TENSOR PRODUCTS, MULTIMAPS & INTERNAL HOMS John Bourke Topos Institute Colloquium 9.9.21

INTRO

- 3 closely related concepts Multicats

Monsidal cats ---- Closed cats abb -> c a -> [b, c]

- Exploring relationship between them leads to skew variants
- Tell this story
- How I got interested
- Examples
- Curious Features

$\begin{array}{c} \underline{MONOIDAL CATS} \left(\begin{array}{c} Meelene, \\ Benaloov \\ 63 \end{array} \right) \\ \hline \\ $
sat 5 axioms: ABCD Maclane pentagon IAB AIB ABI A II A
- 3 axioms redundant (Kelly 6t) - These axioms generate "all"- Maclane's coherence theorem - Eq. (Vect, O), (Set, x)

CLOSED CATS (Eilenberg-Kelly 65) "Internal hom" [-,-]: C"xC -> C "unit" IEC extranatural families $L: [A, 0] \longrightarrow [C, A], [C, 0]$ $i : [I,A] \cong A$ $j : I \longrightarrow [A,A]$ sat 5 axioms + $C(A,B) \longrightarrow C(I, [A,B])$ As before, 3 transformations, 5 axions, only Zinvertible maps Vect, [A,B] = Vect (A,B) with pointwise str.

CLOSED CATS 2 First monograph on envicted cats used closed cats Often easy to describe internal homs explicitly unlike tensor products Axiomatics involve iterated contravariance & hard to read!

- <u>Cat</u> C of unary maps: ie. cats with structure. EILENBERG-KELLY THM

- Cat C + IEC + $\otimes: \mathbb{C}^* \to \mathbb{C} + \mathbb{C}, -\mathbb{I}: \mathbb{C}^{\mathbb{P}_{\mathbf{x}}} \mathbb{C} \to \mathbb{C}$ + not iso $C(AB,C) \cong C(A, EB, C])$. - Then there is bijection betw. () Ext of (C, O, T) to monoidal cat Extⁿ of (C, C, -J, I) to closed cat such that certain map t: [ABB, C] → [A, [B, C]] is invertible. Proof | Perfect corr between - transforms R, R, r ~ L, j, i - 5 axioms ~ 5 axioms - 3 invertible ~ 2 invertible + t to maps fix it!

Rectifying imbalance - going skew!
Let's uninvert some isos - easier on closed side.
Not historically correct approach by lit. Skew closed cato (Street 2013)

"Internal hom" [-,-]: C*×C → C "unit" I ∈ C extranat. Families L: [A,0] → E[C,A],[C,0]], i: [I,A] → A j: I → [A,A] sat 5 axioms as before Skew monoidal cato (Szlaulonyi 12)

- "Tensor product" $\otimes : \mathbb{C}^2 \longrightarrow \mathbb{C}$ + "unit" I $\in \mathbb{C}$
- + natural transformations
- $\kappa : (AB) C \rightarrow A(BC),$ $l : IA \rightarrow A,$ $r : A \rightarrow AI$
 - sat 5 axioms as before.
- Note orientation.
- No redundant axioms

Street's theorem

Get C+IEC+

- $\otimes: \mathbb{C}^{2} \to \mathbb{C} + \mathbb{C}, -\mathbb{I}: \mathbb{C}^{\mathfrak{P}}, \mathbb{C} \to \mathbb{C}$
- + nat isoo C(AB,C) ≥ C(A,EB,C]).
 Then there is bijection betw.
- () Ext of (C, @, I) to skew mon cat
- 2 Ext" of (C, [;], I) To skew closed cat
 - EK-theorent really a refinement of above
 - Totality (C, Ø, C, J, I) us above called mon. skew closed or closed skew monoidal.
 - · Examples ?

Szlachanyi's examples
B a bialgebra in smc C
$B \longrightarrow -B, \frac{B}{S} \rightarrow B, B \rightarrow \frac{B}{S}$
Skew mon str
X*Y = XBY, whit I
Assoc Units
x x e x x
$B \longrightarrow B \times -X -B$
YY
Can classify bialgebras &
bialgebroids using such
stow strutures

3 Weak maps & Z- cat theory?	2
- Common situation in Z-cat theory	
- E.g. SMon Gets - SMon Getp	
symmetric mon cate, symmetric mon cate strict maps, strong maps,	
- LHS better RHS of	
behaved interest	
- JMonCatp has closed mon. bical str - [A,0] contains	
strong symm. mon. Functors	
· Complex as mon bicat stris weak	٤.
- Homs [A,B] restrict to	
Skew monoidal cl. str. on	
- Contains original monoidal	
bicat in a certain sense,	
- Many such examples (JB 2016)	.

Curious features of skew structures

1) io- comorad w'counit ia -> a - & i monad w'unit a -> ai and comorad distributes over monad Maps in Kluisli cat IA -> B For comonad can be thought of as weak In Z-cat examples, comonael is pseudomorphism classifier (2) (DUALITY!)C skew monoidal => CP skew monoidal A, B H > B BA. (3) (1,0) suggest stew monoidal categories not lax or oplax structures but bilax, in some sense ! E.g. lax monoidal cats fail duality.

(1) Skew monoidel cat does have lax monoidel str not totally obvious;
(a,...,an) i i a,...an IcFt bracketed with unit on IcFt
(a,...,an) i on IcFt
(a,...,an) i on IcFt
(a,...,an) i vight
bracketed

Remark: Nany analogies with concept of algebraic weale factorisation system.

Skew multicats (Bourke-Lack)
- Monoidal (Hermida) Representable cats multicats
- Closed (Manzyuk) closed multicate
· What is a skew multicat?
- A multicat Ce of "loose, " multinger
- For n>0 a function
$J_{A} \subseteq \mathfrak{C} \mathfrak{C} \mathfrak{C} \mathfrak{C} \mathfrak{C} \mathfrak{C} \mathfrak{C} \mathfrak{C}$
"tich I multiment" Imple multime
"Fight multinops" "loose multing viewing Fight multiniops as loose
"Fight multinops" "loose multing viewing Fight multiniops as loose t extra sub. & conditions.
"tight multinops" "loose multing viewing tight multiniops as loose t extra sub. & conditions. In case, the ja are inclusions (tights are special loose nops)
"Fight multinops" "loose multing viewing Fight multiniops as loose t extra sub. & conditions. In case, the jn are inclusions (Fights are special loose maps) these say: identities are fight
"Fight multimaps" "loose multimp viewing Fight multimaps as loose t extra sub. & conditions. In case, the jn are inclusions (Fights are special loose maps) these say: - identities are Fight - Folguerign) is Fight if
"tight multimaps" "loose multime viewing tight multimaps as loose t extra sub. & conditions. - In case, the jn are inclusions (tights are special loose maps) these say: - identities are tight - fo(gimign) is tight if F & gi are.

Skew multicate ctd. - Think tight multimaps is loose one with special behaviour in l'st variable A JF B closed under substit. Eq. multimaps strict in 1'st Variable Z-cat examples & many other arise in this way Skew mon Bourke- Left rep. cato Lack skew multicity Orgoing work connected w' this is G. Lobbia. Unstalu - Zeilberger & other studying connections between skew structures & sequent calculi (inspired by Lambek.)

Thanks For listening!