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Theory of Commutative Monoids

(im, e}, 1 m(m(x,y),z) = m(x, m(y, z)), m(x,y) = m(y, x), m(e,x) = x })
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signature consisting of equations
operation symbols

m, e . i
{m, e} pairs of terms over some set of variables

, K implicit universal quantification

arity 2 arity O




Universal Algebra basics 1

A signature is a pair 2 = (S,a) where S is a set of operation symbols together with an arity
functiona:S — N

A 2-algebra is a pair (A,[-]) where A is a set and [-] is a function that sends operation symbols to
functions [o] : Ad©) = A

A 2-algebra homomorphism is the obvious thing an o o
[tn] A [tn]B
Y Y
| | | A > B
Given a set of variables V, the term 2-algebra Tv is s

o Tv:i=V|to]|ti(Tv) | t2o(Tyv,TV) | ... [ ta(Tv,..., TV) | ...

The term 2-algebra satisfies a universal property, any v : V = A extends to a unique
homomorphism v*: Tv = A



Universal Algebra basics |l

An equation is a pair (s,t) € Ty x Ty
A theory is a pair (2, E) where 2 is a signature and E is a set of equations.

 Example: the theory of commutative monoids

A model is a 2-algebra where every equation eck holds

A model homomorphism is a 2-algebra homomorphism
The class of models of a theory is called a variety

Theorem (Birkhoff 1935) A class of 2-algebras is a variety iff it is closed under
homomorphic images, subalgebras and products.
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Lawvere and cartesian categories

* There are several things to be unhappy about with classical universal
algebra

» taking theory=presentation isn’t great: different presentations yield the
same varieties

* reliance on ad-hoc standards, e.g. inductively defined terms over a
fixed countable set of variables

 Lawvere’s functorial semantics clarifies and simplifies all of this
beautifully



Finite products

 The category with free finite products on one object is FinSetor
* FinSetor has (up to equivalence) an alternative “operational” description
e objects: natural numbers, we think of m = {x1,X2,...,Xm}
e arrows m — n: n-tuples of variables in {x1,X2,...,Xm}, €.Q.
* there is exactly one arrow 1 = 2: (X1,X1)
* there are two arrows 2 = 1: (x1) and (x2)

e composition is substitution: e.g. (x1,X1);(X2) = X



Finite products ctd

* The category with free finite products on a signature 2 has a similar operational
description

* objects: natural numbers, we think of m = {x1,X2,...,Xm}

e arrows m — n: n-tuples of terms in Tx1.x2,... xm}, €.9. for the sig of monoids
* there is an arrow 1 — 2: (x1,€)
* thereis an arrows?2 — 1: (m)

 composition is substitution: e.g. (x1, €); (M) = m(x1, €)

Terms demystified!

The algebra of terms and substitution is simply a convenient description of a category with free products




Abstract universal algebra

Equate a theory with a category L with finite products (single sorted: with one
generating object)

doesn’t suffer from reliance on particular presentations

e.g. for commutative monoids, take the free category generated by {m,e},
quotient by least congruence generated by eqgs

A (classical) model is a product preserving functor L = Set
Model homomorphisms are natural transformations

Simple, beautiful, easily generalisable
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Props

* A prop is a symmetric strict monoidal category with
* objects: natural numbers

 monoidal product on objects is addition, I.e. m®n = m+n

 homomorphism of props: identity on objects symmetric strict monoidal functor
* e.g. the prop F of functions.
* Think of m as m={1,2,...,m}. The arrows of F are simply functions m — n.

 The monoidal product on arrows is the obvious thing, stacking graphs of
functions on top of one another.



Monoidal theories

A monoidal signature I = (G, ar, coar) where G is a set of operations
 ar. G — Nis gives arities

 coar .G — N gives coarities

ar(y){ j y E }Cvar()/)




Terms for props

* Classical terms are a description of a free category with products

* Terms for props should be a description of a free prop - string diagrams!

c:(n,z) d:(z,m) c:(n,m) d:(r,z)

y :(ar(y), coar(y)) (0, 0) — (L, 1) >< (2, 2) csd:(n, m) c®d:(n+r, m+z)

cc’ isdrawn | ¢ [ ¢

c®c’ is drawn




From terms to string diagrams
. Consider T ¥ {} -—}

strict monoidal cats. This means that:

* erasing the dotted lines

e “only connectivity matters” & = )?

String diagrams over [ are a convenient description of the free prop Xron I



Monoidal theories

Now that we know what terms are, we can talk about a monoidal theory
For a signature I', a [ -equation is a pair (s,t) € Xr[m,n] for some m,n

A presentation is a pair (I', F) where F is a set of [ -equations. The induced
prop Is the monoidal theory.

e.g. The monoidal theory of commutative monoids is isomorphic to F.

St
233 0G0 -




Diagrammatic reasoning

* |s the name of equational reasoning with string diagrams, e.g.




Fox’s Theorem

 Theorem (Fox 1976): A symmetric monoidal category is cartesian iff every object can
be equipped with a commutative comonoid structure which is coherent and natural.

t -t L0 -

XY X Y o
coherent: xov { — X®Y o —
XY Y X @
X
X

natural: ) Yoo _ Sy
B = AD ag. = —




Lawvere with string diagrams

A single sorted Lawvere theory is a cartesian prop
* |.e. a prop where the monoidal product is the categorical product

* \We already have one concrete description of the free cartesian category
on a signature - arrows: classical terms, composition: substitution

 \WWe now have a second: string diagrams!




A recipe

* Jurn a theory into a monoidal theory in two easy steps

. Generators: T %! 5 o —

* Equations: E (as string diagrams) + t . ~t { --4{>C ___

o
+ m—a{: m{ m —or—e =— Nl —e
O'_

e.g. as props, the Lawvere theory of commutative monoids is isomorphic to the

monoidal theory of commutative bialgebras!
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Partial theories and DCR categories

* Partial theories: we want to replace Set with Par as the universe of models

 Lawvere identified cartesian categories as the categorical structure of
interest for algebraic theories

* For partial theories, the corresponding categorical structure is given by
discrete cartesian restriction categories (dcr categories)

 Paris a DCR category. If C has finite limits, Par(C) is a DCR category.

e Instead of delving into the details, we can characterise them using a result
similar to Fox’s theorem



“Fox’s theorem” for DCR categories

* Theorem. A DCR category category is a symmetric monoidal category
where every object is equipped with a coherent partial Frobenius
algebra structure, such that the comultiplication is natural.

-t =+ T
B S o
Fea -y -

4




Some consequences

The free DCR category on an object is Par(For)

Given a signature 2, we obtain a syntax for equations!

Syntax = concrete description of the free DCR category on 2 in terms of
string diagrams with partial Frobenius structure

A presentation is then, as usual, the pair of a signature and equations

its partial Lawvere theory is the induced DCR prop



Models and homomorphisms

 Suppose that L is a partial Lawvere theory. A model is a cartesian
restriction functor L — Par

A homomorphism is a lax natural transformation

FA 22, GA

Even though Par is the universe, this implies all
homomorphism are total functions




Examples (2 sorted)

directed graphs A S O A t O A Js|—e — A —e A —t—e —A —e

|

—id SFO — O —8— O — O Aid t @

reflexive graphs O —idI— A O Hid|—e

A t
categories } A }—0 — 3 °
A S
A p A =ud
TR S A e g

+ monoidal categories, cartesian restriction categories, DCR categories, cartesian categories, cartesian closed categories, ...
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The Variety Theorem

Partial varieties are exactly the locally finitely presentable categories

« DCRC=- 2 category of DCR categories, restriction functors, and lax transformations

* Lex - 2-category of small categories with finite limits, functors, and natural
transformations

 LFP - the 2-category of locally finitely presentable categories, right adjoints preserving
directed colimits, and adjoint homomorphisms

Theorem. LFPor s reflective in DCRC= Splitx Total  Lex(—,Set)
™ — _—
DCRCS | DCRCS ~ Lex =~ LFP®
\/ \/ Y~

Par LFP(—,Set)



A string diagrammatic calculus for finite limits

* \We can give a string diagrammatic treatment of the category with free
finite limits on a signature

 \WWe want to capture the total maps after splitting idempotents
* Objects: carved out by some diagram of ¢

e Arrows:



Relational theories

 What if we want to take models in Rel, instead of Par or Set?

* Then the right categorical notion is a cartesian bicategory (of relations) of Carboni and
Walters.

* Aurelio Carboni and RFC Walters, “Cartesian Bicategories I”, JPAA 49:11-32, 1987

* Filippo Bonchi, Dusko Pavlovic, P.S. “Functorial Semantics for Relational Theories”
https://arxiv.org/abs/1711.08699

 Chad Nester recently proved a variety theoem: the class of varieties is the class of
definable categories

 Chad Nester. A Variety Theorem for Relational Universal Algebra, RAMICS 2021 (to
appear).



Takeaway

 Smooth extension of Lawvere’s functorial semantics methodology to
partial theories

* The story continues to relational theories

* |n each case (including the classical) string diagrams give us a calculus.
Ordinary terms only give a satisfactory calculus in the classical case.



