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Thanks for all the fish!
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CAM (Categorical Abstract Machine)

(INRIA’s announcement)
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xSLAM: eXplicit Substitutions Linear Abstract Machine

Ritter’s PhD thesis on categorical combinators for the
Calculus of Constructions (Cambridge 1992, TCS 1994)

de Paiva’s PhD thesis on models of Linear Logic & linear
lambda-calculus (Cambridge 1990)

Put the two together for Categorical Abstract Machines for
Linear Functional Programming

Project xSLAM Explicit Substitutions for Linear Abstract
Machines (EPSRC 1997-2000)
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xSLAM: eXplicit Substitutions Linear Abstract Machine

Twenty years later:

More than 10 papers submitted to conferences

Only two in journals: Linear Explicit Substitutions. (Ghani, de
Paiva, Ritter, 2000) and Relating Categorical Semantics for
Intuitionistic Linear Logic (Maietti, Maneggia, de Paiva, Ritter
2005)

Master’s thesis: An Abstract Machine based on Linear Logic
and Explicit Substitutions. Francisco Alberti, 1997

Two international workshops: Logical Abstract Machines
(Saarbruecken, 1998), Logical Abstract Machines
(Birmingham, 1999)

International Dagstuhl meeting: Linear Logic and Applications
(1999)
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xSLAM Project Work

1 E. Ritter. A calculus for Resource allocation. Technical Report, University of Birmingham, 2000.

2 Maietti, de Paiva, Ritter. Linear primitive recursion. manuscript 2000.

3 Maietti, de Paiva, Ritter. Categorical Models for Intuitionistic and Linear Type Theory. FoSSaCS 2000.

4 Cervesato, de Paiva, Ritter. Explicit Substitutions for Linear Logical Frameworks. LFM 1999

5 E. Ritter. Characterising Explicit Substitutions which Preserve Termination. TLCA 1999

6 Ghani, de Paiva, Ritter. Explicit Substitutions for Constructive Necessity. ICALP 1998

7 Ghani, de Paiva, Ritter. Categorical Models for Explicit Substitutions. FoSSaCS 1999.

8 de Paiva, E. Ritter. On Explicit Substitutions and Names. ICALP 1997.

9 Nesi, de Paiva, Ritter. Rewriting Properties of Combinators for Intuitionistic Linear Logic. Higher Order
Algebra, Logic and Term Rewriting, HOA’1993.

10 Maietti, de Paiva and Ritter. Normalization Bounds in Rudimentary Linear Logic ICC, 2002.

11 de Paiva and Eike Ritter. Variations on Linear PCF. WESTAPP, 1999.
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Twenty years later

time to try again?
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Categorical what?

Explicit substitutions!
In computer science, lambda calculi are said to have expli-
cit substitutions if they pay special attention to the forma-
lization of the process of substitution. This is in contrast
to the standard lambda calculus where substitutions are
performed by beta reductions in an implicit manner which
is not expressed within the calculus.

The concept of explicit substitutions has become notorious
(despite a large number of published calculi of explicit
substitutions in the literature with quite different characteristics)
because the notion often turns up (implicitly and explicitly) in
formal descriptions [...] Wikipedia, Feb 2021

Syntactic calculi, plenty of them. No models?
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Categorical Explicit Substitutions

From Abadi, Cardelli, Curien and Levy 1989:
Substitution is the eminence grise of λ-calculus.The clas-
sical β rule

(λx .a)b →β a{b/x}

uses substitution crucially though informally. Here a and b
denote two terms, and a{b/x} represents the term a where
all free occurrences of x are replaced with b. This substi-
tution does not belong in the calculus proper, but rather
in an informal meta-level. Similar situations arise in dea-
ling with all binding constructs, from universal quantifiers
to type abstractions. [...] The correspondence between
the theory and its implementations becomes highly non-
trivial, and the correctness of the implementations can be
compromised. 8 / 42
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Why Categorical Semantics?

Syntactic calculus should have a categorical semantics
Mathematics as a source of intuitions
System implementation proved correct by construction
Hierarchy of systems
Showing this for IPL and ILL (works for CS4�,♦ too)
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Why functional languages?

Programs as mathematical functions transforming inputs into
outputs
Work on inductively defined data structures like lists, trees
⇒ no side effects
⇒ can employ mathematical reasoning and substitute equals for
equals
⇒ function definition and application central part of languages like
Haskell, OCaml, cakeML, Rust, Scala
...
(usually) Have strong typechecking
⇒ can detect many errors already at compile-time
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What you will NOT see in this talk

Intersection types (idempotent or not)

Evaluation strategies

Dynamic types

Patterns

Proof-nets

Nominal syntax

Geometry of Interaction

explicit substitutions Reductions, etc
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Prototypical language λ-calculus

Terms:

M ::= x |λx : A.M |MM

Types:
A ::= G |A→ A

Meaning of terms:
x : Variable (placeholder)
λx : A.M: Function expecting input of type A
MM: Function application

Single out well-formed terms (check whether correct kind of
argument supplied)
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Lambda calculus

Judgements Γ ` M : A

Γ, x : A ` x : A
Γ, x : A ` M : B

Γ ` λx : A.M : A→ B

Γ ` M : A→ B Γ ` N : A

Γ ` MN : B
To obtain a Turing-complete language, add recursively defined
functions via letrec and add means for defining inductively
defined data structures like lists, trees, etc
Computation done via β-reduction

(λx : A.M)N  M[N/x ]

where M[N/x ] is M with x replaced by N
13 / 42



Motivation
Abstract Machines

Explicit Substitutions
Categorical Semantics

ILT: better type theory
Conclusions

Environment machines

Implementing β reduction efficiently is hard
Traditional solution:
Reduce λ-terms in an environment
storing bindings of terms for variables separately
⇒ have two kinds of expressions:

Environments 〈Mi/xi 〉: lists of bindings

Terms: as before plus new closures f ∗M
Modified β-reduction stores substitution in the environment
(λx .t)u ⇒ 〈u/x〉 ∗ t
New rewrite rules to eliminate substitutions
〈u/x〉 ∗ t ⇒∗ t[u/x ]

Transforming this ‘trick’ of implementation into a logical calculus
⇒ the reason for ‘explicit substitutions’

14 / 42



Motivation
Abstract Machines

Explicit Substitutions
Categorical Semantics

ILT: better type theory
Conclusions

The λσ-Calculus (Abadi, Cardelli, Curien, Lévy 1989)

Terms of the λ-calculus +
Application of a substitution to a term: f ∗ t
Start substitution: 〈〉
Parallel and sequential composition: 〈f , t/x〉, f ; g

Typing Rules:
Substitutions are judgements Γ ` f : ∆

Γ′ ⊆ Γ

Γ ` 〈〉 : Γ′
Γ ` f :∆ Γ ` t :A
Γ ` 〈f , t/x〉 : ∆, x : A

Γ ` f : ∆ ∆ ` t : A
Γ ` f ∗ t : A

Γ ` f :∆ ∆ ` g :Ψ

Γ ` f ; g : Ψ

Key Idea 1: Every λσ-term is equivalent to a λ-term.
Key Idea 2: Contexts z :A×B and x :A, y :B are not equal 15 / 42
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Delia Kesner on Explicit Substitutions

‘ A Theory of Explicit Substitutions with Safe and Full
Composition’ LMCS 2009: better understanding of execution
models of higher-order languages

transform the equalities of the specification into a set of
rewriting rules;

composition of substitutions allows more sophisticated
interactions;

a logical system where the reduction rules behave like cut
elimination transformations;

Melliès counter-example 1995 shows ‘a flaw in the design of
ES calculi’
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Kesner ES (2009)

ways to avoid Melliès counter-example and recover the SN
property;

weak lambda calculi. not good for proof assistants;
terms with explicit weakening constructors;

Her way: a perpetual reduction strategy and a principle
“Implicit substitution implies normalisation of Explicit
substitution”= IE property;

This extends ideas in [Kes07, Kes08], by the use of
intersection types as well as the use of the Z-property of van
Oostrom [vO] to show confluence.
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What do we want from a Categorical Semantics?

Motivation: What should calculi of explicit substitutions
contain?

What term constructs should we require
What equations should we require
how to discover this for different logics?

Methodology: Extend the Curry Howard correspondence

Category theory as syntax debugging
Internal language gives term constructs & equational theory

Key Ideas:
ES model should contain a model of the underlying λ-calculus
Contexts z :A×B and x :A, y :B are isomorphic
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Models of Explicit Substitutions — Indexed Categories

Contexts: Modelled by a cartesian category

Objects are contexts, morphisms are substitutions
Cartesian structure is given by parallel composition

Terms: For every context Γ, define the category D(Γ)

Objects are variable-type pairs x : A
Morphisms (x : A) −→ (y : B) are judgements Γ, x : A ` t : B

Re-indexing: Γ ` f :∆ induces a functor D(f ) :D(∆)→ D(Γ)

Summary: An indexed category is a functor D : C op → Cat
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What’s Wrong with Indexed Categories?

Plus Points: Indexed categories induce λσ-equations

〈〉; h = h Identity of C
h; 〈〉 = h Identity of C
〈〉 ∗ t = t Functoriality of D

(f ; g); h = f ; (g ; h) Assoc of C -comp
(f ; g) ∗ t = f ∗ (g ∗ t) Functoriality of D

Lemma: Soundness and completeness

Problem 1: Indexed Categories are inherently non linear

Identities in the fibres require judgements Γ, x : A ` x : A

Problem 2: No syntax for forming substitutions from terms
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Context-Handling Categories

Solution 1: Remove identities by changing codomain to Set
Solution 2: Add two new natural transformations
Defn: Let B be a SMC (CCC) with T ⊆ |B|. A linear
(cartesian) context handling category is a functor
L : Bop → SetsT and for each type, natural isomorphisms

SubA : L(−)A ⇒ B(−,A) TermA : B(−,A)⇒ L(−)A

Yoneda lemma: There exists VarA ∈ L(A)A with
TermA(f ) = f ∗ VarA
Equations: We get the following equations

〈(f ∗ t)/x〉 = f ; 〈t/x〉 Naturality of Sub
〈t/x〉 ∗ x = t One half of the iso
〈(f ∗ x)/x〉 = f Other half of the iso
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Adding Type Structure — E -Categories

Context handling categories model the behaviour of explicit
substitutions, eg their formation and application to terms
Types: Since terms are defined on the fibres, modelling type
constructors requires extra structure on the fibres.
Examples: Given types A,B ∈ T , there are types
A→ B,A× B ∈ T . In addition there are isomorphisms,
natural in Γ

E ((Γ,A))B

E (Γ)A→B

E (Γ)A × E (Γ)B

E (ΓA×B)

Naturality: Equations distribute explicit subs over terms

f ∗ λx .t = λx .f ∗ t f ∗ (tu) = (f ∗ t)(f ∗ u)

Model Collapse: Contexts z :A×B and x :A, y :B are
isomorphic 22 / 42
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Adding Linear Type Structure — L-Categories

Functions: Given types A,B ∈ T , there is a type
A −◦ B ∈ T and isomorphisms, natural in Γ

E ((Γ,A))B

E (Γ)A−◦ B

Tensor: But the following doesn’t give an iso
z :A⊗B ∼= x :A, y :B

E ((Γ,A,B))C

E (Γ,A⊗ B)C

Solution: Demand x :A, y :B ` 〈(x ⊗ y)/z〉 :A⊗B has inverse.

Γ, x : A, y : B ` f : ∆

Γ, z : A⊗ B ` let z be x ⊗ y in f : ∆

Key Idea: Category theory guiding the design of the calculus 23 / 42
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Modelling the !-type Constructor

Key Idea: !-arises as the comonad of a monoidal adjunction
between CCCs and SMCCs

Recall: Models of explicit substitutions

E categories model calculi with →,×, 1 types
L categories model calculi with −◦ ,⊗, I types

Defn: A !L-category is a monoidal adjunction where C is an
E category, B is an L-category and F ,G preserve types.

Crucially: Requires an isomorphism x : A| ∼= |z :!A

Γ, x : A|∆ ` f : ∆

Γ|∆, z :!A ` let z be !x in f : ∆
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Categorical Theorems

Have three theorems for E-categories (CCCs), three theorems for
L-categories (SMCCs), two for putting the E- and L-categories
together into a !L-category.

(right defn) Every E-category contains an underlying CCC and
every CCC extends to an E-category, in an iso way;

(soundness) We can model the λσ calculus in an E-category;

(completeness) If for every E-category, the interpretation of
two morphisms f , f ′ is the same, then the equality of the
morphisms is proved by the λσ theory.

Similarly for L-categories.
For !L-categories, we use Barber’s DILL calculus with explicit
substitutions xDILL, described in Linear Explicit Substitutions
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First Conclusions

Indexed categories are inherently non-linear but we can use
presheaves

Explicit substitutions are tricky to model (extensionally they
are equivalent to their underlying λ-calculus)

Our models reflect this by “taking isomorphisms seriously”

We get an extension of Curry-Howard correspondence
justifying our calculus

Have a working indexed-cat model for linear, cartesian, both
as well as the original for the Calculus of Constructions

Explicit substitutions are not simply a hack: find maths of clever
implementation
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ILT: no modality for better behaviour

Better type theory for better implementations

Which type theory? why better?

Categorical Models for Linear and Intuitionistic Type Theory
(Maietti, Ritter, de Paiva, FOSSACS, LNCS Springer, vol
1784, 2000)
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Linear Type Theories with Categorical Models

Linear λ-calculus (Benton, Bierman, de Paiva, Hyland, 1992)
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
262.html

DILL system (Plotkin and Barber, 1996)
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/

LNL system (Benton, 1995) https://www.researchgate.

net/publication/221558077_A_Mixed_Linear_and_

Non-Linear_Logic_Proofs_Terms_and_Models
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Their Categorical Models

Linear λ-calculus (ILL)
A linear category is a symmetric monoidal closed (smc)
category equipped with a linear monoidal comonad, such that
the co-Kleisli category of the comonad is a Cartesian closed
Category (CCC). (loads of conditions)

DILL system
A DILL-category is a pair, a symmetric monoidal closed
category and a cartesian category, related by a (symmetric)
monoidal adjunction.

LNL system
An LNL-model is a (symmetric) monoidal adjunction between
a smcc and a ccc.
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Linear Curry-Howard Isos

“Relating Categorical Semantics for Intuitionistic Linear
Logic”(with P. Maneggia, M. Maietti and E. Ritter), Applied
Categorical Structures, vol 13(1):1–36, 2005.

Take home: Categorical models need to be more than sound and
complete. Need to provide internal languages for the theories they
model. 30 / 42
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Why a new calculus?
(ILT, Fossacs 2000)

Choosing between the three type theories:

DILL is best, less verbose than ILL, but closer to what we
want to do than LNL.

Easy formulation of the promotion rule

Contains the usual lambda-calculus as a subsystem

however, most FPers would prefer to use a variant of DILL
where instead of !, one has two function spaces, → and −◦
But then what’s the categorical model?
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Intuitionistic and Linear Type Theory
(ILT, Calculus)

If we have two function spaces, but no modality !, how can we
model it?
All the models discussed before have a notion of !, a comonad
created by the adjunction.
Well, we need to use deeper mathematics, i.e. fibrations or
indexed categories.
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Calculus ILT

Γ | a : A ` a : A Γ, x : A | ` x : A

Γ | ∆, a : A ` M : B

Γ | ∆ ` λaA.M : A −◦ B

Γ, x : A | ∆ ` M : B

Γ | ∆ ` λxA.M : A→ B

Γ | ∆1 ` M : A −◦ B Γ | ∆2 ` N : A

Γ | ∆ ` M lN : B

Γ | ∆ ` M : A→ B Γ | ` N : A

Γ | ∆ ` M iN : B
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ILT Models

Idea goes back to Lawvere’s hyperdoctrines satisfying
comprehension
Model of ILT should modify this setting to capture the separation
between intuitionistic and linear variables.
A base category B, which models the intuitionistic contexts of ILT,
objects in B model contexts (Γ| ).
Each fibre over an object in B modelling a context models terms
Γ|∆ ` M : A for any context ∆
The fibres are now symmetric monoidal closed categories with
tensor products and model the linear constructions of ILT
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ILT Models and internal language theorems

Just as in the previous ‘example’ can prove soundness,
completeness and internal language theorems.
(or so they say)
Missing an understanding of what is essential, what can be
changed, and limitations of the methods.
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Conclusions

Explicit substitutions discussions stuck on issues:

equations-in-context vs. raw reductions
de Bruijn indices vs. variable names
untyped vs. typed calculi
calculus for abstract machines or for proof assistants, etc..

our explicit substitution calculus has been driven by the
correspondence with the (well-established) cat semantics

Ritter showed that every reduction used in abstract machines
terminates, thus SN is not necessary for their design. ⇒ not
worried about SN or metavariables

still: what can we say about ES calculi we skipped? what
more do we need to say? which other logics can we do?
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Thanks!
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Curry-Howard Enablers
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Intuitionistic Type Theory
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Linear Type Theory
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