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Overview

Introduction
® Motivation: monads and monad compositions

How to: No-go Theorems
® including proof of 50 year old problem!

A crucial step

What | am doing now

Conclusion
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Motivation: monads and monad compositions

A monad is a categorical structure used for:

® Modelling of data structures (lists, trees, etc)
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A monad is a categorical structure used for:
® Modelling of data structures (lists, trees, etc)

® Modelling of computation (exception, reader, writer, etc)
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is a categorical structure used for:

® Modelling of data structures (lists, trees, etc)
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® Modelling of computation (exception, reader, writer, etc)

Monads, monads everywhere

>

v

v

v

v

Computational effects such as probability or non-determinism
can be modelled as monads

Haskell programs are structured using monads

Algebraic theories such as those of monoids, groups,
semilattices and pointed sets correspond to monads

In topology and order theory, closure operators are monads
Every monoid is monad

Preorders and metric spaces are monads

Enriched categories are monads

Internal categories are monads

Operads and multicategories are monads

Lawvere theories, PROs and PROPs are monads
Distributive laws between monads are monads (1)

Conclusion
00
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Motivation: monads and monad compositions

A monad is a categorical structure used for:
® Modelling of data structures (lists, trees, etc)

® Modelling of computation (exception, reader, writer, etc)

Any categorical structure

A monad
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Motivation: monads and monad compositions

A monad is a categorical structure used for:
® Modelling of data structures (lists, trees, etc)

® Modelling of computation (exception, reader, writer, etc)

Monads, monads everywhere

» Computational effects such as probability or non-determinism
can be modelled as monads

> Haskell programs are structured using monads

> Algebraic theories such as those of monoids, groups,
semilattices and pointed sets correspond to monads

> In topology and order theory, closure operators are monads

> Every monoid is monad

» Preorders and metric spaces are monads

> Enriched categories are monads

> Internal categories are monads

» Operads and multicategories are monads

» Lawvere theories, PROs and PROPs are monads

> Distributive laws between monads are monads (1)

-

Compositions of monads allow simultaneous modelling of multiple
computational aspects.
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Monads: Monoids in the category of endofunctors

A monad is a triple (T, n, u), with T an endofunctor and n: 1= T,
o TT = T natural transformations, such that:

T TIT s TT
Id

AN o]

T 5T T2 T
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Monads: Monoids in the category of endofunctors

A monad is a triple (T, n, u), with T an endofunctor and n: 1= T,

Lessons from many no-go theorems
0000

o TT = T natural transformations, such that:

T T s 7T
Tnl &‘ w uTl lu
TT—25T T —2 T
Examples:
* List, [x], ++ ® Exception
® Multiset/Bag ® Writer
® Powerset e Reader
e Distribution ® State

New work
o]

Conclusion
00
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Composing Monads

e Find n™, 1" such that (75,7, 1™ is a monad.
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Composing Monads

e Find n™, 1" such that (75,7, 1™ is a monad.
* Good candidate for n":

'S =TS

Conclusion
[e]e]
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e Find n™, 1" such that (75,7, 1™ is a monad.
* Good candidate for n":

'S =TS

* Same for ;/5?
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Composing Monads

e Find n™, 1" such that (75,7, 1™ is a monad.
* Good candidate for n’:
'S =TS

* Same for ;/5?

® Need:
u™ TSTS = TS

Conclusion
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Composing Monads

Find n™, 1™ such that (TS, 1™, 1) is a monad.

* Good candidate for n’:
'S =TS
* Same for ;/5?
® Need:
u™ TSTS = TS
® Have:

'y TTSS = TS
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Composing Monads

Find n™, 1™ such that (TS, 1™, 1) is a monad.

* Good candidate for n’:
'S =TS
* Same for ;/5?
® Need:
u™ TSTS = TS
® Have:

'y TTSS = TS

® Solution:
A:ST=TS
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Composing Monads

e Find n™, 1" such that (75,7, 1™ is a monad.
* Good candidate for n’:
'S =TS
* Same for ;/5?
® Need:
u™ TSTS = TS
® Have:
'y TTSS = TS
® Solution:

A:ST=TS

e If \ is a distributive law, then the above choices form a monad.
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Composing Monads with Distributive Laws

The following composite is a monad - seck i9ss.

(TS,0" 0%, 1 1’ - TAS),

where A : ST — TS is a natural transformation satisfying the
following axioms.

SST —32 5 75 — 25 5 T35

BN L

ST —2 7§ ST ———2 7§

ST 2L 757 — 2y TTS

wONE L

ST —2 7S ST ———2 TS
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Examples

There is a distributive law for List over Powerset. It works like the
famous ‘times over plus’ distributivity:

(a+b)xc=axc+b=*c

[{a, b}, {c}] = {[a, c], [b, c]}

Many more work like this:

Multiset over itself

List over Multiset

Multiset over Powerset
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That sounds easy, but...

Problem:

e Distributive laws are hard to find.
— time consuming.

Conclusion
(e]e]
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That sounds easy, but...

Problem:

e Distributive laws are hard to find.
— time consuming.

® Axioms are hard to check (even though they look easy).
— mistakes in the literature!

Conclusion
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That sounds easy, but...

Problem:

e Distributive laws are hard to find.
— time consuming.

® Axioms are hard to check (even though they look easy).
— mistakes in the literature!

* Distributive laws might not even exist.

My Thesis:

* No-go theorems for
distributive laws.
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That sounds easy, but...

Problem:

e Distributive laws are hard to find.
— time consuming.

® Axioms are hard to check (even though they look easy).
— mistakes in the literature!

* Distributive laws might not even exist.

LchBRAHAAAAA H

My Thesis:

* No-go theorems for
distributive laws.

My weapon of choice:

* Algebra.

© xked, edited
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A quick reminder: algebraic theories

Algebraic theory:
* Signature X and a set of variables give terms.

* Axioms E and equational logic give equivalence of terms.

Monoids: Abelian groups:
¥ - (10,40 5= (00 _0 @)
E={lsx=x=xx], E={0+x=x=x+0,
(x*xy)xz=xx%(y*2)} (x+y)+z=x+(y+2),
xX+y=y+x

X+ (=x) =0=(—x) + x}
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The algebraic equivalent of distributive laws

Monads <= Algebraic theories
Distributive laws <«
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The algebraic equivalent of distributive laws

Monads <= Algebraic theories
Distributive laws <= Composite theories - rirsg and staton 2017,
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The algebraic equivalent of distributive laws

Monads <= Algebraic theories
Distributive laws <=  Composite theories - rirg and staton 201

Example: Composing Abelian groups and Monoids: Rings!
8 group 8
Y=rtwx"
_ (0@ 40, _0 L0 oy
E'=E'UEMU
{ax(b+c)=(axbh)+ (axc)
(a+b)yxc=(axc)+ (bxc)}
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The algebraic equivalent of distributive laws

Monads <= Algebraic theories
Distributive laws <=  Composite theories - pirsg and staton zo17.

® Terms can be separated
ax(b+c)=(axb)+ (axc)

® Equality preservation of component theories (essential
uniqueness) - only for two separated terms!

(axb)+c=rc+ (axb)

< x+c=pc+xandaxb=yaxbh
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My strategy: no-go theorems for distributive laws

Using composite theories:

® Choose theories to compose: T o S.
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My strategy: no-go theorems for distributive laws

Using composite theories:

e Choose theories to compose: T o S.

® Assume composite theory exists.
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My strategy: no-go theorems for distributive laws

Using composite theories:

e Choose theories to compose: T o S.
e Assume composite theory exists.

® = terms can be separated:
s(t(x,y), t(z, w)) = {'[s/x]
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My strategy: no-go theorems for distributive laws

Conclusion
00

Using composite theories:

e Choose theories to compose: T o S.
e Assume composite theory exists.
® = terms can be separated:
s(t(x,y), t(z, w)) = {'[s/x]

e Manipulate terms.
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My strategy: no-go theorems for distributive laws

Using composite theories:

Choose theories to compose: T o S.

e Assume composite theory exists.

® = terms can be separated:
s(t(x, ), t(z, w)) = t'[s/x]

Manipulate terms.

Derive contradiction of form x = y.

Image based on an image from Valter Bispo
Used under the creative commons licence
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My strategy: no-go theorems for distributive laws

Using composite theories:

Choose theories to compose: T o S.
e Assume composite theory exists.

® = terms can be separated:
s(t(x,y), t(z,w)) = t'[s}/x]

e Manipulate terms.

e Derive contradiction of form x = y.
e Conclusion: no such theory possible.
[ ]

List equations in the proof.

Image based on an image from Valter Bispo
Used under the creative commons licence
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My strategy: no-go theorems for distributive laws

Using composite theories:

Choose theories to compose: T o S.
e Assume composite theory exists.
® = terms can be separated:
s(t(x, ), t(z, w)) = t'[s/x]
Manipulate terms.

e Derive contradiction of form x = y.

Conclusion: no such theory possible.

List equations in the proof.

Image based on an image from Valter Bispo

= No-go theorem. Ui e th craies camm Iance
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How to: Term Manipulation

Proof that in Rings (Abelian groups after Monoids), x * 0 = 0

® Start:
xx0=7

Conclusion
(e]e]
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How to: Term Manipulation

Proof that in Rings (Abelian groups after Monoids), x * 0 = 0
e Start:
x%x0=7

e Substitute 1 for x:
1%0="7[1/x]

Conclusion
[e]e]
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How to: Term Manipulation

Proof that in Rings (Abelian groups after Monoids), x * 0 = 0
e Start:
x%x0=7

e Substitute 1 for x:
1%0="7[1/x]

e Simplify Ths (unit):
0 ="7[1/x]
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How to: Term Manipulation

Proof that in Rings (Abelian groups after Monoids), x * 0 = 0
e Start:
x%x0=7
e Substitute 1 for x:
1%0="7[1/x]
e Simplify Ths (unit):
0 ="7[1/x]

* @ Two separated terms:
equality holds in component theories.

=7=0
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How to: Term Manipulation

Proof that in Gnirs (Monoids after Abelian groups), x +1=1
® Start:
x+1=7

e Substitute 0 for x:
0+1="7[0/x]

e Simplify Ths (unit):
1="7[0/x]

* O Two separated terms:
equalty holds in component theories.

=7=1
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Conclusion
00

Gnirs as a first counterexample

There is no composite theory of Monoids after Abelian groups.
Proof:

We know: x +1=1
We show: x = 0
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Conclusion

Gnirs as a first counterexample

There is no composite theory of Monoids after Abelian groups.
Proof:

We know: x +1=1
We show: x = 0

Hence for any two variables: x =0 =y
which means any composite theory is inconsistent.



Introduction How to: No-Go Theorems essons from many no-go theorems New work Conclusion
oooe o

Gnirs as a first counterexample

There is no composite theory of Monoids after Abelian groups.
Proof:

We know: x +1=1

We show: x =0

X {associativity}
{unit} = (x+1)+ (=)
= x+0 {x+1=1}
{inverse} =14+ (-1
= x+ 1+ (=1) {inverse}
=0

Hence for any two variables: x =0 =y
which means any composite theory is inconsistent.
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There is no composite theory of Monoids after Abelian groups.
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Gnirs as a first counterexample

New work
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Jon Beck 108

The compasite ST is the free ring triple. X ST is the polynomial ring Z[X] with the
elements of X as noncommuting indeterminates.
The canonical diagram of adjoint functors is:

[--]

The scheme is: the distributive law £: TS— ST produces the adjoint square, which,
being distributive (Section 3), induces a distributive law A: GapGaton — GatonGase
where Gy, — UTFT, G, — Homp(FST, ) @; FST. This A is that employed by Barr in
his Composite cotriples, this volume (Theorem 46

A distributive law ST— =TS would have the air of a universal solution to the problem

of factoring polynomials into linear factors. This sngaests that the composite TS has little
chance of being a triple.

(2) ConsTANTS. Any set ' can be interpreted as a triple in the category of sets, A, via
the coproduct injection and folding map X —~€ + X,C + C + X —=C + X. AC+()

is the category of sets with C as constants. For example, if C = 1, A**() is the category
of nointed sets

Conclusion
[e]e]
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Some examples from various No-Go Theorems

Powerset o Abelian groups

List o Powerset
List?
Multiset?
Exception o List
Multiset o Rings

Powerset?
Distribution?
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The crucial step

Composite theories give 2 properties:
® Separation
Start with term x that is not separated:
x =7, where 7 is separated.

¢ Essential Uniqueness
Needs equality between two separated terms.

TODO: obtain a separated term from x.
Previously:
x*x0—>1«0—0

Using, for all x:
l¥x=x
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The crucial step

Trick: shrinking terms to variables or constants creates separated
terms.



Introduction How to: No-Go Theorems Lessons from many no-go theorems New work Conclusion
000000000 0000 fole] To] o oo

The crucial step

Trick: shrinking terms to variables or constants creates separated
terms.

Units: x + 0 = x
Idempotence: x * x = x
absorption: x A (x v y) = x
inverse: x + (—x) =0
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The crucial step

Conjecture 1. Any theorem that proves the non-exvistence of a distributive law will
following axiom holds:

invelve at least one monad that is presented by an algebraic theory S for which the

e S has an n-ary term s (n > 2), for which there is a substitution f : var(s) — §
such that for any x € var(s):

Tk s(f(u)/y # 2] =s z.

Conclusion
oo
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The delay monad

Combining algebraic effect with guarded recursion,
modeled by the Delay monad L:

LX ~ X+ >LX

Conclusion
00
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The delay monad

Combining algebraic effect with guarded recursion,
modeled by the Delay monad L:

LX ~ X+ >LX

® Powerset - Mogelberg and Vezzosi 2021

Conclusion
00
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The delay monad

Combining algebraic effect with guarded recursion,
modeled by the Delay monad L:

LX ~ X+ >LX

® Powerset - Mogelberg and Vezzosi 2021,

* Difficult: idempotence vs time steps.

Conclusion
00
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The delay monad

Combining algebraic effect with guarded recursion,
modeled by the Delay monad L:

LX ~ X+ >LX

® Powerset - Mogelberg and Vezzosi 2021,

* Difficult: idempotence vs time steps.

® List v’

Conclusion
00
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The delay monad

Combining algebraic effect with guarded recursion,
modeled by the Delay monad L:

LX ~ X+ >LX

® Powerset - Mogelberg and Vezzosi 2021,

* Difficult: idempotence vs time steps.
e List v/
* Multiset v/

Conclusion
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The delay monad

Combining algebraic effect with guarded recursion,
modeled by the Delay monad L:

LX ~ X+ >LX

® Powerset - Mogelberg and Vezzosi 2021,

* Difficult: idempotence vs time steps.
List v/
Multiset v/
Reader
State

® = (eneral Theory
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Conclusion & What is next

Conclusion and peek into the future:
¢ Not all monads compose via a distributive law.

e Algebra provides method to prove counterexamples,
which can be generalised to no-go theorems.

® Reducing a term to a variable is a key property for no-go
theorems.
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Conclusion & What is next

Conclusion and peek into the future:
¢ Not all monads compose via a distributive law.

e Algebra provides method to prove counterexamples,
which can be generalised to no-go theorems.

® Reducing a term to a variable is a key property for no-go
theorems.

What | am going to do:
® Combine algebraic effects with guarded recursion.

® List and Multiset: done
® Powerset might not be possible.
® upcoming: reader, state, ...
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