
Formal mathematics, dependent type theory,
and the Topos Institute

Jeremy Avigad

Department of Philosophy
Department of Mathematical Sciences

Hoskinson Center for Formal Mathematics

Carnegie Mellon University

November 4, 2021

Outline and a warning

Outline:
• Formal mathematics
• Lean and the Lean community
• Why formalize mathematics?
• Dependent type theory
• Formalism and the Topos Institute

This talk overlaps:
• Kevin Buzzard’s talk in this series.
• My presentation at the Hoskinson Center inauguration.
• Patrick Massot’s recent talk at the New Technologies in
Mathematics Seminar at Harvard.

Formalization of mathematics

“The development of mathematics toward greater precision has
led, as is well known, to the formalization of large tracts of it, so
one can prove any theorem using nothing but a few mechanical
rules. The most comprehensive formal systems that have been set
up hitherto are the system of Principia Mathematica on the one
hand and the Zermelo-Fraenkel axiom system of set theory . . . on
the other. These two systems are so comprehensive that in them
all methods of proof used today in mathematics are formalized,
that is, reduced to a few axioms and rules of inference. One might
therefore conjecture that these axioms and rules of inference are
sufficient to decide any mathematical question that can at all be
formally expressed in these systems.”

Formalization of mathematics

“It will be shown below that this is not the case. . . .”

(Kurt Gödel, On formally undecidable propositions of Principia
Mathematica and related systems, 1931.)

The positive claim: most ordinary mathematics is formalizable, in
principle.

Formalization of mathematics

“It will be shown below that this is not the case, that on the
contrary there are in the two systems mentioned relatively simple
problems in the theory of integers that cannot be decided on the
basis of the axioms. This situation is not in any way due to the
special nature of the systems that have been set up, but holds for
a wide class of formal systems; among these, in particular, are all
systems that result from the two just mentioned through the
addition of a finite number of axioms, provided [the system is still
ω-consistent].”

Formalization of mathematics

With the help of computational proof assistants, mathematics is
formalizable in practice.

Working with such a proof assistant, users construct a formal
axiomatic proof.

Systems with substantial mathematical libraries include Mizar,
HOL, Isabelle, HOL Light, Coq, ACL2, PVS, Agda, Metamath,
and Lean.

Formalization of mathematics

Formalization of mathematics

Most undergraduate mathematics, and a fair amount of graduate
school mathematics, has been formalized.

A number of “big name” theorems have been formalized: the
prime number theorem, the four color theorem, Dirichlet’s
theorem, the central limit theorem, the incompleteness theorems.

Gonthier et. al completed a verification of the Feit-Thompson
theorem in 2012.

The Flyspeck project completed its verification of Hales’ proof of
the Kepler conjecture in 2014.

The Lean theorem prover

Lean is a new interactive theorem prover, developed principally by
Leonardo de Moura at Microsoft Research, Redmond.

Some history:
• 2013: the project begins
• 2014: Lean 2 released
• 2016: Lean 3 released
• 2017: mathlib moved to a separate repository
• 2021: prerelease of Lean 4

Lean 3 and mathlib are maintained by a lively community of
volunteers, chiefly mathematicians and computer scientists (most
of them young).

The Lean community

The Lean community

There have been some notable successes.

Kevin Buzzard, Johan Commelin, and Patrick Massot formalized
the notion of a perfectoid space.

Sander Dahmen, Johannes Hölzl, and Robert Lewis formalized a
proof of the Ellenberg-Gijswijt theorem.

Jesse Han and Floris van Doorn formalized a proof of the
independence of the continuum hypothesis.

Patrick Massot has launched a project to formalize sphere eversion.

https://leanprover-community.github.io/lean-perfectoid-spaces/
https://leanprover-community.github.io/lean-perfectoid-spaces/
https://drops.dagstuhl.de/opus/volltexte/2019/11070/
https://drops.dagstuhl.de/opus/volltexte/2019/11070/
https://github.com/flypitch/flypitch
https://github.com/flypitch/flypitch
https://leanprover-community.github.io/sphere-eversion/

The Lean community

On December 5, 2020, Peter Scholze challenged anyone to
formally verify some of his recent work with Dustin Clausen.

Johan Commelin led the response from the Lean community. On
June 5, 2021, Scholze acknowledged the achievement.

“Exactly half a year ago I wrote the Liquid Tensor Experiment blog
post, challenging the formalization of a difficult foundational
theorem from my Analytic Geometry lecture notes on joint work
with Dustin Clausen. While this challenge has not been completed
yet, I am excited to announce that the Experiment has verified the
entire part of the argument that I was unsure about. I find it
absolutely insane that interactive proof assistants are now at the
level that within a very reasonable time span they can formally
verify difficult original research.”

https://github.com/leanprover-community/lean-liquid

The Lean community

Formal mathematics is finally getting some recognition.

• The Lean Zulip channel is lively.
• Kevin Buzzard’s blog posts and talks go viral.
• Lean and mathlib have been getting good press:

• Quanta: “Building the mathematical library of the future”
• Quanta: “At the Math Olympiad, computers prepare to go for

the gold”
• Nature: “Mathematicians welcome computer-assisted proof in

‘grand unification’ theory”
• Lean workshops are planned at ICERM (2022), MSRI (2023),
and more.

https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/
https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921/
https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921/
https://www.nature.com/articles/d41586-021-01627-2
https://www.nature.com/articles/d41586-021-01627-2

Outline

• Formal mathematics
• Lean and the Lean community
• Why formalize mathematics?
• Dependent type theory
• Formalism and the Topos Institute

Why formalize mathematics?

Reason #5: Correctness.

Mathematics is about rigor and precison.

We want our proofs to be correct.

Formalization isn’t a replacement for understanding, but the
mathematics that we understand isn’t meaningful if it isn’t correct.

Why formalize mathematics?

Reason #4: Libraries.

Digital technology allows us to develop communal repositories of
knowledge.

Every definition, theorem, and proof is recorded, and can be
accessed.

Readers can determine how much detail they want to see.

Libraries support exploration and search.

Why formalize mathematics?

Reason #3: Education.

Formalism is demanding, and can be frustrating at times.

But it provides instant feedback, instant gratification, and fun.

Formal tools can be designed for different audiences, from
elementary school students to PhD students.

Why formalize mathematics?

Reason #2: Discovery.

Symbolic AI and machine learning have had a profound impact on
hardware and software verification, AI, planning, constraint solving,
optimization, knowledge representation, expert systems, databases,
language processing, . . .

But they have had almost no impact on pure mathematics.

We have no idea what the tools can do, and there is a lot we need
to learn.

Formalization is a gateway to automation.

Why formalize mathematics?

Reason #1: Collaboration.

The Lean Zulip channel is remarkable. People ask questions,
explain things, pose challenges, share results, discuss plans.

Newcomers are welcome. Each successive generation helps the
next.

Of course, we can collaborate without formalism.

But contributing to a formal library is transcendental, and provides
focus.

Outline

• Formal mathematics
• Lean and the Lean community
• Why formalize mathematics?
• Dependent type theory
• Formalism and the Topos Institute

Dependent type theory

There are three main classes of logical foundations used by proof
assistants today:
• set theory
• simple type theory
• dependent type theory

Debates over which is the “best” or “true” foundation leads to
inane arguments.

Dependent type theory has advantages and disadvantages.

I’ll try to explain some of the advantages.

Dependent type theory

In set theory, everything in a set: numbers, functions, tuples,
triangles, groups, measures, . . .

But it helps to keep track of what types of objects we are dealing
with:
• The meaning of x · y can be inferred from the types of x and

y .
• The meaning of

∑
x∈A f (x) can be inferred from the

codomain of f .
• The expression gcd(5, f) is probably a typographical error.

Dependent type theory

In a typed framework, every expression has a type.

variables m n : Z
variables x y : R
variables w z : C
variable R : Ring
variables a b : R.carrier

#check m * 7 + n
#check x * 7 + y
#check w * 7 + z
#check a * 7 + b

Dependent type theory

In simple type theory, type constructors build compound types:

variables m n : N
variable b : bool
variable f : N → N
variable g : N × N → bool
variable F : (N → N) → N

#check f m
#check g (m, n)
#check F f

Dependent type theory

Systems generally allow polymorphic constructions over types:

variable α : Type
variables a b : α

variables s t : list α

variables m n : N
variables l1 l2 : list N

#check a :: s ++ t
#check m :: l1 ++ l2

Dependent type theory

In dependent type theory, types can depend on parameters:

variables m n : N
variables v : vector R 2
variable w : vector R 3
variable u : vector R (m^2 + 1)
variable M : matrix R 3 2
variable K : matrix R (m + 1) (n + 2)

This is useful with structures:

variable R : Ring
variables a b : Ring.carrier R

Dependent type theory

Dependent types complicate things:
• A type checker needs to determine whether an expression has
a given type.
• A type can depend on any expression.

def m := if goldbach_conjecture then 3 else 4

variable s : vector R 3
variable t : vector R m

#check s + t

Moral: dependent types can be useful, but they should be used
wisely and sparingly.

Dependent type theory

In dependent type theory, everything is an expression.

• Data types: T : Type
• Objects: t : T
• Mathematical statements: P : Prop
• Proofs: p : P

Two fundamental operations:
• #eval t

(all of computer programming)

• #check p

(all of mathematics)

Dependent type theory

In dependent type theory, everything is an expression.

• Data types: T : Type
• Objects: t : T
• Mathematical statements: P : Prop
• Proofs: p : P

Two fundamental operations:
• #eval t (all of computer programming)
• #check p

(all of mathematics)

Dependent type theory

In dependent type theory, everything is an expression.

• Data types: T : Type
• Objects: t : T
• Mathematical statements: P : Prop
• Proofs: p : P

Two fundamental operations:
• #eval t (all of computer programming)
• #check p (all of mathematics)

Dependent type theory

theorem quadratic_reciprocity (p q : N)
(primep : prime p) (primeq : prime q)
(hp : p % 2 = 1) (hq : q % 2 = 1)
(hpq : p 6= q) :

legendre_sym p q * legendre_sym q p =
(-1) ^ (p / 2) * (q / 2) :=

. . .

Dependent type theory

structure group (G : Type) : Type :=
(mul : G → G → G)
(mul_assoc : ∀ (a b c : G), (a * b) * c = a * b * c)
(one : G)
(one_mul : ∀ (a : G), 1 * a = a)
. . .

def zmod : N → Type
| 0 := Z
| (n+1) := fin (n+1)

instance comm_ring :
Π (n : N), comm_ring (zmod n) :=

. . .

Dependent type theory

normed field

normed ring discrete field

normed group

topological ring

fielddecidable eq euclidean domain local ring

has norm metric space

uniform add group

topological semiring

division ring
integral domain

has modprincipal ideal domain

topological add group

emetric space
has dist

topological monoid

has inv has div domain nonzero comm ring is noetherian ring

topological add monoid

has edist

first countable topology
separated no zero divisors nonzero comm semiring comm ring

sequential space

uniform spaceregular space zero ne one class ring comm semiring

t2 space add comm group semiring has dvd comm monoid

add group add comm monoid mul zero class distrib comm semigroupmonoidt1 space

add comm semigroupadd monoid semigrouphas neg

has sub has one

t0 space

add semigrouphas zero has multopological space

has addmeasurable space

Dependent type theory

For programmers, it’s a framework in which one can:

• write computer programs
• write specifications
• prove that the programs meet their specifications
• statically enforce runtime guarantees
• use powerful abstractions (type classes, monads)

. . . all in the same language.

Dependent type theory

For mathematicians, it’s a framework in which one can:

• make mathematical statements
• prove mathematical theorems
• compute with mathematical objects
• develop algebraic abstractions

. . . all in the same language, and in a verified way.

Dependent type theory

Metaprogramming makes it possible to

• define new syntax and domain-specific languages
• develop small-scale automation and reasoning procedures
• develop large-scale automation and tools
• extend the capabilities of the system

. . . all in the same language, and all in the same system.

Formalism and the Topos Institute

Lean has an impressive category theory library.

Authors: Scott Morrison, Bhavik Mehta, and many others.

The Liquid Tensor Experiment should also be of interest.

https://leanprover-community.github.io/mathlib_docs/
https://github.com/leanprover-community/lean-liquid

Formalism and the Topos Institute

Projects:
• Connected intelligence: Foundational mathematics for
understanding computation and intelligence
• Model-Based Computing: Theory and software for computing
with scientific models
• Networked Mathematics: Organizing mathematics into a
coherent, searchable whole

Can formal methods contribute to these projects?

Formalism and the Topos Institute

Formalization can also play a role in applied mathematics, like
engineering and finance.

Formal verification down to axiomatic primitives is usually more
than most users want or need.

Interactive proof assistants can offer:
• formal specification of a complex problem or model
• a gateway to the use of external tools like computer algebra
systems, numeric computation packages, and automated
reasoning systems
• selective verification of most critical or sensitive results.

Even the first alone is very important.

Model-Based Computing

“Scientific models are traditionally programmed by hand, accreting
bells and whistles over years or decades. Even moderately complex
models can be difficult to specify in conventional natural and
mathematical language, leading some to adopt the slogan that ‘the
code is the model.’ This conflation, a response to inadequate
conceptual and computational tools, severely impacts both the
productivity of scientists and the reliability of their science.
Models-as-code are laborious and error prone to create, modify, or
extend.

“We are developing the theory and software that will enable
scientific and statistical models to be treated as first-class entities,
which may be created, transformed, compared, and executed with
the same ease as conventional data structures. Mathematically, we
draw on ideas from category theory, especially categorical logic. . . ”

Connected Intelligence

“In this theme we create new, fundamental mathematical
languages for computation and intelligence.

“For example, our current model of computation is based on the
Turing machine. Just as Roman numerals do indeed specify
numbers, Turing machines do specify computations. However, the
model is clunky and ad hoc, and it does not take into account
anything other than a single disk and a single processor: no
keyboard, monitor, or printer, no user, no internet. But like Arabic
numerals, there’s a mathematical formalism called polynomial
functors that is much more versatile. In particular, it allows for
machines (multiple disks, processors, keyboards, monitors, even
routine mental procedures) to connect or disconnect, to send
information to each other, and to thereby organize to solve larger
problems.”

Networked Mathematics

“How can it be so hard for even experts to find widely published,
basic results?”

“To solve this problem, we build MathFoldr, a search tool for
mathematics. MathFoldr leverages both statistical, similarity-based
methods from natural language processing and logical, semantic
methods from proof assistants to integrate mathematical
knowledge into a coherent, searchable whole.”

Digital representations can / should complement natural language
representations.

Parting thoughts

Shankar: “We are in the golden age of metamathematics.”

It’s an exciting time to be involved.

