1}$?

$$U\Phi \xrightarrow{U\delta} U\Phi\Phi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\left(\operatorname{\mathsf{Ring}} \stackrel{\Phi}{\to} \operatorname{\mathsf{Ring}} \stackrel{U}{\to} \operatorname{\mathsf{Set}}\right) \cong \left(\operatorname{\mathsf{hom}}(B, -) : \operatorname{\mathsf{Ring}} \to \operatorname{\mathsf{Set}}\right)$$

Concretely, what is a comonad structure $\delta: \Phi \rightarrow \Phi\Phi, \varepsilon: \Phi \rightarrow \mathbf{1}$?

$$U\Phi \stackrel{U\delta}{\rightarrow} U\Phi\Phi$$

hom $(B,-) \rightarrow$ hom $(B,\Phi-)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\left(\operatorname{\mathsf{Ring}} \stackrel{\Phi}{\to} \operatorname{\mathsf{Ring}} \stackrel{U}{\to} \operatorname{\mathsf{Set}}\right) \cong \left(\operatorname{\mathsf{hom}}(B,-) : \operatorname{\mathsf{Ring}} \to \operatorname{\mathsf{Set}}\right)$$

Concretely, what is a comonad structure $\delta: \Phi \rightarrow \Phi\Phi, \varepsilon: \Phi \rightarrow \mathbf{1}$?

$$egin{array}{ccc} U\Phi & \stackrel{U\delta}{
ightarrow} & U\Phi\Phi \ \mathsf{hom}(B,-) &
ightarrow & \mathsf{hom}(B,\Phi-) \ 1 &
ightarrow & \mathsf{hom}(B,\PhiB) \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\left(\mathsf{Ring} \xrightarrow{\Phi} \mathsf{Ring} \xrightarrow{U} \mathsf{Set}\right) \cong (\mathsf{hom}(B, -) : \mathsf{Ring} \to \mathsf{Set})$$

Concretely, what is a comonad structure $\delta: \Phi \rightarrow \Phi\Phi, \varepsilon: \Phi \rightarrow \mathbf{1}$?

$$egin{array}{cccc} U\Phi & \stackrel{U\delta}{
ightarrow} & U\Phi\Phi \ \mathsf{hom}(B,-) &
ightarrow & \mathsf{hom}(B,\Phi-) \ 1 &
ightarrow & \mathsf{hom}(B,\PhiB) \ B &
ightarrow & \PhiB \end{array}$$

(ring homomorphism). Underlying function: $UB \rightarrow hom(B, B)$.

$$\left(\operatorname{\mathsf{Ring}} \stackrel{\Phi}{\to} \operatorname{\mathsf{Ring}} \stackrel{U}{\to} \operatorname{\mathsf{Set}}\right) \cong \left(\operatorname{\mathsf{hom}}(B,-) : \operatorname{\mathsf{Ring}} \to \operatorname{\mathsf{Set}}\right)$$

Concretely, what is a comonad structure $\delta: \Phi \rightarrow \Phi\Phi, \varepsilon: \Phi \rightarrow \mathbf{1}$?

$$egin{array}{cccc} U\Phi & \stackrel{U\delta}{
ightarrow} & U\Phi\Phi \ \mathsf{hom}(B,-) &
ightarrow & \mathsf{hom}(B,\Phi-) \ 1 &
ightarrow & \mathsf{hom}(B,\PhiB) \ B &
ightarrow & \PhiB \end{array}$$

(ring homomorphism). Underlying function: $UB \rightarrow hom(B, B)$.

$$UB \rightarrow \operatorname{Ring}(B, B) \rightarrow \operatorname{Set}(UB, UB)$$

Binary operation ("plethysm")

$$UB \times UB \rightarrow UB$$
.

$$\left(\mathsf{Ring} \xrightarrow{\Phi} \mathsf{Ring} \xrightarrow{U} \mathsf{Set}\right) \cong (\mathsf{hom}(B, -) : \mathsf{Ring} \to \mathsf{Set})$$

Concretely, what is a comonad structure $\delta: \Phi \rightarrow \Phi \Phi, \varepsilon: \Phi \rightarrow \mathbf{1}$?

$$egin{array}{cccc} U\Phi & \stackrel{U\delta}{
ightarrow} & U\Phi\Phi \ \mathsf{hom}(B,-) &
ightarrow & \mathsf{hom}(B,\Phi-) \ 1 &
ightarrow & \mathsf{hom}(B,\PhiB) \ B &
ightarrow & \PhiB \end{array}$$

(ring homomorphism). Underlying function: $UB \rightarrow hom(B, B)$.

```
UB \rightarrow \operatorname{Ring}(B, B) \rightarrow \operatorname{Set}(UB, UB)
```

Binary operation ("plethysm")

$$UB \times UB \rightarrow UB$$
.

Theorem: $\Phi \xrightarrow{\delta} \Phi \Phi$ is coassociative iff plethysm is associative (notes 3, 4).

The simplest example: $\Phi = \mathbf{1}_{\mathsf{Ring}}$: $\mathsf{Ring} \to \mathsf{Ring}$.

▶ What is the ring *B* for the following diagram?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The simplest example: $\Phi = \mathbf{1}_{\mathsf{Ring}}$: $\mathsf{Ring} \to \mathsf{Ring}$.

What is the ring B for the following diagram?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $B = \mathbb{Z}[x]$. Because hom $(\mathbb{Z}[x], R) \cong UR$.

The simplest example: $\Phi = \mathbf{1}_{\mathsf{Ring}}$: $\mathsf{Ring} \to \mathsf{Ring}$.

What is the ring B for the following diagram?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

B = Z[x]. Because hom(Z[x], R) ≅ UR.
Here B ⊗ B ≅ Z[x₁] ⊗ Z[x₂] ≅ Z[x₁, x₂].

The simplest example: $\Phi = \mathbf{1}_{\mathsf{Ring}}$: $\mathsf{Ring} \to \mathsf{Ring}$.

What is the ring B for the following diagram?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $B = \mathbb{Z}[x]$. Because hom $(\mathbb{Z}[x], R) \cong UR$.
- Here $B \otimes B \cong \mathbb{Z}[x_1] \otimes \mathbb{Z}[x_2] \cong \mathbb{Z}[x_1, x_2].$
- Coaddition $\alpha : B \to B \otimes B$: the unique ring map $\mathbb{Z}[x] \to \mathbb{Z}[x_1, x_2]$ that sends x to $x_1 + x_2$.

The simplest example: $\Phi = \mathbf{1}_{\mathsf{Ring}}$: $\mathsf{Ring} \to \mathsf{Ring}$.

What is the ring B for the following diagram?

- $B = \mathbb{Z}[x]$. Because hom $(\mathbb{Z}[x], R) \cong UR$.
- Here $B \otimes B \cong \mathbb{Z}[x_1] \otimes \mathbb{Z}[x_2] \cong \mathbb{Z}[x_1, x_2]$.
- Coaddition $\alpha : B \to B \otimes B$: the unique ring map $\mathbb{Z}[x] \to \mathbb{Z}[x_1, x_2]$ that sends x to $x_1 + x_2$.
- Comultiplication µ : B → B ⊗ B: the map Z[x] → Z[x₁, x₂] sending x to x₁x₂.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The simplest example: $\Phi = \mathbf{1}_{\mathsf{Ring}}$: $\mathsf{Ring} \to \mathsf{Ring}$.

What is the ring B for the following diagram?

- $B = \mathbb{Z}[x]$. Because hom $(\mathbb{Z}[x], R) \cong UR$.
- Here $B \otimes B \cong \mathbb{Z}[x_1] \otimes \mathbb{Z}[x_2] \cong \mathbb{Z}[x_1, x_2].$
- Coaddition $\alpha : B \to B \otimes B$: the unique ring map $\mathbb{Z}[x] \to \mathbb{Z}[x_1, x_2]$ that sends x to $x_1 + x_2$.
- Comultiplication µ : B → B ⊗ B: the map Z[x] → Z[x₁, x₂] sending x to x₁x₂.
- Co-zero and co-one are the maps $B \to \mathbb{Z}$ sending $x \mapsto 0, 1$.

Here $\Phi = \mathbf{1}_{Ring}$. The map $h : B \to \Phi B$ is the identity map:

 $\mathbb{Z}[x] \rightarrow \Phi \mathbb{Z}[x] \stackrel{\sim}{\rightarrow} \mathsf{hom}(\mathbb{Z}[x], \mathbb{Z}[x])$

 $q(x) \mapsto q(x) \mapsto (x \mapsto q(x))$

Here $\Phi = \mathbf{1}_{\mathsf{Ring}}$. The map $h: B \to \Phi B$ is the identity map:

Here $\Phi = \mathbf{1}_{\text{Ring}}$. The map $h : B \to \Phi B$ is the identity map: $\mathbb{Z}[x] \to \Phi \mathbb{Z}[x] \xrightarrow{\sim} \hom(\mathbb{Z}[x], \mathbb{Z}[x])$ $q(x) \mapsto q(x) \mapsto (x \mapsto q(x))$ $x^n \mapsto q(x)^n$ $\sum_n p_n x^n \mapsto \sum_n p_n q(x)^n$

Here $\Phi = \mathbf{1}_{\text{Ring}}$. The map $h: B \to \Phi B$ is the identity map: $\mathbb{Z}[x] \rightarrow \Phi \mathbb{Z}[x] \xrightarrow{\sim} \hom(\mathbb{Z}[x], \mathbb{Z}[x])$ $q(x) \mapsto q(x) \mapsto (x \mapsto q(x))$ $x^n \mapsto q(x)^n$ $\sum_{n} p_n x^n \mapsto \sum_{n} p_n q(x)^n$ $p \mapsto p(q(x))$ $\mathbb{Z}[x] \times \mathbb{Z}[x] \to \mathbb{Z}[x]$ $(q(x), p(x)) \mapsto p(q(x))$

"Plethysm is substitution monoidal structure".

Definition of 2-rig

Categorifying the notion of rig: for us, a 2-rig is

- ► A Vect-enriched category C,
- Closed under absolute colimits (giving 2-additive structure)
 - 1. Biproducts = direct sums $A \oplus B$,
 - 2. Idempotent splittings: every idempotent $e : A \rightarrow A$ factors as a retraction $r : A \rightarrow B$ followed by a section $i : B \rightarrow A$, so that e = ir and $ri = 1_B$. In that case have a coequalizer

$$A \xrightarrow[1_A]{\stackrel{e}{\to}} A \xrightarrow{r} B.$$

Definition of 2-rig

Categorifying the notion of rig: for us, a 2-rig is

- ► A Vect-enriched category C,
- Closed under absolute colimits (giving 2-additive structure)
 - 1. Biproducts = direct sums $A \oplus B$,
 - 2. Idempotent splittings: every idempotent $e : A \rightarrow A$ factors as a retraction $r : A \rightarrow B$ followed by a section $i : B \rightarrow A$, so that e = ir and $ri = 1_B$. In that case have a coequalizer

$$A \xrightarrow[1_A]{e} A \xrightarrow{r} B.$$

► Equipped with a symmetric monoidal structure ⊗ in the Vect-enriched sense (giving 2-multiplicative structure).

Here $A \otimes B$ automatically preserves absolute colimits in each of the separate arguments A, B, i.e., 2-distributivity is automatic in this context.

The free 2-rig

The initial 2-rig is Vec, the category of finite-dimensional vector spaces. The (unique up to isomorphism) map $\text{Vec} \rightarrow C$ sends the 1-dim space k to the monoidal unit I.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
The initial 2-rig is Vec, the category of finite-dimensional vector spaces. The (unique up to isomorphism) map $\text{Vec} \rightarrow C$ sends the 1-dim space k to the monoidal unit I.

The free 2-rig on one generator: mimic the construction of the free rig $\mathbb{N}[x]$ on one generator.

Form $\mathbb{N}[x]$ in two steps:

- First form the free commutative (multiplicative) monoid on one generator x (monomials xⁿ).
- Then form the free commutative (additive) monoid on that (polynomials a₀ + a₁x + ... + a_nxⁿ with coefficients in ℕ).

Analogously, to form the free 2-rig Vec[x] on one generator:

► First form the free symmetric monoidal category on one generator (permutation groupoid P with objects [n], non-empty homs are hom([n], [n]) = S_n),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Analogously, to form the free 2-rig Vec[x] on one generator:

- ► First form the free symmetric monoidal category on one generator (permutation groupoid P with objects [n], non-empty homs are hom([n], [n]) = S_n),
- Then form the free Cauchy-complete Vect-enriched category on that:

1. "Vectorialize" the homs S_n : get group algebras kS_n .

Analogously, to form the free 2-rig Vec[x] on one generator:

- ► First form the free symmetric monoidal category on one generator (permutation groupoid P with objects [n], non-empty homs are hom([n], [n]) = S_n),
- Then form the free Cauchy-complete Vect-enriched category on that:
 - 1. "Vectorialize" the homs S_n : get group algebras kS_n .

2. Close up under finite direct sums:

$$\hom(\sum_{i} a_{i}[i], \sum_{i} b_{j}[i]) = \sum_{i} a_{i}b_{i}kS_{i}$$

Analogously, to form the free 2-rig Vec[x] on one generator:

- ► First form the free symmetric monoidal category on one generator (permutation groupoid P with objects [n], non-empty homs are hom([n], [n]) = S_n),
- Then form the free Cauchy-complete Vect-enriched category on that:
 - 1. "Vectorialize" the homs S_n : get group algebras kS_n .
 - 2. Close up under finite direct sums:

$$\hom(\sum_i a_i[i], \sum_i b_j[i]) = \sum_i a_i b_i k S_i$$

3. Close up under idempotent splittings. If char(k) = 0, one gets arbitrary functors

$$\mathbb{P} o \mathsf{Vec}$$

of finite support.

In $k[S_2]$, let σ be the transposition. Define idempotent maps $e_-, e_+ : k[S_2] \to k[S_2]$ given by multiplying by $\frac{1}{2}(1 \pm \sigma)$, e.g.,

$$e_{-}^{2} = \left(\frac{1-\sigma}{2}\right)^{2} = \frac{1-2\sigma+\sigma^{2}}{4} = \frac{2-2\sigma}{4} = \frac{1-\sigma}{2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In $k[S_2]$, let σ be the transposition. Define idempotent maps $e_-, e_+ : k[S_2] \to k[S_2]$ given by multiplying by $\frac{1}{2}(1 \pm \sigma)$, e.g.,

$$e_{-}^{2} = \left(\frac{1-\sigma}{2}\right)^{2} = \frac{1-2\sigma+\sigma^{2}}{4} = \frac{2-2\sigma}{4} = \frac{1-\sigma}{2}.$$

Let E_{-} be the corresponding idempotent splitting (retract) in Vec[x]:

$$x^{\otimes 2} o E_{-} o x^{\otimes 2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In $k[S_2]$, let σ be the transposition. Define idempotent maps $e_-, e_+ : k[S_2] \to k[S_2]$ given by multiplying by $\frac{1}{2}(1 \pm \sigma)$, e.g.,

$$e_{-}^{2} = \left(\frac{1-\sigma}{2}\right)^{2} = \frac{1-2\sigma+\sigma^{2}}{4} = \frac{2-2\sigma}{4} = \frac{1-\sigma}{2}.$$

Let E_{-} be the corresponding idempotent splitting (retract) in Vec[x]:

$$x^{\otimes 2} o E_- o x^{\otimes 2}.$$

If C is any 2-rig, with an object V, the 2-rig map $Vec[x] \rightarrow C$ that sends x to V also sends the retract E_{-} to a retract

$$V^{\otimes 2} \rightarrow E_{-}(V) \rightarrow V^{\otimes 2},$$

usually denoted $E_{-}(V) = \Lambda^{2}(V)$.

In $k[S_2]$, let σ be the transposition. Define idempotent maps $e_-, e_+ : k[S_2] \to k[S_2]$ given by multiplying by $\frac{1}{2}(1 \pm \sigma)$, e.g.,

$$e_{-}^{2} = \left(\frac{1-\sigma}{2}\right)^{2} = \frac{1-2\sigma+\sigma^{2}}{4} = \frac{2-2\sigma}{4} = \frac{1-\sigma}{2}.$$

Let E_{-} be the corresponding idempotent splitting (retract) in Vec[x]:

$$x^{\otimes 2} \to E_- \to x^{\otimes 2}.$$

If C is any 2-rig, with an object V, the 2-rig map $Vec[x] \rightarrow C$ that sends x to V also sends the retract E_{-} to a retract

$$V^{\otimes 2} \to E_{-}(V) \to V^{\otimes 2},$$

usually denoted $E_{-}(V) = \Lambda^{2}(V)$. If E_{+} is the retract corresponding to $e_{+} = \frac{1}{2}(1 + \sigma)$, then we similarly have a retract $E_{+}(V)$ of $V^{\otimes 2}$, usually denoted $E_{+}(V) = S^{2}(V)$.

Analogous to the biring structure on $\mathbb{Z}[x]$, there is a 2-birig structure on Vec[x]:

► (2-)coproducts of 2-rigs are like tensor products. If C and D are 2-rigs, then their coproduct C ⊠ D is the closure under biproducts, idempotent splittings of the tensor C ⊗ D, where

$$(C \otimes D)((c_1, d_1), (c_2, d_2)) = C(c_1, c_2) \otimes D(d_1, d_2).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Analogous to the biring structure on $\mathbb{Z}[x]$, there is a 2-birig structure on Vec[x]:

► (2-)coproducts of 2-rigs are like tensor products. If C and D are 2-rigs, then their coproduct C ⊠ D is the closure under biproducts, idempotent splittings of the tensor C ⊗ D, where

$$(C \otimes D)((c_1, d_1), (c_2, d_2)) = C(c_1, c_2) \otimes D(d_1, d_2).$$

We have Vec[x₁] ⊠ Vec[x₂] ≃ Vec[x₁, x₂]. This is the same as the category of finitary functors

$$\mathbb{P} \times \mathbb{P} \to \mathsf{Vec}.$$

Analogous to the biring structure on $\mathbb{Z}[x]$, there is a 2-birig structure on Vec[x]:

► (2-)coproducts of 2-rigs are like tensor products. If C and D are 2-rigs, then their coproduct C ⊠ D is the closure under biproducts, idempotent splittings of the tensor C ⊗ D, where

$$(C \otimes D)((c_1, d_1), (c_2, d_2)) = C(c_1, c_2) \otimes D(d_1, d_2).$$

We have Vec[x₁] ⊠ Vec[x₂] ≃ Vec[x₁, x₂]. This is the same as the category of finitary functors

$$\mathbb{P} \times \mathbb{P} \to \mathsf{Vec}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The 2-birig co-addition is the unique 2-rig map Vec[x] → Vec[x₁, x₂] that sends x to x₁ ⊕ x₂.

Analogous to the biring structure on $\mathbb{Z}[x]$, there is a 2-birig structure on Vec[x]:

► (2-)coproducts of 2-rigs are like tensor products. If C and D are 2-rigs, then their coproduct C ⊠ D is the closure under biproducts, idempotent splittings of the tensor C ⊗ D, where

$$(C \otimes D)((c_1, d_1), (c_2, d_2)) = C(c_1, c_2) \otimes D(d_1, d_2).$$

We have Vec[x₁] ⊠ Vec[x₂] ≃ Vec[x₁, x₂]. This is the same as the category of finitary functors

$$\mathbb{P} \times \mathbb{P} \to \mathsf{Vec}.$$

- The 2-birig co-addition is the unique 2-rig map Vec[x] → Vec[x₁, x₂] that sends x to x₁ ⊕ x₂.
- Co-multiplication $Vec[x] \rightarrow Vec[x_1, x_2]$ sends x to $x_1 \otimes x_2$.
- ▶ 2-birig co-zero, co-one $Vec[x] \rightarrow Vec \text{ send } x \text{ to } 0, k.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\delta: \mathbf{1} \to \mathbf{11}$ corresponds to a 2-rig map $h = id : Vec[x] \to \mathbf{1}Vec[x]$. This corresponds in turn to the canonical 2-rig map

$$\operatorname{Vec}[x] \rightarrow 2\operatorname{Rig}(\operatorname{Vec}[x], \operatorname{Vec}[x])$$

$$Q \mapsto (x \mapsto Q)$$

 $\delta: \mathbf{1} \to \mathbf{11}$ corresponds to a 2-rig map $h = id : Vec[x] \to \mathbf{1}Vec[x]$. This corresponds in turn to the canonical 2-rig map

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\delta: \mathbf{1} \to \mathbf{11}$ corresponds to a 2-rig map $h = id : Vec[x] \to \mathbf{1}Vec[x]$. This corresponds in turn to the canonical 2-rig map

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\begin{array}{rcl} \mathsf{Vec}[x] & \to & & 2\mathsf{Rig}(\mathsf{Vec}[x],\mathsf{Vec}[x]) \\ Q & \mapsto & & (x \mapsto Q) \\ & & & x^{\otimes n} \mapsto Q^{\otimes n} \\ & & & \sum_n \mathsf{a}_n x^{\otimes n} \mapsto \sum_n \mathsf{a}_n Q^{\otimes n} \end{array}$$

 $\delta: \mathbf{1} \to \mathbf{11}$ corresponds to a 2-rig map $h = id : Vec[x] \to \mathbf{1}Vec[x]$. This corresponds in turn to the canonical 2-rig map

$$\begin{array}{rcl} & \bigvee & 2\operatorname{Rig}(\operatorname{Vec}[x],\operatorname{Vec}[x]) \\ Q & \mapsto & (x \mapsto Q) \\ & & x^{\otimes n} \mapsto Q^{\otimes n} \\ & & \sum_n a_n x^{\otimes n} \mapsto \sum_n a_n Q^{\otimes n} \\ & & \left(A \xrightarrow{r} E \xrightarrow{i} A\right) \mapsto (A \circ Q \to \underbrace{E} \circ Q \to A \circ Q) \end{array}$$

De-currying, we obtain a functor (2-plethysm)

 $\mathsf{Vec}[x] \times \mathsf{Vec}[x] \to \mathsf{Vec}[x]$

 $(Q,E)\mapsto E\circ Q$

Theorem: The 2-plethysm functor is associative up to coherent isomorphism. It is part of a (plethystic) monoidal category structure on Vec[x]. (Compare "substitution product" of Joyal species.)

The "trivial" 2-plethory $1:2\text{Rig}\rightarrow 2\text{Rig}$ descends, through decategorification, to a highly nontrivial rig-plethory Rig \rightarrow Rig!

General idea: if B is a 2-rig, and if H(B) is the set of isomorphism classes of objects of B, then \otimes and \oplus on B induce a rig structure on H(B). This rig is denoted J(B).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The "trivial" 2-plethory $1:2\mathsf{Rig}\to 2\mathsf{Rig}$ descends, through decategorification, to a highly nontrivial rig-plethory $\mathsf{Rig}\to\mathsf{Rig}!$

General idea: if B is a 2-rig, and if H(B) is the set of isomorphism classes of objects of B, then \otimes and \oplus on B induce a rig structure on H(B). This rig is denoted J(B).

Very roughly: have a product-preserving functor

 $J: 2\mathsf{Rig} \to \mathsf{Rig}$

But what do we do with the 2-cells of 2Rig?

The "trivial" 2-plethory $1:2\mathsf{Rig}\to 2\mathsf{Rig}$ descends, through decategorification, to a highly nontrivial rig-plethory $\mathsf{Rig}\to\mathsf{Rig}!$

General idea: if B is a 2-rig, and if H(B) is the set of isomorphism classes of objects of B, then \otimes and \oplus on B induce a rig structure on H(B). This rig is denoted J(B).

Very roughly: have a product-preserving functor

 $J: 2 \operatorname{Rig} \rightarrow \operatorname{Rig}$

But what do we do with the 2-cells of 2Rig?

Definition: If C is a 2-category (a Cat-enriched category), then C_{ho} is the ordinary (Set-enriched) category obtained by applying

$$\mathsf{Cat} \stackrel{\mathsf{core}}{\to} \mathsf{Gpd} \stackrel{\pi_0}{\to} \mathsf{Set}$$

to the Cat-valued homs of \mathcal{C} .

The 1-cells of \mathcal{C}_{ho} are the 2-isomorphism classes of 1-cells of \mathcal{C} .

The 1-cells of C_{ho} are the 2-isomorphism classes of 1-cells of C. **Proposition:** If C is a category, regarded as an object of Cat_{ho} , then

$$\mathsf{hom}(1,-):\mathsf{Cat}_{\mathsf{ho}} o\mathsf{Set}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

takes C to $(\pi_0 \text{core})(C)$.

The 1-cells of C_{ho} are the 2-isomorphism classes of 1-cells of C. **Proposition:** If C is a category, regarded as an object of Cat_{ho} , then

$$\mathsf{hom}(1,-):\mathsf{Cat}_{\mathsf{ho}} o\mathsf{Set}$$

takes C to $(\pi_0 \text{core})(C)$.

Corollary: If C is a 2-category, and c, d are objects, then

$$\mathsf{hom}(1,\mathcal{C}(c,d)) = \mathcal{C}_{\mathsf{ho}}(c,d)$$

regarding the category C(c, d) as belonging to Cat_{ho}.

Proposition: There is a product-preserving lift J of the bottom composite in

Namely, if R is a 2-rig, then $U_{ho}(R)$ is a rig object in Cat_{ho}, and the functor hom(1, -) is product-preserving (hence preserves rig objects). Hence the set

$$H(R) = \hom(1, U_{\rm ho}(R))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

carries rig structure. This rig is J(R).

Proposition: There is a product-preserving lift J of the bottom composite in

Namely, if R is a 2-rig, then $U_{ho}(R)$ is a rig object in Cat_{ho}, and the functor hom(1, -) is product-preserving (hence preserves rig objects). Hence the set

$$H(R) = \hom(1, U_{\rm ho}(R))$$

carries rig structure. This rig is J(R). We let $\Lambda_+ = J(\text{Vec}[x])$.

 $H(R) \cong \operatorname{hom}(1, 2\operatorname{Rig}(\operatorname{Vec}[x], R)) = 2\operatorname{Rig}_{\operatorname{ho}}(\operatorname{Vec}[x], R)$

Theorem: $J : 2\operatorname{Rig}_{ho} \to \operatorname{Rig}$ preserves copowers of $\operatorname{Vec}[x]$. (note 5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem: $J : 2\operatorname{Rig}_{ho} \to \operatorname{Rig}$ preserves copowers of $\operatorname{Vec}[x]$. (note 5)

For example, $J(\operatorname{Vec}[x]^{\boxtimes 2}) \cong J(\operatorname{Vec}[x])^{\otimes 2} = \Lambda_+^{\otimes 2}$.

This result allows us to define a birig structure on $\Lambda_+ = J(\text{Vec}[x])$. For example, start with 2-coaddition

 $\alpha: \mathsf{Vec}[x] \to \mathsf{Vec}[x] \boxtimes \mathsf{Vec}[x]$

Theorem: $J : 2\operatorname{Rig}_{ho} \to \operatorname{Rig}$ preserves copowers of $\operatorname{Vec}[x]$. (note 5)

For example, $J(\operatorname{Vec}[x]^{\boxtimes 2}) \cong J(\operatorname{Vec}[x])^{\otimes 2} = \Lambda_+^{\otimes 2}$.

This result allows us to define a birig structure on $\Lambda_+ = J(\text{Vec}[x])$. For example, start with 2-coaddition

$$\alpha: \mathsf{Vec}[x] \to \mathsf{Vec}[x] \boxtimes \mathsf{Vec}[x]$$

Apply J:

$$J(\alpha) : J(\operatorname{Vec}[x]) \to J(\operatorname{Vec}[x] \boxtimes \operatorname{Vec}[x])$$

Theorem: $J : 2\operatorname{Rig}_{ho} \to \operatorname{Rig}$ preserves copowers of $\operatorname{Vec}[x]$. (note 5)

For example, $J(\operatorname{Vec}[x]^{\boxtimes 2}) \cong J(\operatorname{Vec}[x])^{\otimes 2} = \Lambda_+^{\otimes 2}$.

This result allows us to define a birig structure on $\Lambda_+ = J(\text{Vec}[x])$. For example, start with 2-coaddition

$$\alpha: \mathsf{Vec}[x] \to \mathsf{Vec}[x] \boxtimes \mathsf{Vec}[x]$$

Apply J:

$$J(\alpha): J(\operatorname{Vec}[x]) \to J(\operatorname{Vec}[x] \boxtimes \operatorname{Vec}[x])$$

Compose:

$$J(\mathsf{Vec}[x]) \stackrel{J(\alpha)}{\to} J(\mathsf{Vec}[x] \boxtimes \mathsf{Vec}[x]) \cong J(\mathsf{Vec}[x]) \otimes J(\mathsf{Vec}[x])$$

$$\mathsf{co}\mathsf{-}\mathsf{add}:\Lambda_+\to\Lambda_+\otimes\Lambda_+$$

Rig-plethory structure on Λ_+

The birig structure on Λ_+ provides a lift Φ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Rig-plethory structure on Λ_+

The birig structure on Λ_+ provides a lift Φ

We want a comonad structure on Φ : a comultiplication $\delta: \Phi \to \Phi \Phi$ and counit $\varepsilon: \Phi \to \mathbf{1}_{Rig}$.

Recall that $U\Phi \rightarrow U\Phi\Phi$ amounts to structure map

$$h: U\Lambda_+ \to \operatorname{Rig}(\Lambda_+, \Lambda_+).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rig-plethory structure on $\Lambda_+ = J(\text{Vec}[x])$

 $H(R) \cong 2\operatorname{Rig}_{ho}(\operatorname{Vec}[x], R)$ $H(\operatorname{Vec}[x]) \cong 2\operatorname{Rig}_{ho}(\operatorname{Vec}[x], \operatorname{Vec}[x])$ $UJ(\operatorname{Vec}[x]) \cong 2\operatorname{Rig}_{ho}(\operatorname{Vec}[x], \operatorname{Vec}[x])$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ・ ・ ・

э

Rig-plethory structure on $\Lambda_+ = J(\text{Vec}[x])$

 $H(R) \cong 2\operatorname{Rig}_{ho}(\operatorname{Vec}[x], R)$ $H(\operatorname{Vec}[x]) \cong 2\operatorname{Rig}_{ho}(\operatorname{Vec}[x], \operatorname{Vec}[x])$ $UJ(\operatorname{Vec}[x]) \cong 2\operatorname{Rig}_{ho}(\operatorname{Vec}[x], \operatorname{Vec}[x])$

Compose:

 $UJ(\operatorname{Vec}[x]) \cong 2\operatorname{Rig}_{ho}(\operatorname{Vec}[x], \operatorname{Vec}[x]) \to \operatorname{Rig}(J(\operatorname{Vec}[x]), J(\operatorname{Vec}[x]))$ $U\Lambda_+ \to \operatorname{Rig}(\Lambda_+, \Lambda_+)$
Theorem: The (rig) map

$$U\Lambda_+ \to \mathsf{Rig}(\Lambda_+, \Lambda_+)$$

gives rise to an associative plethystic multiplication

$$U\Lambda_+ \times U\Lambda_+ \to U\Lambda_+,$$

compatibly with the birig structure (note 4), so that it defines a coassociative transformation $\delta : \Phi \to \Phi \Phi$ that is part of a rig-plethory (a right adjoint comonad on Rig).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem: The (rig) map

$$U\Lambda_+ \to \mathsf{Rig}(\Lambda_+, \Lambda_+)$$

gives rise to an associative plethystic multiplication

$$U\Lambda_+ \times U\Lambda_+ \to U\Lambda_+,$$

compatibly with the birig structure (note 4), so that it defines a coassociative transformation $\delta : \Phi \to \Phi \Phi$ that is part of a rig-plethory (a right adjoint comonad on Rig).

The ringification

$$\Lambda = \mathbb{Z} \otimes_{\mathbb{N}} \Lambda_+$$

(the Grothendieck ring $K_0(\text{Vec}[x])$) similarly carries a canonical plethory structure, i.e., there is a canonical lift Φ : Ring \rightarrow Ring of hom $(\Lambda, -)$: Ring \rightarrow Set with a comonad structure. (note 6)

Theorem: The (rig) map

$$U\Lambda_+ \to \mathsf{Rig}(\Lambda_+, \Lambda_+)$$

gives rise to an associative plethystic multiplication

$$U\Lambda_+ \times U\Lambda_+ \to U\Lambda_+,$$

compatibly with the birig structure (note 4), so that it defines a coassociative transformation $\delta : \Phi \to \Phi \Phi$ that is part of a rig-plethory (a right adjoint comonad on Rig).

The ringification

$$\Lambda = \mathbb{Z} \otimes_{\mathbb{N}} \Lambda_+$$

(the Grothendieck ring $K_0(\text{Vec}[x])$) similarly carries a canonical plethory structure, i.e., there is a canonical lift Φ : Ring \rightarrow Ring of hom $(\Lambda, -)$: Ring \rightarrow Set with a comonad structure. (note 6)

A λ -ring is then a Φ -coalgebra. (notes 7, 8)

Thank you!

・ロト・(四)・(日)・(日)・(日)・(日)

1. Or a left adjoint monad on Ring. (String diagrams show that the left adjoint of a comonad carries a monad structure, and dually the right adjoint of a monad carries a comonad structure; the back-and forths are mutually inverse.) Moreover, in this case the category of coalgebras of the comonad is equivalent to the category of algebras of the monad: the forgetful functor from either is both monadic and comonadic.

2. If Φ is a right adjoint, then so is $U\Phi$, and any right adjoint to Set is representable: $U\Phi \cong \hom(B, -)$. Conversely, by an adjoint lifting theorem, any lift of a representable through U: Ring \rightarrow Set must be a right adjoint. The same applies to any monadic category $U: C \rightarrow$ Set in place of U: Ring \rightarrow Set.

3. Of course there is also the counit $\varepsilon : \Phi \to \mathbf{1}$. We have $U\mathbf{1} \cong \hom(\mathbb{Z}[x], -)$. Thus

$$egin{array}{ccc} U \Phi & \stackrel{U arepsilon}{
ightarrow} & U \mathbf{1} \ \mathsf{hom}(B,-) &
ightarrow & \mathsf{hom}(\mathbb{Z}[x],-) \ \mathbb{Z}[x] &
ightarrow & B. \end{array}$$

The composite

$$1 \stackrel{[x]}{\to} U\mathbb{Z}[x] \to UB$$

picks out an element ι of UB. This element is a unit for plethysm iff ε obeys the comonad counit equations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

4. $H: U\Phi \rightarrow U\Phi\Phi$ corresponding to $h: B \rightarrow \Phi B$ is of the form $H = U\delta: U\Phi \rightarrow U\Phi\Phi$, iff H preserves the ring operations (induced from biring structure). E.g., here preservation of multiplication:

In terms of co-multiplication μ , this is equivalent to

$$B \xrightarrow{h} \Phi B$$

$$\mu \downarrow \qquad \qquad \downarrow \Phi(\mu) \quad , \text{ where}$$

$$B \otimes B \xrightarrow{h_{(2)}} \Phi(B \otimes B)$$

 $B \xrightarrow{i_1, i_2} B \otimes B \xrightarrow{h_{(2)}} \Phi(B \otimes B) = B \xrightarrow{h} \Phi B \xrightarrow{\Phi(i_1), \Phi(i_2)} \Phi(B \otimes B)$

5. **Theorem:** Let n_1, \ldots, n_p be natural numbers. If char(k) = 0, then every irrep of $k[S_{n_1} \times \ldots S_{n_p}]$ is a tensor product $\rho_i \otimes \ldots \otimes \rho_p$ of irreps ρ_i of $k[S_{n_i}]$ that are determined uniquely up to isomorphism. \Box

Now $J(\operatorname{Vec}[x])$ is a free \mathbb{N} -module on isomorphism classes of irreps of symmetric groups, so that $J(\operatorname{Vec}[x])^{\otimes p}$ is a free \mathbb{N} -module on p-tuples of such classes. Meanwhile $J(\operatorname{Vec}[x]^{\boxtimes p})$ consists of isomorphism classes of functors $\mathbb{P}^{\times p} \to \operatorname{Vec}$ of finite support. The canonical rig map

$$J(\operatorname{Vec}[x])^{\otimes p} \to J(\operatorname{Vec}[x]^{\boxtimes p})$$

is the $\mathbb N\text{-module}$ map that freely extends the mapping

$$([\rho_1],\ldots,[\rho_p])\mapsto [\rho_1\otimes\ldots\otimes\rho_p]$$

Since this mapping is a bijection by the theorem, the canonical rig map is an isomorphism.

6. The main problem is to define the co-negation co-operation on Λ . This is explained in section 7 of the paper, but in outline, one considers the 2-rig \mathcal{G} of \mathbb{Z}_2 -graded Vec[x]-objects (C_0, C_1), with the usual symmetry that involves a sign change when permuting homogeneous elements of odd degree. Then $J(\mathcal{G})$ is a rig of pairs ([C_0], [C_1]) and there is a well-defined rig map

$$\partial: J(\mathcal{G}) \to \Lambda$$

taking $([C_0], [C_1]) \mapsto [C_0] - [C_1]$. Form the 2-rig map $\phi_- : \operatorname{Vec}[x] \to \mathcal{G}$ that takes x to (0, x). This behaves something like a categorified co-negation. Form the rig composite

$$\Lambda_+ = J(\operatorname{\mathsf{Vec}}[x]) \stackrel{J(\phi_-)}{\to} J(\mathcal{G}) \stackrel{\partial}{\to} \Lambda$$

and freely extend this rig map to a ring map $\Lambda \to \Lambda$. This gives the desired co-negation on the biring Λ . The proof that this works uses a "categorified Euler formula".

7. Or again, as in Note 1, the algebras of a left adjoint monad. This is the more usual tack taken (as in Borger-Wieland). The point is that there is an equivalence between left adjoint endofunctors on Ring and birings; since left adjoint endofunctors compose, there is a monoidal structure on Ladj(Ring), which may be transferred across the equivalence

$\mathsf{Ladj}(\mathsf{Ring}) \simeq \mathsf{Biring}$

to give a monoidal product on Biring, usually denoted \odot . Then a plethory may be defined to be a biring *B* with a \odot -monoid structure. In that case, a λ -algebra may be defined to be an algebra for the monad

$\Psi = \Lambda \odot - : \mathsf{Ring} \to \mathsf{Ring}$

that is left adjoint to the comonad Φ . Incidentally, this comonad is know as the "big Witt functor W"; W-coalgebras are the same as Λ -algebras.

8. To be sure, this is not the usual way of presenting λ -rings! One of the virtues however is making explicit the conceptual reason for why the usual examples (virtual differences of group reps, of vector bundles, etc.) form λ -rings: it's because $\operatorname{Vec}[x]$ acts tautologically on any 2-rig via Schur functors, analogous to how the polynomial ring $\mathbb{Z}[x]$ acts tautologically on any ring R by the unique ring map $\mathbb{Z}[x] \to \operatorname{Func}(R, R)$ sending x to 1_R (where the codomain carries the pointwise ring structure).

The usual way is to define a λ -ring as a ring R together a series of operations $\lambda^i : R \to R$ that abstract exterior power operations (exterior powers giving a main example of Schur functors). These λ -operations obey a complicated set of equations which may be found in many texts; we do not reproduce them here.