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“Language Is the core property that
defines human beings”

Noam Chomsky



“Modern human beings process
Information symbolically,
rearranging mental symbols to
envision multiple potential realities.
They also express the ideas they
form using structured articulate
language. No other living creature
does either of these things.”

lan Tattersall
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.
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1 Introduction

Recurrent neural networks, long short-term memory [[13] and gated recurrent [7] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and

“Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

"Work performed while at Google Brain.

*Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.




Language Models are Few-Shot Learners
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Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3’s few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.
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Training




The quick brown fox jumps
over the lazy do...



The quick brown fox jumps
over the lazy do



The quick brown fox jumps
over the lazy do



After training...



| went to the grocery store and
bought ...



| went to the grocery store and
bought ... a can of chickpeas.



| went to the grocery store and
bought ... some cucumbers.



| went to the grocery store and
pought ... a new yacht.



| went to the grocery store and
bought ... aKTyy8@vQ$$q
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Main Question



Main Question: How are knowledge and rules
for reasoning about that knowledge encoded in
probability distributions of next character
continuations?
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One more thing...



Surprising Fact: The ability to
continue stories can be learned by
simple trial and error!




You can’t learn
how to give birth
to kittens by a
trial and error.
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Course In
General Linguistics

Ferdinand de Saussure

Translated by Wade Baskin
Edited by Perry Meisel and Haun Saussy










Main Question: How are knowledge and rules
for reasoning about that knowledge encoded in
probability distributions of next character
continuations?




Dynamic Semantics:
Meaning is context change potential.
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Category Theory



“The mathematical language developed by the end of the
20th century by far exceeds in its expressive power
anything, even imaginable, say, before 1960.”

Misha Gromov






Tai-Danae Bradley
Yiannis Viassopoulos
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Yoneda Lemma



Semantic Category

Language Ca’ceg{/

Yoneda Embedding




Semantic Category:
Functions (sheaves) on the

language category.




Semantic Category: Build
concepts and do some

reasoning.
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An Enriched Category Theory of Language: From Syntax to
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Abstract

State of the art language models return a natural language text continuation from any
piece of input text. This ability to generate coherent text extensions implies signifi-
cant sophistication, including a knowledge of grammar and semantics. In this paper,
we propose a mathematical framework for passing from probability distributions on
extensions of given texts, such as the ones learned by today’s large language models, to
an enriched category containing semantic information. Roughly speaking, we model
probability distributions on texts as a category enriched over the unit interval. Objects
of this category are expressions in language, and hom objects are conditional proba-
bilities that one expression is an extension of another. This category is syntactical—it
describes what goes with what. Then, via the Yoneda embedding, we pass to the
enriched category of unit interval-valued copresheaves on this syntactical category.
This category of enriched copresheaves is semantic—it is where we find meaning, log-
ical operations such as entailment, and the building blocks for more elaborate semantic
concepts.

Keywords Category theory - Yoneda embedding - Compositionality - Natural
language - Probability - Logic

Mathematics Subject Classification 18D20 - 18A25 - 18A30 - 18A35 - 18B25 - 18B35
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A First Introduction to
Topos Theory




The kind of reasoning one
can do internally from text is
something like:

categorical logic +
probabilities.



Reprints in Theory and Applications of Categories, No. 1, 2002, pp. 1-37.

METRIC SPACES, GENERALIZED LOGIC, AND CLOSED
CATEGORIES

F. WILLIAM LAWVERE

Author Commentary:
ENRICHED CATEGORIES IN THE LOGIC OF GEOMETRY AND ANALYSIS

Because parts of the following 1973 article have been suggestive to workers in several
areas, the editors of TAC have kindly proposed to make it available in the present form.
The idea on which it is based can be developed considerably further, as initiated in the
1986 article [1]. In the second part of this brief introduction I will summarize, for those
familiar with the theory of enriched categories, some of the more promising of these further
developments and possibilities, including suggestions coming from the modern theory of
metric spaces which have not yet been elaborated categorically. (The 1973 and 1986
articles had also a didactic purpose, and so include a detailed introduction to the theory
of enriched categories itself.)

While listening to a 1967 lecture of Richard Swan, which included a discussion of the
relative codimension of pairs of subvarieties, I noticed the analogy between the triangle
inequality and a categorical composition law. Later I saw that Hausdorff had mentioned
the analogy between metric spaces and posets. The poset analogy is by itself perhaps not
sufficient to suggest a whole system of constructions and theorems appropriate for metric
spaces, but the categorical connection is! This connection is more fruitful than a mere
analogy, because it provides a sequence of mathematical theorems, so that enriched cate-
gory theory can suggest new directions of research in metric space theory and conversely,
unusual for two subjects so old (1966 and 1906 respectively).

The closed interval [0, 00] of real numbers as objects, > as maps, + as “tensor” and
truncated subtraction as adjoint “hom”, constitute a bona fide example of a complete,
symmetric, monoidal closed category V. For any such V there is the rich system of con-
structions and theorems (worked out by Eilenberg and Kelly, Day, and others) involving

- V-valued categories;
- V-strong functors;

Originally published as: Metric spaces, generalized logic, and closed categories, Rendiconti del semi-
nario matématico e fisico di Milano, XLIII (1973), 135-166

Received by the editors 2002-04-01 and, in revised form, 2002-06-24.

Transmitted by Michael Barr. Reprint published on 2002-09-1.

2000 Mathematics Subject Classification: 18D20.

Key words and phrases: Metric spaces, enriched categories, logic.

Commentary © F. William Lawvere, 2002. Permission to copy for private use granted.
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Theory and Applications of Categories, Vol. 28, No. 22, 2013, pp. 696

TIGHT SPANS, ISBELL COMPLETIONS
AND SEMI-TROPICAL MODULES

SIMON WILLERTON

ABSTRACT. In this paper we consider generalized metric spaces in the sense of Lawvere
and the categorical Isbell completion construction. We show that this is an analogue of the
tight span construction of classical metric spaces, and that the Isbell completion coincides
with the directed tight span of Hirai and Koichi. The notions of categorical completion
and cocompletion are related to the existence of semi-tropical module structure, and
it is shown that the Isbell completion (hence the directed tight span) has two different
semi-tropical module structures.

Introduction.

This paper grew out of a desire to understand whether the tight span of a metric space
could be understood in terms of the enriched category theory approach to metric spaces.
This led to understanding a link between two apparently unrelated constructions of Isbell,
namely the tight span of metric spaces and the Isbell completion of categories; this is turn
led, via categorical completeness, to connections with tropical algebra. It seems interesting
that these two constructions of Isbell remained unconnected for nearly fifty years.

In this introduction the main ideas of Isbell completion, semi-tropical algebra and tight
spans will be given. The intention is that this paper should be readable by mathematicians
interested in metric spaces or tropical algebra, without much category theory background,
and to allow them to see how category theoretic methods give interesting insight in this
case. This means that some bits of enriched category theory for metric spaces will be spelt
out in some detail.

THE ISBELL COMPLETION OF A GENERALIZED METRIC SPACE. Lawvere observed
that a metric space can be viewed as something similar to a category and that from
that perspective there is a natural generalization — generalized metric space — which
means a set X with a ‘distance’ function d: X x X — [0, 00] such that d(z,z) = 0 and
d(z,y) + d(y, 2) > d(z, 2) for all z,y,z € X, with no further conditions like symmetry
imposed. Generalized metric spaces can be thought of as directed metric spaces. From a
category theoretic point of view, generalized metric spaces are precisely [0, oo]-enriched
categories and so much of the machinery of category theory can be utilized to study them.
In this paper we will look at the ‘Isbell completion’ for generalized metric spaces.

Received by the editors 2013-03-26 and, in revised form, 2013-08-15.

Transmitted by Anders Kock. Published on 2013-08-22.

2010 Mathematics Subject Classification: Primary: 54E35 Secondary: 18D20, 16Y60.
Key words and phrases: key words: Metric spaces, tropical algebra, injective hull.

© Simon Willerton, 2013. Permission to copy for private use granted.
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Categorical semantics of metric spaces and continuous logic

Simon Cho
Journal of Symbolic Logic 85 (3):1044-1078 (2020)
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Abstract

The
University
Of
Sheffield.

ON THE FUZZY CONCEPT COMPLEX

Jonathan Arthur Elliott

A thesis submitted for the degree of
Doctor of Philosophy

University of Sheffield
Faculty of Science
School of Mathematics and Statistics

September 2017

Using the category of metric spaces as a template, we develop a metric analogue of the categorical semantics of classical/intuitionistic logic, and show that the natural
notion of predicate in this “continuous semantics” is equivalent to the a priori separate notion of predicate in continuous logic, a logic which is independently well-studied by
model theorists and which finds various applications. We show this equivalence by exhibiting the real interval $[0,1]$ in the category of metric spaces as a “continuous
subobject classifier” giving a correspondence not only between the two notions of predicate, but also between the natural notion of quantification in the continuous
semantics and the existing notion of quantification in continuous logic.Along the way, we formulate what it means for a given category to behave like the category of metric
spaces, and afterwards show that any such category supports the aforementioned continuous semantics. As an application, we show that categories of presheaves of metric
spaces are examples of such, and in fact even possess continuous subobject classifiers.




Why should anyone care?



Quantum Physics




Language is like a 1d system of
Interacting quantum particles












A quantum physics model for
language Is compatible with a
categorical perspective for language.




Practical Benefits!



Tensor networks



Tensor network language
models have been built.
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AL Is Mastering

Language. Should We
Trust What It Says?

OpenAl’s GPT-3 and other neural nets can now
write original prose with mind-boggling fluency — a
development that could have profound implications

for the future.
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If transformers prove to have fundamental
limitations, ideas from quantum physics
might help get over them.



