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The Original Phase Distinction

Most PL’s distinguish two phases of processing:

• Compile-time: parsing, type checking, compilation.

• Run-time: (compilation and) execution, including effects.

The distinction is fundamental to well-established development practices!

• Separate development.

• Interfaces to libraries.

• Stability under change.



Static vs Dynamic in PL’s

The phase distinction is expressed by distinguishing static from dynamic levels.

Static part: kinds classify constructors

• Type classifies types.

• Closed under products, functions, singletons.

Dynamic part: types classify code.

• Products, sums, functions.

• Control and storage effects.

Dynamic part depends on static part, but static depends only on static.



Modules Are Mixed-Phase
Program modules consolidate static and dynamic parts.

signature QUEUE = sig

type elt

type t

val emp : t

val ins : elt * t ⇀ t

val rem : t ⇀ (elt * t) option

end

structure QL :> QUEUE = struct

type elt = bool

type t = elt list

val emp = nil

val ins = cons

fun rem nil = NONE

| let val (x,q’) = rev q in SOME (x, rev q’)

end



Modules and Phases

Types such as QL.elt ⇀ QL.t threaten the phase distinction!

• Structure QL has static and dynamic components.

• What, then, is type equality?

Moggi addressed this concern analytically:

• All modules decompose into static and dynamic parts.

• Maps between modules inherently respect phase separation.

For example, q:QUEUE ⊢ M : QUEUE separates into two parts:

• Mst defines types elt and t in terms of qst.elt and qst.t.

• Mdy defines values emp, etc in terms of types and values in q.



Sharing Specifications

Coherence is specified by equational sharing specifications.

functor Layer

(structure Lower : LAYER and Packet : PACKET

sharing Lower.Packet.t = Packet.t

Supports composition from pre-existing components!

• Avoids anticipatory abstraction over shared components.

• Supports off-the-shelf re-use.

But what do sharing specifications mean?



Types for program modules

Dreyer, Rossberg and Russo: full-scale analytic account in their F’ing Modules.

• Phase separation into System Fω.

• Rich module structure, including abstraction and sharing.

Here we consider a synthetic account.

• Modules come first: everything is a module.

• Phase are isolated declaratively.

• Type equality is phase-sensitive.



ModTT: A Type System for Modules

Following MacQueen, start with dependent types:

• A universe of core language types and programs.

• Dependent products x :σ1 × σ2 for hierarchy.

• Dependent functions x :σ1 → σ2 for parameterization.

Extend dependent types with

• A lax account of abstraction and effects.

• A modal account of the phase distinction.

• Extension types for sharing [cf cubical type theories].

Polymorphism arises from modules abstracting over the universe.

SML was the first full-scale dependently typed programming language!



Structure of ModTT

Basic judgments:

Γ ⊢ σ sig signature
Γ ⊢ σ ≡ σ′ signature equality

Γ ⊢ V : σ module value
Γ ⊢ V ≡ V ′ : σ module value equality

Γ ⊢ M ÷ σ module computation
Γ ⊢ M ≡ M ′ ÷ σ module computation equality



Structure of ModTT

Signatures:

Γ ⊢ type sig

Γ ⊢ τ : type

Γ ⊢ val(τ) sig

Γ ⊢ σ sig

Γ ⊢ ♢σ sig

Γ ⊢ σ0 sig Γ, x :σ0 ⊢ σ1 sig

Γ ⊢ x : σ0 × σ1 sig

Γ ⊢ σ0 sig Γ, x :σ0 ⊢ σ1 sig

Γ ⊢ x : σ0 → σ1 sig



Structure of ModTT

Module computations and encapsulation:

Γ ⊢ M ÷ σ

Γ ⊢ {M} : ♢σ
Γ ⊢ V : σ

Γ ⊢ ret(V ) ÷ σ

Γ ⊢ V : ♢σ Γ,X : σ ⊢ M ÷ σ′

Γ ⊢ X ← V ;M ÷ σ′

Sealing is a pro forma effect. For M : σ,

M :> σ ≜ X ← {M}; ret(X )

“Generativity”: multiple bind’s induce distinct values with distinct type components.



Modal Formulation of Phases

Propositional signature specifies static phase:

Γ ⊢ bst sig

Γ ⊢ V ,V ′ : bst

Γ ⊢ V ≡ V ′ : bst

Static equivalence of signatures:

Γ,bst ⊢ σ ≡ σ′

Type checking respects static equivalence:

Γ ⊢ V : σ Γ,bst ⊢ σ ≡ σ′

Γ ⊢ V : σ′

(and similarly for computations)



Static Typing

The static phase identifies expressions:

Γ ⊢ τ : type Γ ⊢ bst

Γ ⊢ ∗ : val(τ)
Γ ⊢ e : val(τ) Γ ⊢ bst

Γ ⊢ e ≡ ∗ : val(τ)

and module computations:

Γ ⊢ σ sig Γ ⊢ bst

Γ ⊢ ∗ ÷ σ

Γ ⊢ M ÷ σ Γ ⊢ bst

Γ ⊢ M ≡ ∗ ÷ σ

Necessary for static type checking, a key design parameter.



Static Extent

Sharing is accounted for by static extent signatures:

formation
Γ ⊢ σ sig

Γ,bst ⊢ V : σ

Γ ⊢ {σ | bst ↪→ V } sig

introduction
Γ ⊢ U : σ

Γ,bst ⊢ U ≡ V : σ

Γ ⊢ U : {σ | bst ↪→ V }

elimination
Γ ⊢ U : {σ | bst ↪→ V }

Γ ⊢ U : σ Γ,bst ⊢ U ≡ V : σ

SML sharing is encodable in terms of static extent.



Phased Modalities

The static open induces open and closed modalities:

• Purely static: #st(σ) = bst → σ.

• Purely dynamic:  st(σ) = σ ∨bst (pushout of projections)

Thus, modules of the closed signature has trivial static part:

#st( st(σ)) ∼= 1

Think of a module as indexed over its static aspect.

• Static aspect isolates index (type components).

• Dynamic aspect “hides” static aspect by “shifting” it to the dynamic.



Relational Parametricity

Reynolds introduced parametricity to explain data abstraction.

• Implementors provide the type and its implementation.

• Clients are polymorphic in the abstract type.

Parametricity theorem: If e : ∀t.σ, then for all τ, τ ′ and all R : τ ↔ τ ′,

e[τ ] =σ e[τ ′] (rel . t 7→ R)

Consequently, no client can distinguish corresponding implementations of an ADT:

• Define correspondence relation between implementation types.

• Show that the operations preserve this relation.

In short, an application of (binary, heterogeneous) Tait computability.



Relational Parametricity

Reynolds worked analytically with System F:

• Function types a la Tait: Rτ1→τ2 = Rτ1 → Rτ2 .

• Polymorphic types a la Girard: quantify over admissible types.

Extending Reynolds to ModTT poses challenges:

• Universe permits types as outputs, not just inputs.

• Mixed-phase dependent types.

• Extent types, static equivalence.

• Modality for effects.

Generalize parametricity relations to parametricity structures.

• Proof-relevant, for the universe (classifier of classifiers).

• Binary, heterogeous, as in Reynolds.

• Phase-separated, in two senses!



Logical Relations as Types

A synthetic account of parametricity, ParamTT.

• All types are parametricity structures.

• Itself a type system for phase-separated modules.

• Phase distinction between syntax and semantics.

Syntactic phase, bsyn.

• Purely syntactic: #syn(σ) = bsyn → σ.

• Purely semantic:  syn(σ) = σ ∨bsyn.

Implicitly binarized a la Wadler with left and right parts:

• bsyn = bsyn/l ∨bsyn/r

• bsyn/l ∧bsyn/r =⊥.



Interpretation of Signatures and Modules

Signatures are interpreted as

• A syntactic signature, together with

• A parametricity structure for its elements.

Sig : {U | bsyn ↪→ Sig}
∼= σ : Sig × {U | bsyn ↪→ σ}

Correspondingly, modules of a signature extract that structure:

Mod : {Sig → U | bsyn ↪→ Mod}
Mod(σ, σ∗) ≜ σ∗



Dependent Functions

For σ0 : Sig and σ1 : σ0 → Sig,

σ∗
π : {U | bsyn ↪→ Mod(σπ)}
∼= x : Mod(σ0)→ Mod(σ1(x))

where
σπ ≜ x : Mod(σ0)→ σ1(x)

(the syntactic function signature, under bsyn)

Provides interpretation of abstraction and application.



Core Language

Universe of core language types:

Type : {Sig | bsyn ↪→ Type}
≜ (Type,Type∗)

The semantics of types is given by purely dynamic parametricity structures:

Type∗ : {U | bsyn ↪→ Type}
∼= τ : Type × {U st | bsyn ↪→ Val(τ)}

The parametricity structure for values is extracted from that of the universe:

Val : {Type → Sig | bsyn ↪→ Val}
Val(τ, τ∗) ≜ (Val(τ), τ∗)



Interpretation of Booleans

Booleans are interpreted as purely dynamic, purely semantic structure:

Bool : {Type | bsyn ↪→ Bool}
≜ (Bool ,Bool∗)

Booleans are observably either true or false:

Bool∗ : {U | bsyn ↪→ Val(bool)}
∼= b : Val(bool)× syn st(b

∗ : 2× case(b∗; true; false))

Could also be given Reynolds-style by isolating the propositional parametricity
structures (subterminal over each syntactic object).



Justifying ParamTT

Parametricity structures can be explained in terms of toposes:

• ParamTT is the internal language of a pre-sheaf topos.

• Syntactic phase distinction: glueing syntax to semantics.

• Static phase distinction: phase-separated sets.

All an instance of Sterling’s Synthetic Tait Computability.

• Synthetic formulation of proof-relevant logical relations.

• Normalization for Cartesian cubical type theory.



Further Reading

Details, comparisons, and citations:
Jon Sterling and H., “Logical Relations as Types: Proof-Relevant Parametricity
for Program Modules, ” J. ACM v.68, n.6, October 2022.

Sterling’s dissertation:
Jon M. Sterling, “First Steps in Synthetic Tait Computability.” CMU SCS
Ph.D. Thesis, October 2021.



Cost and Behavior in Type Theory

Dependent type theory expresses behavior of programs.

• Insertion sort: insertsort : seq→ seq

• Merge sort: mergesort : seq→ seq

Extensionally, these are equal:

insertsort ≡ mergesort : seq→ seq

Yet, they have different costs (number of comparisons on size n):

• insertsort : seq
n2−→ seq

• mergesort : seq
n lg n−−−→ seq

But equal things cannot have different properties. Phases to the rescue . . . .



Integrating Cost and Behavior

Calf = Cost-Aware Logical Framework.

• Extends Pedrot and Tabareau’s ∂CBPV integrating effects and dependency.

• Sole effect: step counting for recording resource usage.

Phase bext distinguishes intensional from extensional properties.

• insertsort : seq
n2−→ seq

• mergesort : seq
n lg n−−−→ seq

• bext ⊢ insertsort ≡ mergesort : seq→ seq

Thus, intensional codifies algorithms, extensional codifies functions.



Expressing Cost

Calf is equipped with a writer monad for step counting

• step(e): increment step-count, then behave as e.

• bext ⊢ step(e) ≡ e : τ : disregard resource accounting.

Steps have no intrinsic meaning.

• Defined equationally, not via an operational interpretation.

• (Under development: realizability interpretation.)

Resources are abstract and problem-specific:

• Number of comparisons for mergesort and insersort.

• Number of modulus operations for GCD.

• Number of queue operations for batched-queues.



Open and Closed Modalities

The open modality, #ext(A), isolates behavior.

The closed modality,  ext(A), ensures non-interference:

• #ext( ext(τ)) ∼= 1: no extensional component.

• Consequently, any  ext(A)→ #ext(B) is constant.

In short behavior cannot depend on the step count.

• Counter type is  ext(N), for the sequential case.

• And is  ext(N)× ext(N), for the parallel case.



Expressing Cost

Costs have an additive monoidal structure for work:

step0X (e) = e stepcX (step
d
X (e)) = stepc+d(e)

Costs commute with computations:

bind(stepcF (A)(e); f ) = stepcX (bind(e; f ))

λx .stepcX (e) = stepcA→X (λx .e)

(Parallelism adds multiplicative monoid for span a la Blelloch)



Cost Bounds

The cost of a computation hasCost(B, e, c) is defined as

b : B × (e =F (B) step
c(ret(b)))

For c : A→ N, the type a : A
c−→ B is short for

f : (a : A→ B)× (a : A→ hasCost(B(a), f (a), c(a))).

Similarly, isBounded(B, e, c) specifies an upper bound:

c ′ : N ×#ext(c ≤N c ′)× hasCost(B, e, c ′)

Comparison is in extensional mode. Allows for using behavior to analyze cost.



A Nicely Closed World

Calf, as a dependent type theory, is limited to total functions.

• Type-specific induction/recursion.

• Awkward compared to general recursion.

How to express efficient algorithms in Calf?

• All algorithms are instrumented with a “clock” for recursive calls.

• If insufficient time is available, terminates with partial result.

The clock is an artificiality in the behavioral setting, but a natural here.

• Typical cost measures bound recursion depth.

• Use cost analysis to “set the clock.”



Calf Methodology
1 Instrument code for cost accounting,

modinstr(x , y) = step(x % y)

2 Define clocked version of algorithm,

gcdclocked : nat→ (nat× nat)→ nat.

λ(k).λ(x , y). . . . gcdclocked(k − 1)(y , modinstr(y , modinstr(x , y)))

3 Define cost recurrence by any means (cost of recurrence is irrelevant)

gcddepth(x , y) : nat× nat→ nat

4 Define complete algorithm:

gcd(x , y) = gcdclocked(gcddepth(x , y))(x , y)



Calf Methodology

The recurrence determines an upper bound on modulus operations:

isBounded(N; gcd(x , y); gcddepth(x , y))

The depth recurrence can be solved:

gcddepth(x , y) ≤ Fib−1(x) + 1

Combining these,
isBounded(N; gcd(x , y); Fib−1(x , y))

These, and other (sequential and parallel) bounds, are fully mechanized in Agda.



Further Reading

For background, comparisons, citations, and full development:
Yue Niu, Jon M. Sterling, Harrison Grodin, and H, “A Cost-Aware Logical
Framework.” To appear, ACM SIGPLAN Symp. on Princ. of Prog. Lang.
(POPL). Philadelphia, January 2022 (to appear).

Mechanization in Agda:
https: // github. com/ jonsterling/ agda-calf

Watch for Niu’s Ph.D., expected 2023!

https://github.com/jonsterling/agda-calf


Phase Distinctions Abound!

Information flow security (ongoing work, with Sterling and Stephanie Balzer).

• Public (vs private) phase, bpub.

• Public equivalence: all private computations are equated.

• Scales naturally to a lattice of levels.

Debugging vs delivery: bdeliver .

• Instrument code with profiling and tracing information (a la step counting).

• Active under debug phase, disregarded under bdeliver .

• Presented at ML Workshop,
https://www.cs.cmu.edu/~rwh/papers/multiphase/mlw.pdf

https://www.cs.cmu.edu/~rwh/papers/multiphase/mlw.pdf


Thank you!



Queue Signature

signature QUEUE = sig

type elt = bool

type t

val emp : t

val ins : elt * t ⇀ t

val rem : t ⇀ elt * t

end



Queue Implementation: Lists

structure QL : QUEUE = struct

type elt = bool

type t = elt list

val emp = nil

fun ins (x, q) = ret (x :: q)

fun rem q =

bind val rev q ← rev q in

case rev q of

| nil ⇒ throw

| x :: xs ⇒
bind val rev xs ← rev xs in

ret (f, rev xs)

end



Queue Implementation: Pair of Lists

structure QLL : QUEUE = struct

type elt = bool

type t = elt list * elt list

val emp = (nil, nil)

fun ins (x, (fs, rs)) = ret (fs, x :: rs)

fun rem (fs, rs) =

case fs of

| nil ⇒
bind val rev rs ← rev rs in

(case rev rs of

| nil ⇒ throw

| x::rs’ ⇒ ret (x, rs’, nil))

| x::fs’ ⇒ ret (x, fs’, rs)

end



Correspondence Structure

A simulation over C = [bsyn/l ↪→ QL,bsyn/r ↪→ QLL] consists of the following data:

t : {Mod(type) | bsyn ↪→ QC.t}
emp : {Mod(⟨|t|⟩) | bsyn ↪→ QC.emp}
ins : {Mod(⟨|bool ∗ t ⇀ t|⟩) | bsyn ↪→ QC.ins}
rem : {Mod(⟨|t ⇀ bool ∗ t|⟩) | bsyn ↪→ QC.rem}

invariant : {U α
 st
| bsyn ↪→  st#synMod(QC.t)}

invariant ∼=
∑

q:#synMod(⟨|QC.t|⟩) syn({x⃗ , y⃗ , z⃗ :  st(bits) | x⃗ = (y⃗ + rev(z⃗)) ∧ . . . })

. . . = q = [bsyn/l ↪→ ⌈x⃗⌉ | bsyn/r ↪→ (⌈y⃗⌉, ⌈z⃗⌉)]


