Doubly Lax Colimits of Double Categories with Applications

Dorette Pronk¹ with Marzieh Bayeh² and Martin Szyld¹

¹Dalhousie University

²University of Ottawa

Topos Institute Colloquium, October 28, 2021

Double Categories

• A double category is an internal category in Cat,

$$\mathbf{C}_1 \xrightarrow{s}_{t} \mathbf{C}_0$$
 .

It has

- objects (objects of C_0),
- vertical arrows (arrows of \mathbf{C}_0), denoted $d_0(v) \xrightarrow{v} d_1(v)$,
- horizontal arrows (objects of C_1), denoted $s(f) \xrightarrow{f} t(f)$,
- double cells (arrows of C_1), denoted

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \alpha & \downarrow \\ \downarrow & \downarrow \\ A' & \stackrel{f'}{\longrightarrow} & B' \end{array}$$

where
$$d_0(\alpha) = f$$
, $d_1(\alpha) = f'$, $s(\alpha) = u$, and $t(\alpha) = v$.

Examples

● For any 2-category C, Q(C) is the double category of quintets in C, with double cells

$$\begin{array}{ccc}
\stackrel{f}{\longrightarrow} & \text{for each } \alpha \colon vf \Rightarrow gu \text{ in } \mathcal{C}. \\
\stackrel{u}{\longleftarrow} & \stackrel{\alpha}{\longrightarrow} & \stackrel{v}{\longrightarrow} & \end{array}$$

② For any 2-category C, $\mathbb{H}(C)$ is the double category with double cells

$$\begin{array}{c} \stackrel{f}{\underset{1_{A} \ }{\overset{\alpha}{\overbrace{}}}} & \text{for each } \alpha \colon f \Rightarrow g \text{ in } \mathcal{C}. \end{array}$$

③ The double category $\mathbb{V}(\mathcal{C})$ is defined analogously.

The category **DblCat**

The category **DblCat** of double categories has:

- objects: double categories $\mathbb{C}, \mathbb{D}, \ldots$;
- arrows: double functors F, G, ...;
- 2-cells: these come in two flavours:
 - vertical transformations $\gamma \colon F \Longrightarrow G \colon \mathbb{C} \rightrightarrows \mathbb{D}$ given by

$$FA \xrightarrow{Fh} FB$$

$$\gamma_{A} \downarrow \qquad \gamma_{h} \qquad \downarrow \gamma_{B} \qquad \text{for each } h: A \to B \text{ in } \mathbb{C}$$

$$GA \xrightarrow{Gh} GB$$

functorial in the horizontal direction and natural in the vertical direction.

- horizontal transformations $\nu \colon F \Longrightarrow G$ are defined dually;
- modifications given by a family of double cells.

The category **DblCat** - Properties

- DblCat is not a double category.
- DblCat is enriched in the category DblCat of double categories: each DblCat(ℂ, D) is a double category.
- **DblCat**_v (resp. **DblCat**_h) is the 2-category with vertical (resp. horizontal) transformations.
- So lax limits have typically been taken in the 2-category DblCat_v or DblCat_h with laxity in one direction.

Diagrams in **DblCat**

To define a diagram of double categories indexed by a double category \mathbb{D} :

- Send objects of $\mathbb D$ to double categories;
- Send both horizontal and vertical arrows to double functors;
- For 2-dimensional cells we have to make a choice: we send double cells to *vertical* transformations.

So an indexing double functor is a double functor

```
\mathbb{D} \to \mathbb{Q}(\mathsf{DblCat}_{v})
```

We will also refer to indexing double functors as vertical double functors

$\mathbb{D} \rightarrow \mathsf{DblCat}.$

Questions

- Have we lost our ability to use horizontal transformations and modifications?
- Have we lost our ability to distinguish between horizontal and vertical arrows in the indexing double category?

No, they will show up in the notion of doubly lax transformation.

Intro to Doubly Lax Transformations

- Introduce a cylinder double category Cyl_v(DblCat).
- There are vertical double functors

$$\operatorname{Cyl}_{v}(\operatorname{DblCat}) \xrightarrow[v]{v}{}_{v} \xrightarrow{d_{0}}{}_{d_{1}} \operatorname{DblCat}$$

 A doubly lax transformation α: F ⇒ G: D → DblCat is given by a double functor

$$\alpha \colon \mathbb{D} \to \operatorname{Cyl}_{\nu}(\mathsf{DblCat})$$

such that $d_0 \alpha = F$ and $d_1 \alpha = G$.

The Double Category of (Vertical) Cylinders

The double category $Cyl_v(DblCat)$ of vertical cylinders is defined by:

- Objects are double functors, denoted by $\downarrow f$.
- Vertical arrows $f \xrightarrow{(u,\mu,v)} \overline{f}$ are given by vertical transformations,

• Horizontal arrows $f \xrightarrow{(h,\kappa,k)} f'$ are given by horizontal transformations,

Double Cylinders

A double cell, $(u,\mu,v) \oint_{\forall} (\alpha,\Sigma,\beta) \oint_{\forall} (u',\mu',v')$ consists of two vertical 2-cells, $\overline{f} \xrightarrow[(\overline{h},\overline{\kappa},\overline{k})]{\overline{f'}} f'$

and a modification Σ ,

Cylinders and Transformations

- There are vertical double functors d₀, d₁: Cyl_v(DblCat) → DblCat, sending a cylinder to its top and bottom respectively;
- A doubly lax transformation θ: F ⇒ G between vertical double functors F, G: D → DblCat is given by a double functor

 $\theta \colon \mathbb{D} \to \operatorname{Cyl}_{v}(\operatorname{DblCat}),$

such that $d_0\theta = F$ and $d_1\theta = G$.

Doubly Lax Transformations $\theta \colon F \Rightarrow G$

Doubly Lax Transformations

- Let $F, G: \mathbb{D} \longrightarrow \mathbf{DblCat}$ be vertical double functors.
- Since doubly lax transformations $F \Rightarrow G$ are represented by double functors,

$$\mathbb{D} \to \operatorname{Cyl}_{v}(\mathsf{DblCat})$$

they are the objects of a double category $\mathbb{H}om_{d\ell}(F, G)$: a sub double category of **DblCat**(\mathbb{D} , Cyl_v(**DblCat**)).

Lax Transformations Between 2-Functors

- By applying \mathbb{Q} to the hom-categories of a 2-category \mathcal{B} , we can make it into a DblCat-enriched category $\widehat{\mathbf{Q}}(\mathcal{B})$.
- This allows us to view lax transformations between 2-functors as a special case of the new doubly lax transformations.

$$\mathcal{A} \xrightarrow[]{F} \mathcal{B} \qquad \rightsquigarrow \qquad \mathbb{Q} \mathcal{A} \xrightarrow[]{V} \mathcal{A} \stackrel{\mathbb{Q} \mathcal{F}}{\xrightarrow{V}} \widehat{\mathbf{Q}}(\mathcal{B})$$

- By taking a restricted \mathbb{Q} on the codomain, taking only a particular class Ω of 2-cells of \mathcal{B} for the local horizontal arrows, we obtain Ω -transformations.
- By taking a restricted $\mathbb Q$ on the domain, we also get $\Sigma\text{-transformations}.$

Doubly Lax Colimits

- A doubly lax cocone for a vertical double functor F : D → DblCat with vertex E ∈ DblCat is a doubly lax transformation F ⇒ ΔE.
- There is a double category,

$$\mathbb{LC}(F,\mathbb{E}) := \mathbb{H}om_{d\ell}(F,\Delta\mathbb{E})$$

of doubly lax cocones with vertex \mathbb{E} .

A doubly lax cocone F ⇒ ΔL is the doubly lax colimit of F if, for every E ∈ DblCat,

$$\mathsf{DblCat}(\mathbb{L},\mathbb{E}) \stackrel{\lambda^*}{\longrightarrow} \mathbb{LC}(F,\mathbb{E})$$

is an isomorphism of double categories.

• The doubly lax colimit can be obtained by a **double Grothendieck construction**.

The Double Grothendieck Construction: Objects and Arrows

Let $\mathbb{D} \xrightarrow{F} \mathbf{DblCat}$ be a vertical double functor. The **double category of** elements, $\mathbb{G}r F = \int_{\mathbb{D}} F$, is defined by:

- Objects: (C, x) with C in \mathbb{D} and x in FC,
- Vertical arrows:

$$(C,x) \xrightarrow{(u,\rho)} (C',x'),$$

where $C \xrightarrow{u} C'$ in \mathbb{D} and $Fux \xrightarrow{\rho} x'$ in FC'.

• Horizontal arrows:

$$(C,x) \xrightarrow{(f,\varphi)} (D,y),$$

where $C \xrightarrow{f} D$ in \mathbb{D} , and $Ffx \xrightarrow{\varphi} y$ in FD.

The Double Grothendieck Construction: Double Cells

• Double cells:
$$(u,\rho) \oint_{V} (\alpha,\Phi) = (C',x') \frac{(f,\varphi)}{(f',\varphi')} (D',y')$$

• Double cells: $(u,\rho) \oint_{V} (\alpha,\Phi) = (v,\lambda)$, where $\alpha : (u \xrightarrow{f} v)$ is a double $(C',x') \xrightarrow{(f',\varphi')} (D',y')$

cell in \mathbb{D} and Φ is a double cell in *FD*':

D. Pronk, M. Bayeh, M. Szyld

Factorization

- Any horizontal arrow (f, φ) can be factored as $(A, x) \xrightarrow{(f, 1_{Ffx})} (B, Ffx) \xrightarrow{(1_B, \varphi)} (B, y).$
- Any vertical arrow (u, ρ) can be factored as

$$(A,x) \stackrel{(u,1_{Fux}^{\bullet})}{\longrightarrow} (A',Fux) \stackrel{(1_{A'}^{\bullet},\rho)}{\longrightarrow} (A',x').$$

• And any double cell (α, Φ) can be factored as

$$\begin{array}{c|c} (A,x) & \xrightarrow{(f,1_{Ffx})} (B,Ffx) \xrightarrow{(1_B,\varphi)} (B,y) \\ & \downarrow & (v,1_{F(vf)x}^{\bullet}) \downarrow & (1_v,1_{Fv\varphi}^{\bullet}) & \downarrow (v,1_{Fvy}^{\bullet}) \\ (u,1_{Fux}^{\bullet}) \downarrow & (\alpha,1_{(F\alpha)x}) & (B',FvFfx) \xrightarrow{(1_{B'},Fv\varphi)} (B',Fvy) \\ & \downarrow & (\alpha,1_{(F\alpha)x}) & (B',FvFfx) \xrightarrow{(1_{B'},Fv\varphi)} (B',Fvy) \\ & \downarrow & (1_{B'}^{\bullet},(F\alpha)x) \\ & \downarrow & (1_{F(r)x}^{\bullet}) \xrightarrow{(f',1_{F(f'u)x})} (B',Ff'Fux) & (1_{B'}^{\Box},\Phi) \\ & (1_{A'}^{\bullet},\rho) \downarrow & (1_{f'}^{\bullet},1_{Ff'\rho}) & \downarrow (1_{B'}^{\bullet},Ff'\rho) \\ & (A',x') \xrightarrow{(f',1_{Ff'x'})} (B',Ff'x') \xrightarrow{(1_{B'},\varphi')} (B',y') \end{array}$$

D. Pronk, M. Bayeh, M. Szyld

The Main Theorem

• There is a doubly lax cocone $F \xrightarrow{\lambda} \Delta \mathbb{G}r F$ with the required universal property:

$$\lambda^* \colon \mathbf{DblCat}\left(\int_{\mathbb{D}} \mathcal{F}, \mathbb{E}\right) \to \mathbb{LC}\left(\int_{\mathbb{D}} \mathcal{F}, \mathbb{E}\right)$$

is an iso of double categories for all $\mathbb{E} \in \textbf{DblCat}.$

 $\bullet\,$ Furthermore, $\int_{\mathbb{D}}$ extends to a functor of DblCat-categories

 $\operatorname{Hom}_{\nu}(\mathbb{D},\operatorname{\mathsf{DblCat}})_{d\ell} \to \operatorname{\mathsf{DblCat}}/\mathbb{D}$

which is locally an isomorphism of double categories

$$\mathbb{H}om_{d\ell}(F,G) \cong (\mathsf{DblCat}/\mathbb{D}) \left(\int_{\mathbb{D}} F \to \mathbb{D}, \int_{\mathbb{D}} G \to \mathbb{D} \right)$$

Application I: Tricolimits in 2-Cat

For a 2-category A and a 2-functor F: A → 2-Cat, we construct a double index functor as follows. First take

$$\mathcal{A} \xrightarrow{F} 2\text{-Cat} \xrightarrow{\mathbb{V}} \text{DblCat}_{v}$$

and then apply $\ensuremath{\mathbb{V}}$ to obtain:

$$\mathbb{V}(\mathcal{A}) \xrightarrow{\mathbb{V}(\mathbb{V} \circ F)} \mathbb{V}(\mathsf{DblCat}_{\nu}) \xrightarrow{\mathsf{incl}} \mathbb{Q}(\mathsf{DblCat}_{\nu}).$$

• Applying the double Grothendieck construction gives us

$$\int_{\mathbb{V}\mathcal{A}}\mathbb{V}(\mathbb{V}\circ F)=\mathbb{V}\int_{\mathcal{A}}F$$

(as defined by Bakovic and Buckley)

- The functor V: 2-Cat → DblCat_v induces an isomorphism of 3-categories between 2-Cat and its image in DblCat_v.
- It follows that $\int_{\mathcal{A}} F$ is the lax tricolimit of F in 2-Cat.

Application II: Categories of Elements

• For a functor $F \colon \mathbf{A} \to \mathbf{Set}$,

$$\operatorname{colim} F = \pi_0 \operatorname{El} (dF),$$

where

$$A \xrightarrow{F} Set \xrightarrow{d} Cat$$

and El (*dF*) has objects (*A*, *x*) with $x \in F(A)$ and arrows $f: (A, x) \rightarrow (A', x')$ where $f: A \rightarrow A'$ with F(f)(x) = x'.

 This follows from the universal property of the elements construction as lax colimit by applying it to cones with discrete categories as vertex and using the adjunction π₀ ⊢ d. • We can apply the same paradigm to a functor $F: \mathcal{A} \rightarrow \mathbf{Cat}$ and use

$$\operatorname{Cat} \underbrace{\overset{\pi_0}{\overset{\perp}{\underset{\mathbb{V}}{\overset{}{\overset{}}{\overset{}}}}}}_{\mathbb{V}} \operatorname{DblCat}_v$$

where the π_0 is taken with respect to horizontal arrows and cells to obtain a quotient of the vertical category of a double category.

- It follows from our Main Theorem that π₀ ∫_{ⅢA} Q(V ∘ F) gives the strict 2-categorical colimit of F.
- ∫_{ⅢA} Q(V ∘ F) is actually El(F), introduced by Paré (1989): its double cells "(α, Φ)" are in this case given by 2-cells α: f ⇒ f' in A:

$$(C, x) \xrightarrow{(f, id)} (D, y) \qquad Ffx \xrightarrow{id} Ffx$$

$$(id, \rho) \downarrow (\alpha, id) \downarrow (id, \lambda) \qquad (F\alpha)_x \downarrow id \downarrow \lambda$$

$$(C, x') \xrightarrow{(f', id)} (D, y') \qquad Ff'x \xrightarrow{Ff'\rho} Ff'x'$$

Application III: The double categorical wreath product

For a functor $F : \mathbf{A}^{\mathrm{op}} \to \mathbf{Cat}$, we consider:

$$A^{op} \xrightarrow{F} Cat \xrightarrow{\mathbb{Q}} DblCat_v \xrightarrow{()^{\wedge}} DblCat_v$$

where $\mathbb{E} \to \mathbb{E}^{\wedge}$ is the horizontal flip functor, and apply \mathbb{Q} to all of this:

$$\int_{\mathbb{Q}\mathbf{A}}\mathbb{Q}((\mathbb{Q}\circ F)^{\wedge})=F\wr F^{op}$$

as introduced by Myers (2020). In this case our Φ in (α, Φ) matches the basic diagram in his definition

D. Pronk, M. Bayeh, M. Szyld

Application IV (in progress): A tom Dieck Fundamental **Double** Groupoid

- \mathcal{O}_G is the 2-category of orbit types of G:
 - Objects: G/H where H is a closed subgroup of G;
 - Arrows: G-equivariant maps a: G/K₁ → G/K₂ (generated by projections and conjugations); can also be viewed as points in (G/K₂)^{K₁}; they can also be viewed as elements of G: conjugation by a after a canonical projection.
 - 2-Cells: homotopy classes of paths in $(G/K_2)^{K_1}$.

•
$$\Pi_X(G/H) = \pi(X^H).$$

Work in Progress

- Extend the equivariant fundamental groupoid to an equivariant fundamental double groupoid:
 - Extend the orbit category to an orbit double category where the vertical arrows are given by certain paths in the topological group *G*.
 - The fundamental double groupoids on the fixed point spaces give rise to a vertical double functor and its doubly lax colimit is the equivariant fundamental double groupoid.
 - This provides a finer homotopy invariant than the tom Dieck fundamental groupoid.
- Extend the construction and the correspondence to double pseudo indexing functors $\mathbb{D} \to \mathbb{Q}(\mathbf{DblCat}_v)$.
- Describe the notion of fibration between double categories that characterizes the double functors of the form ∫_D F → D and extend our results to a correspondence between suitable fibrations over D and (double pseudo) indexing functors D → DblCat.

Thank you!