ction	How to: No-Go Theorems	Lessons from many no-go theorems	New work	Conclusion
00000	0000	0000	0	00

Lessons from failing distributive laws

Maaike Zwart

IT University of Copenhagen maaike.annebeth@gmail.com / www.maaikezwart.com

31 March 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How to: No-Go Theorems

essons from many no-go theorems

New work O

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Conclusion 00

Overview

- Introduction
 - · Motivation: monads and monad compositions
- How to: No-go Theorems
 - including proof of 50 year old problem!
- A crucial step
- What I am doing now
- Conclusion

Motivation: monads and monad compositions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ④ ヘ ⊙

A monad is a categorical structure used for:

• Modelling of data structures (lists, trees, etc)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Motivation: monads and monad compositions

A monad is a categorical structure used for:

- Modelling of data structures (lists, trees, etc)
- Modelling of computation (exception, reader, writer, etc)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion 00

Motivation: monads and monad compositions

A monad is a categorical structure used for:

- Modelling of data structures (lists, trees, etc)
- Modelling of computation (exception, reader, writer, etc)

Monads, monads everywhere

- Computational effects such as probability or non-determinism can be modelled as monads
- Haskell programs are structured using monads
- Algebraic theories such as those of monoids, groups, semilattices and pointed sets correspond to monads
- In topology and order theory, closure operators are monads
- Every monoid is monad
- Preorders and metric spaces are monads
- Enriched categories are monads
- Internal categories are monads
- Operads and multicategories are monads
- Lawvere theories, PROs and PROPs are monads
- Distributive laws between monads are monads (!)
- **۱**

020 \$ 151151 B 040

Motivation: monads and monad compositions

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A monad is a categorical structure used for:

- Modelling of data structures (lists, trees, etc)
- Modelling of computation (exception, reader, writer, etc)

Introduction

Any categorical structure

A monad

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion 00

Motivation: monads and monad compositions

A monad is a categorical structure used for:

- Modelling of data structures (lists, trees, etc)
- Modelling of computation (exception, reader, writer, etc)

Monads, monads everywhere

- Computational effects such as probability or non-determinism can be modelled as monads
- Haskell programs are structured using monads
- Algebraic theories such as those of monoids, groups, semilattices and pointed sets correspond to monads
- In topology and order theory, closure operators are monads
- Every monoid is monad
- Preorders and metric spaces are monads
- Enriched categories are monads
- Internal categories are monads
- Operads and multicategories are monads
- Lawvere theories, PROs and PROPs are monads
- Distributive laws between monads are monads (!)
- ► ...

101 121 121 2 Dat

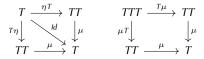
Compositions of monads allow simultaneous modelling of multiple computational aspects.

ntroduction	How to: No-Go Theorems	Lessons from many no-go theorems	New work	Conclusion
00000000	0000	0000	0	00

Monads: Monoids in the category of endofunctors

In

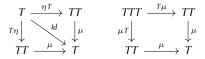
A monad is a triple $\langle T, \eta, \mu \rangle$, with *T* an endofunctor and $\eta : 1 \Rightarrow T$, $\mu : TT \Rightarrow T$ natural transformations, such that:



troduction	How to: No-Go Theorems	Lessons from many no-go theorems	New work	Conclusion
0000000	0000	0000	0	00

Monads: Monoids in the category of endofunctors

A monad is a triple $\langle T, \eta, \mu \rangle$, with *T* an endofunctor and $\eta : 1 \Rightarrow T$, $\mu : TT \Rightarrow T$ natural transformations, such that:



Examples:

Int oc

- List, [*x*], ++
- Multiset/Bag
- Powerset
- Distribution

- Exception
- Writer
- Reader

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

State

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work O Conclusion 00

Composing Monads

• Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.

Introduction
000000000

Lessons from many no-go theorems 0000 New work O

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Conclusion 00

Composing Monads

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : \mathbf{1} \Rightarrow TS$$

Introduction	
000000000	

Lessons from many no-go theorems 0000 New work 0 Conclusion 00

Composing Monads

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : \mathbf{1} \Rightarrow TS$$

• Same for μ^{TS} ?

	How to: No-Go Theorems	Lessons from many no-go theorems	New work
00	0000	0000	0

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : 1 \Rightarrow TS$$

• Same for μ^{TS} ?

Introduction

• Need:

 μ^{TS} : TSTS \Rightarrow TS

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

How to: No-Go Theorems	Lessons from many no-go theorems	New work
0000	0000	0

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : \mathbf{1} \Rightarrow TS$$

• Same for
$$\mu^{TS}$$
?

Introduction

• Need:

 μ^{TS} : TSTS \Rightarrow TS

• Have:

 $\mu^T \mu^S : TTSS \Rightarrow TS$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

How to: No-Go Theorems	Lessons from many no-go theorems	New work	Conclu
0000	0000	0	00

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : \mathbf{1} \Rightarrow TS$$

• Same for
$$\mu^{TS}$$
?

Introduction

• Need:

 μ^{TS} : TSTS \Rightarrow TS

• Have:

 $\mu^T \mu^S : TTSS \Rightarrow TS$

• Solution:

 $\lambda: ST \Rightarrow TS$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

How to: No-Go Theorems	Lessons from many no-go theorems	New work	Conclusion
0000	0000	0	00

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : \mathbf{1} \Rightarrow TS$$

• Same for
$$\mu^{TS}$$
?

Introduction

• Need:

$$\mu^{TS}: TSTS \Rightarrow TS$$

Have:

 $\mu^T \mu^S : TTSS \Rightarrow TS$

• Solution:

 $\lambda: ST \Rightarrow TS$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

• If λ is a *distributive law*, then the above choices form a monad.

How to: No-Go Theorems

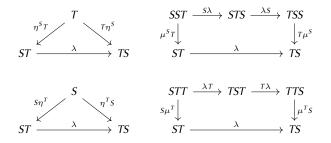
Conclusion 00

Composing Monads with Distributive Laws

The following composite is a monad - Beck 1969.

$$\langle TS, \eta^T \eta^S, \mu^T \mu^S \cdot T\lambda S \rangle,$$

where $\lambda : ST \rightarrow TS$ is a natural transformation satisfying the following axioms.



▲□▶▲□▶▲□▶▲□▶ □ のへで

000000000

Examples

There is a distributive law for List over Powerset. It works like the famous 'times over plus' distributivity:

$$(a + b) * c = a * c + b * c$$

 $[\{a, b\}, \{c\}] \mapsto \{[a, c], [b, c]\}$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Many more work like this:

- Multiset over itself
- List over Multiset
- Multiset over Powerset

• . . .

Introduction

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work O

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusion 00

That sounds easy, but...

- Distributive laws are hard to find.
 - \rightarrow time consuming.

How to: No-Go Theorems

Lessons from many no-go theorems

New work O

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

That sounds easy, but...

- Distributive laws are hard to find.
 - \rightarrow time consuming.
- Axioms are hard to check (even though they look easy).
 - \rightarrow mistakes in the literature!

How to: No-Go Theorems

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

That sounds easy, but...

- Distributive laws are hard to find.
 - \rightarrow time consuming.
- Axioms are hard to check (even though they look easy).
 → mistakes in the literature!
- Distributive laws might not even exist.

How to: No-Go Theorems

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

That sounds easy, but...

- Distributive laws are hard to find.
 - \rightarrow time consuming.
- Axioms are hard to check (even though they look easy).
 → mistakes in the literature!
- Distributive laws might not even exist.

How to: No-Go Theorems

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

That sounds easy, but...

Problem:

- Distributive laws are hard to find.
 - \rightarrow time consuming.
- Axioms are hard to check (even though they look easy).
 - \rightarrow mistakes in the literature!
- Distributive laws might not even exist.

My Thesis:

• No-go theorems for distributive laws.

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work O Conclusion 00

That sounds easy, but ...

Problem:

- Distributive laws are hard to find.
 - \rightarrow time consuming.
- Axioms are hard to check (even though they look easy).
 - \rightarrow mistakes in the literature!
- Distributive laws might not even exist.

My Thesis:

 No-go theorems for distributive laws.

My weapon of choice:

• Algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A quick reminder: algebraic theories

Algebraic theory:

- Signature Σ and a set of variables give *terms*.
- Axioms *E* and equational logic give equivalence of terms.

Monoids:

Abelian groups:

$$\Sigma = \{1^{(0)}, *^{(2)}\}$$

$$E = \{1 * x = x = x * 1, (x * y) * z = x * (y * z)\}$$

$$\Sigma = \{0^{(0)}, -^{(1)}, +^{(2)}\}$$

$$E = \{0 + x = x = x + 0, (x + y) + z = x + (y + z), (x + y) + z = x + (y + z), (x + y) + z = y + x, (x + (-x)) = 0 = (-x) + x\}$$

・ロト・日本・日本・日本・日本・日本

How to: No-Go Theorems

Lessons from many no-go theorems 0000 lew work

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Conclusion 00

The algebraic equivalent of distributive laws

Monads \iff Algebraic theories Distributive laws \iff

How to: No-Go Theorems

Lessons from many no-go theorems 0000 lew work

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

The algebraic equivalent of distributive laws

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion 00

The algebraic equivalent of distributive laws

Example: Composing Abelian groups and Monoids: Rings!

$$\begin{split} \Sigma^{R} &= \Sigma^{A} \oplus \Sigma^{M} \\ &= \{0^{(0)}, 1^{(0)}, -^{(1)}, +^{(2)}, *^{(2)}\} \\ E^{R} &= E^{A} \cup E^{M} \cup \\ &\{a * (b + c) = (a * b) + (a * c), \\ &(a + b) * c = (a * c) + (b * c)\} \end{split}$$

The algebraic equivalent of distributive laws

- Terms can be separated

$$a \ast (b + c) = (a \ast b) + (a \ast c)$$

• Equality preservation of component theories (*essential uniqueness*) - only for two separated terms!

$$(a * b) + c =_R c + (a * b)$$

 $\Leftrightarrow x + c =_A c + x \text{ and } a * b =_M a * b$

・ロト・日本・日本・日本・日本・日本・日本

My strategy: no-go theorems for distributive laws

Using composite theories:

• Choose theories to compose: $\mathbb{T} \circ \mathbb{S}$.

My strategy: no-go theorems for distributive laws

Using composite theories:

- Choose theories to compose: $\mathbb{T} \circ \mathbb{S}$.
- Assume composite theory exists.

My strategy: no-go theorems for distributive laws

Using composite theories:

- Choose theories to compose: $\mathbb{T} \circ \mathbb{S}$.
- Assume composite theory exists.
 - \Rightarrow terms can be separated: $s(t(x, y), t(z, w)) = t'[s'_x/x]$

My strategy: no-go theorems for distributive laws

Using composite theories:

- Choose theories to compose: $\mathbb{T} \circ \mathbb{S}$.
- Assume composite theory exists.
 - \Rightarrow terms can be separated: $s(t(x, y), t(z, w)) = t'[s'_x/x]$
- Manipulate terms.

Conclusion 00

My strategy: no-go theorems for distributive laws

Using composite theories:

- Choose theories to compose: $\mathbb{T} \circ \mathbb{S}$.
- Assume composite theory exists.
 - \Rightarrow terms can be separated: $s(t(x, y), t(z, w)) = t'[s'_x/x]$
- Manipulate terms.
- Derive contradiction of form x = y.

Image based on an image from Valter Bispo Used under the creative commons licence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion 00

My strategy: no-go theorems for distributive laws

Using composite theories:

- Choose theories to compose: $\mathbb{T} \circ \mathbb{S}$.
- Assume composite theory exists.
 - \Rightarrow terms can be separated: $s(t(x, y), t(z, w)) = t'[s'_x/x]$
- Manipulate terms.
- Derive contradiction of form x = y.
- Conclusion: no such theory possible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Image based on an image from Valter Bispo Used under the creative commons licence

Conclusion 00

My strategy: no-go theorems for distributive laws

Using composite theories:

- Choose theories to compose: $\mathbb{T} \circ \mathbb{S}$.
- Assume composite theory exists.
 - \Rightarrow terms can be separated: $s(t(x, y), t(z, w)) = t'[s'_x/x]$
- Manipulate terms.
- Derive contradiction of form x = y.
- Conclusion: no such theory possible.
- List equations in the proof.

Image based on an image from Valter Bispo Used under the creative commons licence

▲□▶▲□▶▲□▶▲□▶ □ のへで

Conclusion 00

My strategy: no-go theorems for distributive laws

Using composite theories:

- Choose theories to compose: $\mathbb{T} \circ \mathbb{S}$.
- Assume composite theory exists.
 - \Rightarrow terms can be separated: $s(t(x, y), t(z, w)) = t'[s'_x/x]$
- Manipulate terms.
- Derive contradiction of form x = y.
- Conclusion: no such theory possible.
- List equations in the proof.
- \Rightarrow No-go theorem.

Image based on an image from Valter Bispo Used under the creative commons licence

▲□▶▲□▶▲□▶▲□▶ □ のへで

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work O

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Conclusion 00

How to: Term Manipulation

Proof that in Rings (Abelian groups after Monoids), x * 0 = 0

• Start:

$$x * 0 = ?$$

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work O

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Conclusion 00

How to: Term Manipulation

Proof that in Rings (Abelian groups after Monoids), x * 0 = 0

• Start:

$$x * 0 = ?$$

• Substitute 1 for x:

$$1 * 0 = ?[1/x]$$

How to: No-Go Theorems ○●○○ Lessons from many no-go theorems

New work O

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Conclusion 00

How to: Term Manipulation

Proof that in Rings (Abelian groups after Monoids), x * 0 = 0

• Start:

$$x * 0 = ?$$

• Substitute 1 for x:

$$1 * 0 = ?[1/x]$$

• Simplify lhs (unit):

$$0 = ?[1/x]$$

Lessons from many no-go theorems

New work O

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

How to: Term Manipulation

Proof that in Rings (Abelian groups after Monoids), x * 0 = 0

• Start:

$$x * 0 = ?$$

• Substitute 1 for x:

$$1 * 0 = ?[1/x]$$

Simplify lhs (unit):

$$0 = ?[1/x]$$

• **①** Two separated terms: equality holds in component theories.

$$\Rightarrow$$
? = 0

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work O

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

How to: Term Manipulation

Proof that in Gnirs (Monoids after Abelian groups), x + 1 = 1

• Start:

$$x + 1 = ?$$

• Substitute 0 for x:

$$0 + 1 = ?[0/x]$$

• Simplify lhs (unit):

$$1 = ?[0/x]$$

• **O** Two separated terms: equalty holds in component theories.

$$\Rightarrow$$
 ? = 1

Lessons from many no-go theorems 0000 lew work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion 00

Gnirs as a first counterexample

There is no composite theory of Monoids after Abelian groups. Proof:

We know: x + 1 = 1

We show: x = 0

Lessons from many no-go theorems

lew work

Conclusion 00

Gnirs as a first counterexample

There is no composite theory of Monoids after Abelian groups. Proof:

We know: x + 1 = 1

We show: x = 0

Hence for any two variables: x = 0 = y which means any composite theory is inconsistent.

・ロト・日本・日本・日本・日本・日本・日本

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Gnirs as a first counterexample

There is no composite theory of Monoids after Abelian groups. Proof:

We know: x + 1 = 1We show: x = 0

 $x = \{associativity\} \\ \{unit\} = (x + 1) + (-1) \\ \{inverse\} = 1 + (-1) \\ \{inverse\} = 0 \\ = 0$

Hence for any two variables: x = 0 = y which means any composite theory is inconsistent.

How to: No-Go Theorems

Lessons from many no-go theorems

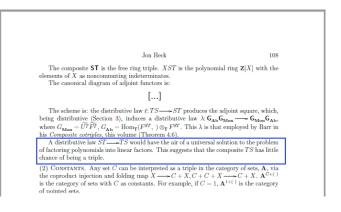
lew work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion 00

Gnirs as a first counterexample

There is no composite theory of Monoids after Abelian groups.



Lessons from many no-go theorems • 0 0 0

New work

Conclusion 00

Some examples from various No-Go Theorems

Powerset o Abelian groups

 $List \, \circ \, Powerset$

List²

Multiset³

Exception \circ List

Multiset \circ Rings

Powerset²

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Distribution²

How to: No-Go Theorems

Lessons from many no-go theorems 0000

New work O

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

The crucial step

Composite theories give 2 properties:

• Separation

Start with term *x* that is **not** separated:

- x = ?, where ? is separated.
- Essential Uniqueness Needs equality between two separated terms.

TODO: obtain a separated term from *x*. Previously:

$$x * 0 \to 1 * 0 \to 0$$

Using, for all *x*:

$$1 * x = x$$

How to: No-Go Theorems

Lessons from many no-go theorems $\circ \circ \bullet \circ$

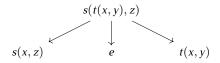
New work O

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Conclusion 00

The crucial step

Trick: shrinking terms to variables or constants creates separated terms.



How to: No-Go Theorems

Lessons from many no-go theorems $\circ \circ \circ \circ \circ$

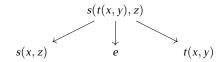
New work O

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

The crucial step

Trick: shrinking terms to variables or constants creates separated terms.



Units: x + 0 = xIdempotence: x * x = xabsorption: $x \land (x \lor y) = x$ inverse: x + (-x) = 0

:

How to: No-Go Theorems

Lessons from many no-go theorems $000 \bullet$

New work O

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Conclusion 00

The crucial step

Conjecture 1. Any theorem that proves the non-existence of a distributive law will involve at least one monad that is presented by an algebraic theory S for which the following axiom holds:

S has an n-ary term s (n ≥ 2), for which there is a substitution f : var(s) → S such that for any x ∈ var(s):

 $\Gamma \vdash s[f(y)/y \neq x] =_{\mathbb{S}} x.$

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work

Conclusion 00

The delay monad

Combining algebraic effect with guarded recursion, modeled by the Delay monad L:

How to: No-Go Theorems

Lessons from many no-go theorems 0000

New work

Conclusion 00

The delay monad

Combining algebraic effect with guarded recursion, modeled by the Delay monad L:

 $LX \simeq X + \triangleright LX$

• Powerset - Møgelberg and Vezzosi 2021.

How to: No-Go Theorems

Lessons from many no-go theorems 0000

New work

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

The delay monad

Combining algebraic effect with guarded recursion, modeled by the Delay monad L:

 $LX \simeq X + \rhd LX$

- Powerset Møgelberg and Vezzosi 2021.
 - Difficult: idempotence vs time steps.

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

The delay monad

Combining algebraic effect with guarded recursion, modeled by the Delay monad L:

- Powerset Møgelberg and Vezzosi 2021.
 - Difficult: idempotence vs time steps.
- List √

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion

The delay monad

Combining algebraic effect with guarded recursion, modeled by the Delay monad L:

- Powerset Møgelberg and Vezzosi 2021.
 - Difficult: idempotence vs time steps.
- List √
- Multiset √

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

The delay monad

Combining algebraic effect with guarded recursion, modeled by the Delay monad L:

- Powerset Møgelberg and Vezzosi 2021.
 - Difficult: idempotence vs time steps.
- List √
- Multiset √
- Reader

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

The delay monad

Combining algebraic effect with guarded recursion, modeled by the Delay monad L:

- Powerset Møgelberg and Vezzosi 2021.
 - Difficult: idempotence vs time steps.
- List √
- Multiset √
- Reader
- State

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

The delay monad

Combining algebraic effect with guarded recursion, modeled by the Delay monad L:

- Powerset Møgelberg and Vezzosi 2021.
 - Difficult: idempotence vs time steps.
- List √
- Multiset √
- Reader
- State
- . . .

How to: No-Go Theorems

Lessons from many no-go theorems 0000 New work

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

The delay monad

Combining algebraic effect with guarded recursion, modeled by the Delay monad L:

- Powerset Møgelberg and Vezzosi 2021.
 - Difficult: idempotence vs time steps.
- List √
- Multiset √
- Reader
- State
- ...
- \Rightarrow General Theory

How to: No-Go Theorems

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion • O

Conclusion & What is next

Conclusion and peek into the future:

- Not all monads compose via a distributive law.
- Algebra provides method to prove counterexamples, which can be generalised to no-go theorems.
- Reducing a term to a variable is a key property for no-go theorems.

How to: No-Go Theorems

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ● ●

Conclusion

Conclusion & What is next

Conclusion and peek into the future:

- Not all monads compose via a distributive law.
- Algebra provides method to prove counterexamples, which can be generalised to no-go theorems.
- Reducing a term to a variable is a key property for no-go theorems.

What I am going to do:

- Combine algebraic effects with guarded recursion.
 - List and Multiset: done
 - Powerset might not be possible.
 - upcoming: reader, state, ...

How to: No-Go Theorems

Lessons from many no-go theorems

New work O

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Conclusion

References

J. Beck: Distributive Laws. In: Seminar on Triples and Categorical Homotopy Theory, Springer Berlin Heidelberg, pp. 119-140, 1969.

M. Piróg and S. Staton: Backtracking with cut via a distributive law and left-zero monoids. In: Journal of Functional Programming, vol. 27, 2017.

B. Klin and J. Salamanca: Iterated covariant powerset is not a monad. In: Proceedings of the 34th Conference on the Mathematical Foundations of Programming Semantics (MFPS2018), 2018

R.E. Møgelberg and A. Vezzosi: Two Guarded Recursive Powerdomains for Applicative Simulation. MFPS, 2021. http://www.cs.ox.ac.uk/files/12453/MaaikeZwartDPhilThesis.pdf