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Alexander Grothendieck (1928–2014)

Creator of modern algebraic geometry, Fields medal 1966.

Obituary in Nature:

His unique skill was to eliminate all unnecessary
hypotheses and burrow into an area so deeply that its inner
patterns revealed themselves ... he was considered by
many the greatest mathematician of the 20th century.

He felt his insights were not always well-received, writing:

A wind of disrepute for any foundational matters is
blowing nowadays.

.
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Foundations

Grothendieck was obsessed with finding an axiomatic system for
‘well-behaved’ topological spaces, avoiding paradoxes like Banach-Tarski.

One thing which strikes me ... is the absence of proper
foundations for topology itself!

He wrote a famous letter in 1983 to the mathematician Daniel
Quillen, where he sketched some possible solutions, but concluded:

One seems caught in an infinite chain of ever messier structures
... one is going to get hopelessly lost, unless one discovers
some simple guiding principle.

The next day he solved the problem, and wrote in another letter:

I went on pondering ... motivation does furnish a simple guiding
principle in order not to get lost in the messiness of higher structures.

.
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Paths as types

Grothendieck’s idea begins with n-dimensional balls:

D0 := x : ?

x

f

x x ′

D1 := x : ?, x ′ : ?,
f : x → y

f ′

f

αx x ′

D2 := x : ?, x ′ : ?,
f : x → x ′, f ′ : x → x ′,
α : f → x ′

f ′

f

α α′Ω
x x ′

D3 := x : ?, x ′ : ?,
f : x → x ′, f ′ : x → x ′,
α : f → f ′, α′ : f → f ′,
Ω : α → α′

∙ ∙ ∙

The type ? means point. An arrow type S → T means path.

We represent these balls by giving lists of the points and paths in their neighbourhood.

These lists are examples of computads.
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Gluing balls with trees

Grothendieck suggested “gluing” these balls together, forming geometric pasting schemes.

They are represented by trees (or Batanin trees), and we can also encode them as lists .

x y

f

g

⇑μ

h

⇑ν
z

j

x
y

z

f
g

h

μ ν

j

x : ?, y : ?, z : ?,

f : x → y , g : x → y ,

h : x → y , j : y → z ,

μ : f → g , ν : g → h

We can also define the boundaries ∂± of a pasting scheme. In this case:

∂+ = x y zh j
∂− = x y zf j

Grothendieck wanted a scheme for describing composites of these balls.

.
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The boundary principle
Here are Grothendieck’s main ideas:

I Given a ∂−(Γ)-composite u, and ∂+(Γ)-composite v , we get a Γ-composite coh(u, v).
I Given Γ-composites u, v , we get a Γ-composite coh(u, v).

x y z

f

h

g

⇑μ

⇑ν j

x y zh j

x y zf j

Γ

∂+(Γ)

∂−(Γ)

coh(f ◦ j , h ◦ (j ◦ id(z)))

h ◦ (j ◦ id(z))

f ◦ j

There are side conditions :
I the given composites must be in the same hom-set (i.e. have the same type)
I the given composites must be “entire”, using all the variables of their domains.

These are the operations of the theory. The composites are obtained by substitution.
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Some examples

Γ =
f gx y z

coh(x , z) “f • g”

Γ =
x

coh(Γ, x , x) “id(x)”

Γ =
fx y

coh(Γ, id(x) • f , f ) “λf ”

Γ =
f g hx y z

coh(Γ, (f • g) • h, f • (g • h)) “αf ,g ,h”

Γ =
fx y

coh(Γ, y , z) “f −1”

Γ =
f gx y z

coh(Γ, f , f )

Grothendieck’s original letter was ambiguous on how new terms are built from old ones.

The CS perspective gives a clear answer: by induction.
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Induction, recursion, induction-recursion

Induction allows us to build sets from valid construction rules.

Here is a simple example of two
construction rules:

? ∈ S
Given p ∈ S , then f (p) ∈ S

Then S looks like this: S = {?, f (?), f (f (?)), f (f (f (?))), . . .}

Recursion is the principle that lets us define functions out of an inductive set.

For example, we can define a
function J : S → N like this:

J(?) = 0
Given p ∈ S , then J(f (p)) = J(p) + 1

Then J acts as follows: J(?) = 0, J(f (?)) = 1, J(f (f (?)) = 2, . . .

Inductive sets are “completely free”, and easy for computers to build and work with.
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Induction-recursion
Mutual induction allows us to build multiple such sets simultaneously.

For example, consider the following rules: ? ∈ S
Given p ∈ S , then f (p) ∈ S
Given p ∈ S , then g(p) ∈ T
Given q ∈ T , then h(q) ∈ S

Then S = {?, f (?), h(g(?)), f (f (?)), h(g(f (?))), . . .} and T = {g(?), g(f (?)), g(h(g(?))), . . .}

Induction-recursion lets us define the inductive sets and recursive functions simultaneously.

For example, consider these rules, where
again J : S → N:

? ∈ S
Given p ∈ S , then f (p) ∈ S
Given p ∈ S with J(p) = 0, then g(p) ∈ T
Given q ∈ T , then h(q) ∈ S
J(?) = 0, J(f (p)) = J(p) + 1, J(h(q)) = 0

Then we have S = {?, f (?), h(g(?)), . . .} and T = {g(?), g(h(g(?))), . . .}
This might seem strange, because we’re defining J and S in terms of each other. But it’s OK.

If everything is a set, induction-recursion has the same power as induction. Hancock, McBride, Ghani,
Malatesta, Altenkirch (2013)

...
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Now we’re going to play...
FREE

STRUCTURES

BY INDUCTION
For a chosen algebraic structure, can we build
free examples inductively, with structural
functions given by recursion?

Monoids. Consider the free monoid over a set S = {A, B , C}. Its underlying set is given by:
I binary bracketed strings over S , e.g. (C (A(BB))1))B ,
I quotiented by (XY )Z = X (YZ ) and X1 = X = 1X .

Can we build this quotient inductively? WIN, just finite lists in {A, B , C}.
And monoid multiplication is then a recursive function.

Groups. Consider the free group over S = {A, B , C}. Its underlying set is given by:
I binary bracketed strings over S , with inverses, e.g. (C (A

-1
(BB -1))1))B ,

I quotiented by (XY )Z = X (YZ ) and X1 = X = 1X and XX -1 = 1 = X -1X

Can we build this quotient inductively? Lists don’t work, as ABB -1C 6= AC as lists.
We need “lists without adjacent inverse pairs”. We can build this via induction-recursion.
Via HMGMA, we can do this just by induction, so we WIN.

...
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Now we’re going to play...
FREE

STRUCTURES

BY INDUCTION
Monoidal categories. Consider the free
monoidal category on some given
objects and morphisms.

Its set of objects is just bracketed strings in the generating objects, which is inductive.

But its set of morphisms is the set
of string diagrams, quotiented by homotopy :

Alternatively, the morphisms are expressions
in the formal syntax of monoidal categories,
quotiented by the triangle and pentagon equations.

= =

There seems to be no way to inductively construct the quotient space, so we LOSE.

Strict monoidal categories. We ... LOSE.

Strict ∞-categories. We ... LOSE.

Weak ∞-categories. We ... WIN! (That’s the main point of this talk.)

Side question. How can we determine this for some general structure?

...
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Computads
An n-computad is the generating data for a free n-category. Let’s see some examples.

n = 0. A 0-computad is a set.

n = 1. A 1-computad is just a directed graph:
I an underlying 0-computad V (vertices)
I a set E of 1-generators (edges)
I functions s, t : E → V (source and target)

Given a 1-computad D, we write Cell1(D) for
its 1-cells, e.g. (f ◦ g) ◦ h ∈ Cell1(D).

n = 2. A 2-computad is the generating data
for a bicategory:
I an underlying 1-computad D (directed graph)
I a set G of 2-generators (2-cells)
I functions s, t : G → Cell1(D) satisfying globularity

A

B

C D

E

f

g
h

j k

μ : j ⇒ (f ◦ g) ◦ f ◦ h

ν : id(E ) ⇒ id(E )

We generalize this to all n ∈ N.
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Free ∞-categories inductively
We will build the following structures by indexed mutual induction-recursion, for all n ∈ N:

Categories

I Compn of n-computads and n-homomorphisms.

Functors

I un : Compn → Compn−1, giving the underlying (n − 1)-computad.
I Celln : Compn → Set, giving the set of n-cells.
I Typen : Compn → Set, giving the set of n-types.

Natural transformations

I tyn : Celln → Typen−1 ◦ un, giving for every n-cell its underlying (n − 1)-type.

Additional data

I For every tree B , an n-computad tBn .
I For every tree B , a distinguished subset of Typen(t

B
n ) called the full types.

Here all the sets are indexed inductive-recursive, and all the functions are recursive.
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Structure of the definition

These sets and functions have a complex dependency pattern that repeats at each level:

Ob(Compn) Mor(Compn) ◦nOb(Celln) Mor(Celln)Ob(Typen) Mor(Typen)tyn

Ob(Compn) Mor(Compn) ◦nOb(Celln) Mor(Celln)Ob(Typen) Mor(Typen)tyn

Ob(Compn+1) Mor(Compn+1) ◦n+1Ob(Celln+1) Mor(Celln+1)Ob(Typen+1) Mor(Typen+1)tyn+1

Ob(Compn+2) Mor(Compn+2) ◦n+2Ob(Celln+2) Mor(Celln+2)Ob(Typen+2) Mor(Typen+2)tyn+2

DANGER, cyclic dependency between the recursive functions Mor(Celln+1) and ◦n+1.

So a careful check is required that everything is well-founded.
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The definition

Let’s look at some parts of the definition in more detail.

Objects. The objects of Compn+1 are triples (C , V , φ), called (n + 1)-computads, where:

I C ∈ Ob(Compn)
I V is a set of variables

I φ : V → Typen(C ) is a function assigning to each variable a type of C

Morphisms. A morphism of Compn+1 is a pair (σ0, σV ) : (C , VC , φC ) → (D, VD , φD) where:

I σ0 ∈ Mor(Compn(C , D))
I σV : VC → Celln+1(D, VD , φD) such that for all v ∈ VC we have

tyn+1(D)(σV (v)) = Typen(σ0)(φC (v))

This just says “if g : a → b, then we must have σ(g) : σ(u) → σ(v)”.
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The definition
Elements of Celln(C , V , φ) are defined inductively following Grothendieck’s scheme.

Cells. For an n-computad (C , VC , φC ), its set of n-cells Celln(C , VC , φC ) is inductively
generated as follows:
I for every element v ∈ VC , we have an element var(v) ∈ Celln(C , VC , φC ).
I for every triple (B , A, σ) where

I B is a tree with dim(B) ≤ n
I A is a full type in Typen−1(t

B
n−1)

I σ = (σ0, σv ) is an n-computad morphism tBn → (C , VC , φC ).
we have an element coh(B , A, σ) ∈ Celln(C , VC , φC ).

This matches the structure of
operations in Grothendieck’s original
theory that we saw earlier:

x y z

f

h

g

⇑μ

⇑ν j

x y z
h j

x y z
f j

Γ

∂+(Γ)

∂−(Γ)

h ◦ (j ◦ id(z))

f ◦ j
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Polynomial functors
Recall our simple mutually inductive definition from earlier:

? ∈ S? ∈ S p ∈ S ⇒ f (p) ∈ T q ∈ T ⇒ g(q) ∈ Sq ∈ T ⇒ g(q) ∈ Sp ∈ S ⇒ f (p) ∈ T q ∈ T ⇒ g(q) ∈ S

We can encode this in a nice way, as follows:

SS p f

T

p f

TT q g

S

T q g

SS

??

Such a triple of functions is called a polynomial endofunctor:

A B C A
f g h

Question. Our definition is “large indexed inductive-recursive”.
Can we remove the induction-recursion and express it as a polynomial functor?
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Computads

Definition. The category Comp of computads is the limit in Cat of the following diagram:

Comp0 Comp1 Comp2 Compn∙ ∙ ∙ ∙ ∙ ∙
u1 u2 u3 un un+1

Comp

A computad therefore comprises a choice for each n of an n-computad Cn, with the
property that Cn+1 = (Cn, V

C
n , φC

n ) for some variable sets V C
n and typing functions φC

n .

A computad may have nontrivial structure in every dimension.
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General ∞-categories

Definition. The full subcategory Compt ⊂ Comp has tree computads as objects.

Theorem. In Compt, tree computads
are colimits of the leaf disks
(“globular sums”).

Definition. An ∞-category is a
presheaf (Compt)

op → Set
preserving globular sums.

This gives a category ∞Cat.

• •
g

⇑μ

• •
g

• •x
g

⇑ν

•x

• •x

• • •
⇑μ

⇑ν

→ →→ →

→ →→

x
y

z

f
g

h

μ ν

j

Known to agree with the definition of contractible ∞-category (Grothendieck, Maltsiniotis,
Batanin, Leinster, Brunerie) via recent work of Ara, Bourke and Benjamin.

This is a lightweight approach:

I no globular extension technology (Grothendieck/Maltsiniotis)

I no globular operad technology (Batanin/Leinster)

19 / 21



Equivalence
We saw earlier that we can describe the elements of a free monoid inductively.

. . . but not every monoid is free, so this is of limited usefulness!

We’ve also seen that the cells of a free ∞-category can be described inductively. . .

. . . the difference is that every ∞-category is equivalent to a free one.

So in some sense, Comp represents the entire theory of ∞-categories.

There is an adjunction as follows, where
L constructs the free ∞-category on a computad, and
R constructs the associated computad of the ∞-category:

Comp ∞Cat

L

R

a

For an ∞-category C , the computad R(C ) has all the cells of C as generators.

The ∞-category L(R(C )) is a cofibrant replacement of C , with some nicer properties.

Richard Garner has a great paper on n-computads, and our explicit construction fits in
perfectly with his theory (arXiv:0810.4450).
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Summary

Free ∞-categories can be constructed
via indexed induction-recursion.

Since every ∞-category is equivalent
to a free one, these computads
give a universal model for ∞-categories.

They are more-or-less a direct encoding of Grothendieck’s original idea.

Further questions:

I What free algebraic structures admit inductive presentations?

I Can the induction-recursion be removed in this case, giving a polynomial functor?

I What about other models (e.g. cubical)? (Work in progress.)

Thanks for listening!
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