The rise of quantitative category theory

Paolo Perrone

University of Oxford, Dept. of Computer Science

Topos Colloquium November 18th, 2021

Motivation: Number of steps

Motivation: Number of steps

Motivation: Number of steps

Motivation: Limits and approximations

Motivation: Limits and approximations

2 of 22

Motivation: Limits and approximations

Motivation: Lenses

 $\mathsf{Canada} \longrightarrow \mathsf{United States} \longrightarrow \mathsf{United Kingdom}$

Main definitions

A weighted category is a category where each morphism $f : X \to Y$ is equipped with a nonnegative number w(f) called the *weight*, such that

Main definitions

A weighted category is a category where each morphism $f : X \to Y$ is equipped with a nonnegative number w(f) called the *weight*, such that

w(id) = 0;

Main definitions

A weighted category is a category where each morphism $f : X \to Y$ is equipped with a nonnegative number w(f) called the *weight*, such that

w(id) = 0;

$$w(g \circ f) \leq w(f) + w(g).$$

Main definitions

A weighted category is a category where each morphism $f : X \to Y$ is equipped with a nonnegative number w(f) called the *weight*, such that

w(id) = 0;

A weighted functor is a functor $F : C \to D$ such that for every morphism f of C,

 $w(Ff) \leq w(f).$

4 of 22

Categories of paths of a space

Let X be a metric space (e.g. \mathbb{R}^n). The weighted category Path(X) has

- As objects, the points of X;
- As morphisms, the curves in X with their length as weight.

Categories of spaces Let X and Y be metric spaces, and let $f: X \rightarrow Y$. The *density* of f is

$$\sup_{y\in Y} d\big(f(X),y\big).$$

Categories of spaces

Let X and Y be metric spaces, and let $f: X \to Y$. The *density* of f is

 $\sup_{y\in Y} d(f(X), y).$

The weighted category MetDens has

- As objects, metric spaces;
- As morphisms, distance-nonincreasing maps with their density.

Generalized metric spaces

A pseudo-quasi (or Lawvere) metric space is a set X with a "cost" function

- $c:X imes X o [0,\infty]$ such that
- d(x,x) = 0;
- $d(x,z) \leq d(x,y) + d(y,z)$

A pq-metric space is a weighted preorder.

Optimization over paths

Given a weighted category C, for objects X and Y consider the "optimum" weight

$$\inf_{f:X\to Y}w(f)$$

This gives a pq-metric on the objects of C. We call the resulting space Opt(C). This is secretly widely used!

Optimization over paths

Given a weighted category C, for objects X and Y consider the "optimum" weight

$$\inf_{f:X\to Y}w(f)$$

This gives a pq-metric on the objects of C. We call the resulting space Opt(C). This is secretly widely used!

Given a (metric) space X, the product space $X \times X$ encodes "transport plans".

Given a (metric) space X, the product space $X \times X$ encodes "transport plans".

Given a (metric) space X, the product space $X \times X$ encodes "transport plans".

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

$$c(x,x)=0$$

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

If X has a cost function c,

c(x, y) = "cost of transport"

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

$$\operatorname{Cost}(t) \coloneqq \int_{X^2} c(x, y) t(dx \, dy).$$

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

$$\operatorname{Cost}_k(t) := \sqrt[k]{\int_{X^2} c(x, y)^k t(dx dy)}.$$

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

If X has a cost function c,

$$\operatorname{Cost}_k(t) \coloneqq \sqrt[k]{\int_{X^2} c(x, y)^k t(dx \, dy)}.$$

Opt(C) gives the famous *Wasserstein spaces* [Villani, 2009].

A little history

10 of 22

A little history

10 of 22

Definition: free weighted category

Let G be a weighted graph. The free weighted category over G has

- As objects, the vertices of G;
- As morphisms, *walks* in G;
- The weight is the sum of the weights.

Definition: free weighted category

Let G be a weighted graph. The free weighted category over G has

- As objects, the vertices of G;
- As morphisms, *walks* in G;
- The weight is the sum of the weights.

w = 0.8

Definition: free weighted category

Let G be a weighted graph. The free weighted category over G has

- As objects, the vertices of G;
- As morphisms, *walks* in G;
- The weight is the sum of the weights.

w = 0.8w = 2.3 + 2.4 + 0.9 = 6.6

Definition: free weighted category

Let G be a weighted graph. The free weighted category over G has

- As objects, the vertices of G;
- As morphisms, *walks* in G;
- The weight is the sum of the weights.

w = 0.8w = 2.3 + 2.4 + 0.9 = 6.6

This way, weighted categories are monadic over weighted graphs [Kubiś, 2017].

Definition: weighted* diagrams Let $D: J \rightarrow C$ be a diagram.

Definition: weighted* diagrams

Let $D : J \rightarrow C$ be a diagram.

 A weighting V on D assigns to each object J of J a number VJ, such that for every morphism j : J → J of J,

$$VJ' \leq w(Dj) + VJ.$$

Definition: weighted* diagrams

Let $D : J \rightarrow C$ be a diagram.

 A weighting V on D assigns to each object J of J a number VJ, such that for every morphism j : J → J of J,

$$VJ' \leq w(Dj) + VJ.$$

 $J \xrightarrow{j} J' \quad \rightsquigarrow \quad DJ \xrightarrow{\downarrow} Dj \xrightarrow{\downarrow} DJ'$

Definition: weighted* diagrams

Let $D : J \rightarrow C$ be a diagram.

 A weighting V on D assigns to each object J of J a number VJ, such that for every morphism j : J → J of J,

$$VJ' \leq w(Dj) + VJ.$$

• A *co-weighting* is defined analogously, except that

$$VJ \leq w(Dj) + VJ'.$$

12 of 22

Definition: weighted* diagrams

Let $D : J \rightarrow C$ be a diagram.

 A weighting V on D assigns to each object J of J a number VJ, such that for every morphism j : J → J of J,

$$VJ' \leq w(Dj) + VJ.$$

• A *co-weighting* is defined analogously, except that

$$VJ \leq w(Dj) + VJ'.$$

Definition: weighted* limit

Let $D: J \rightarrow C$ be a diagram with weighting V. A *limit of D weighted by V* is an object L together with a natural, weight-preserving bijection

 $C(X, L) \cong Cones_V(X, D),$

$$\sup_{J\in \mathsf{J}} \max \big(w(\alpha_J) - VJ, 0 \big).$$

Definition: weighted* limit

Let $D: J \rightarrow C$ be a diagram with weighting V. A *limit of D weighted by V* is an object L together with a natural, weight-preserving bijection

 $C(X, L) \cong Cones_V(X, D),$

$$\sup_{J\in \mathsf{J}} \max \big(w(\alpha_J) - VJ, 0 \big).$$

Definition: weighted* limit

Let $D: J \rightarrow C$ be a diagram with weighting V. A *limit of D weighted by V* is an object L together with a natural, weight-preserving bijection

 $C(X, L) \cong Cones_V(X, D),$

$$\sup_{J\in \mathsf{J}} \max \big(w(\alpha_J) - VJ, 0 \big).$$

Definition: weighted* limit

Let $D: J \rightarrow C$ be a diagram with weighting V. A *limit of D weighted by V* is an object L together with a natural, weight-preserving bijection

 $C(X, L) \cong Cones_V(X, D),$

$$\sup_{J\in \mathsf{J}} \max \big(w(\alpha_J) - VJ, 0 \big).$$

Definition: weighted* limit

Let $D: J \rightarrow C$ be a diagram with weighting V. A *limit of D weighted by V* is an object L together with a natural, weight-preserving bijection

 $C(X, L) \cong Cones_V(X, D),$

$$\sup_{J\in \mathsf{J}} \max \big(w(\alpha_J) - VJ, 0 \big).$$

Definition: weighted* limit

Let $D: J \rightarrow C$ be a diagram with weighting V. A *limit of D weighted by V* is an object L together with a natural, weight-preserving bijection

 $C(X, L) \cong Cones_V(X, D),$

$$\sup_{J\in \mathsf{J}} \max \big(w(\alpha_J) - VJ, 0 \big).$$

Definition: weighted* limit

Let $D: J \rightarrow C$ be a diagram with weighting V. A *limit of D weighted by V* is an object L together with a natural, weight-preserving bijection

 $C(X, L) \cong Cones_V(X, D),$

$$\sup_{J\in \mathsf{J}} \max \big(w(\alpha_J) - VJ, 0 \big).$$

Definition: weighted* colimit

Let $D: J \rightarrow C$ be a diagram with coweighting V. A colimit of D weighted by V is an object L together with a natural, weight-preserving bijection

 $C(L, Y) \cong Cocones_V(D, Y),$

$$\sup_{J\in \mathsf{J}} \max \big(w(\alpha_J) - VJ, 0 \big).$$

15 of 22

15 of 22

 $\mathsf{Canada} \longrightarrow \mathsf{United States} \longrightarrow \mathsf{United Kingdom}$

16 of 22

Definition: weighted lifting

- Let $F : E \rightarrow B$ be a functor;
- Let $b: B \to B'$ be a morphism of B;
- Let $E \in E$ with F(E) = B.
- A lifting of b at E consists of

Definition: weighted lifting

- Let $F : E \rightarrow B$ be a functor;
- Let $b: B \to B'$ be a morphism of B;
- Let $E \in E$ with F(E) = B.
- A lifting of b at E consists of
 - an object $E' \in E$ with F(E') = B';

Definition: weighted lifting

- Let $F : E \rightarrow B$ be a functor;
- Let $b: B \to B'$ be a morphism of B;
- Let $E \in E$ with F(E) = B.
- A lifting of b at E consists of
 - an object $E' \in E$ with F(E') = B';
 - an arrow Φ(E, b) : E → E' of E such that F(Φ(E, b)) = b, with the same weight as b.

Definition: weighted lens

Let E and B be categories. A weighted lens from E \rightarrow B consists of

- A functor $F : E \rightarrow B$;
- For each morphism b : B → B' of B and each object E of E with F(E) = B, a chosen weighted lifting Φ(E, b) : E → E', such that
- The identities are lifted to identities;
- The choice of liftings preserves composition.

Lenses between categories of couplings

Theorem (P 2021)

Let X and Y be pq-metric, standard Borel spaces. Let (f, ϕ) be a weighted lens such that the assignments f and ϕ , on objects, are measurable (for example, a product projection).

There is a weighted lens $(f_{\sharp}, \tilde{\varphi}_{\sharp})$ between *PX* and *PY* where

- The projection $f_{\sharp}: PX \rightarrow PY$ is the usual pushforward of measures;
- The lifting $\tilde{\varphi}_{\sharp} : PX \times_{PY} P(Y \times Y) \to P(X \times X)$ takes $p \in PX$ and a coupling $s \in P(Y \times Y)$ whose first marginal has to equal f_*p , and returns the coupling $\tilde{\varphi}_{\sharp}(p,s) \in P(X \times X)$ given, for all measurable subsets $A, A' \subseteq X$, by

$$ilde{arphi}_{\sharp}(p,s)(A imes A')\coloneqq \int_{A}\int_{Y} \mathbf{1}_{A'}ig(arphi(x,y)ig)\,sig(dy|f(x)ig)\,p(dx).$$

Lenses between categories of couplings

This is a "lifting of random transitions".

$$ilde{arphi}_{\sharp}(s)(\mathcal{A}|x) = \int_{Y} \mathbf{1}_{\mathcal{A}}ig(arphi(x,y)ig) \, sig(dy|f(x)ig)$$

Conclusion

- Weighted categories combine category theory with quantitative reasoning.
- They have been around for almost 50 years, but only now researchers are starting to recognize their potential.
- They seamlessly integrate with weighted graphs, metric geometry, and probability.
- They are secretly used already in several mathematical fields.

Conclusion

- Weighted categories combine category theory with quantitative reasoning.
- They have been around for almost 50 years, but only now researchers are starting to recognize their potential.
- They seamlessly integrate with weighted graphs, metric geometry, and probability.
- They are secretly used already in several mathematical fields.

A request for the community:

I am collecting material on weighted categories, past and present, in order to organize what we have so far. If you have done work with them, please let me know!

Some references

- Betti, R. and Galuzzi, M. (1975).
 Categorie normate.
 Bollettino dell'Unione Matematica Italiana, 11(1):66–75.
- Bubenik, P., de Silva, V., and Scott, J. (2017). Interleaving and Gromov-Hausdorff distance. arXiv:1707.06288.
- Clarke, B. (2020a).
 Internal lenses as functors and cofunctors.
 In Proceedings of Applied Category Theory 2019, volume 323 of Electronic Descentions in The petion Computer Science Petions

Electronic Proceedings in Theoretical Computer Science, pages 183–185.

Clarke, B. (2020b).

Internal split opfibrations and cofunctors. Theory and Applications of Categories, 35(44):1608–1633.

Grandis, M. (2007).

Categories, norms and weights.

Journal of homotopy and related structures, 2(2):171-186.

Kubiś, W. (2017). Categories with norms. arXiv:1705.10189.

- Lawvere, W. (1973).
 Metric spaces, generalized logic and closed categories.
 Rendiconti del seminario matematico e fisico di Milano, 43.
- Luckhardt, D. and Insall, M. (2021). Norms on categories and analogs of the Schröder-Bernstein theorem.

arXiv:2105.06832

- Perrone, P. (2021). Lifting couplings in Wasserstein spaces. arXiv:2110.06591.
- Dillani, C. (2009).

Optimal transport: old and new, volume 338 of Grundlehren der mathematischen Wissenschaften. Springer.

22 of 22

Contents

Motivation

Number of steps

Limits and approximations

Lenses

Weighted categories and functors

Examples

Couplings and optimal transport

A little history

Weighted categories and weighted graphs

Weighted* limits (ongoing, with S. Rezagholi)

Weighted lenses (P 2021)

Lenses between categories of couplings

Conclusion

References

22 of 22