The countable reals

Andrej Bauer (University of Ljubljana) James E. Hanson (University of Maryland)

Topos Institute Colloquium, May 12th 2022

This is work in progress.

- 1. Uncountability and \mathbb{R}
- 2. Beating diagonalization
- 3. The parametric realizability topos

Talk overview

1. Uncountability and \mathbb{R}

- 2. Beating diagonalization
- 3. The parametric realizability topos

Definition

A set *A* is **countable** if there is a surjection $\mathbb{N} \to 1 + A$. It is **uncountable** if it is not countable.

Remark *An inhabited set A is countable if, and only if, there is a surjection* $\mathbb{N} \rightarrow A$.

The essence of diagonalization

Theorem

If there is a surjection $e : \mathbb{N} \to A^{\mathbb{N}}$ *then every* $f : A \to A$ *has a fixed point.*

Proof. There is $n \in \mathbb{N}$ such that $e(n) = (k \mapsto f(e(k)(k)))$, therefore e(n)(n) = f(e(n)(n)).

Corollary *If* $f : A \to A$ *does not have a fixed point then* $A^{\mathbb{N}}$ *is not countable.*

Some uncountable sets

Let Ω be the set of truth values, i.e., the subobject classifier. Let $2 = \{0, 1\}$ be the Booleans.

Some uncountable sets

Let Ω be the set of truth values, i.e., the subobject classifier. Let $2 = \{0, 1\}$ be the Booleans.

The following sets are uncountable:

- ▶ $\mathbb{N}^{\mathbb{N}}$ because $n \mapsto n + 1$ has no fixed points.
- ▶ $2^{\mathbb{N}}$ because \neg : $2 \rightarrow 2$ has no fixed points.
- $\Omega^{\mathbb{N}}$ because $\neg : \Omega \to \Omega$ has no fixed points.

Some uncountable sets

Let Ω be the set of truth values, i.e., the subobject classifier. Let $2 = \{0, 1\}$ be the Booleans.

The following sets are uncountable:

- ▶ $\mathbb{N}^{\mathbb{N}}$ because $n \mapsto n + 1$ has no fixed points.
- ▶ $2^{\mathbb{N}}$ because \neg : $2 \rightarrow 2$ has no fixed points.
- $\Omega^{\mathbb{N}}$ because $\neg : \Omega \to \Omega$ has no fixed points.

Observations:

- Ω^A is the powerset $\mathcal{P}A$.
- 2^A is the set of *decidable* subsets of *A*.
- Constructive taboos:

$$2 \cong \Omega$$
 $\mathbb{R} \cong 2^{\mathbb{N}}$ $\mathbb{R} \cong \Omega^{\mathbb{N}}$

Diagonalization for \mathbb{R} – with excluded middle

Theorem (classical)

Every sequence $a : \mathbb{N} \to \mathbb{R}$ *is avoided by some* $x \in \mathbb{R}$ *.*

Proof. Define $[u_0, v_0] = [0, 1]$ and recursively

$$[u_{n+1}, v_{n+1}] = \begin{cases} [u_n, \frac{4}{5} \cdot u_n + \frac{1}{5} \cdot v_n] & \text{if } a_n > \frac{1}{2} \cdot u_n + \frac{1}{2} \cdot v_n \\ [\frac{1}{5} \cdot u_n + \frac{4}{5} \cdot v_n, v_n] & \text{if } a_n \le \frac{1}{2} \cdot a_n + \frac{1}{2} \cdot v_n. \end{cases}$$

Then take $x = \lim_n u_n = \lim_n v_n$.

Diagonalization for \mathbb{R} – with Dependent Choice

Theorem (intuitionistic with Dependent Choice) Every sequence $a : \mathbb{N} \to \mathbb{R}$ is avoided by some $x \in \mathbb{R}$.

Proof. Define $[u_0, v_0] = [0, 1]$ and choose

$$[u_{n+1}, v_{n+1}] = \begin{cases} [u_n, \frac{4}{5} \cdot u_n + \frac{1}{5} \cdot v_n] & \text{if } a_n > \frac{3}{5} \cdot u_n + \frac{2}{5} \cdot v_n \\ [\frac{1}{5} \cdot u_n + \frac{4}{5} \cdot v_n, v_n] & \text{if } a_n < \frac{2}{5} \cdot a_n + \frac{3}{2} \cdot v_n. \end{cases}$$

Then take $x = \lim_n u_n = \lim_n v_n$.

The proof can be improved to use just Countable Choice.

Diagonalization breaks down intuitionistically

Theorem *The topos* $Sh(\mathbb{R})$ *does not validate the internal statement*

$$\forall a \in \mathbb{R}^{\mathbb{N}} . \exists x \in \mathbb{R} . \forall n \in \mathbb{N} . |a_n - x| > 0.$$

Proof. See "Constructive algebraic integration theory without choice" (Appendix A) by Bas Spitters.

Diagonalization breaks down intuitionistically

Theorem *The topos* $Sh(\mathbb{R})$ *does not validate the internal statement*

$$\forall a \in \mathbb{R}^{\mathbb{N}} . \exists x \in \mathbb{R} . \forall n \in \mathbb{N} . |a_n - x| > 0.$$

Proof. See "Constructive algebraic integration theory without choice" (Appendix A) by Bas Spitters.

However, $\mathsf{Sh}(\mathbb{R})$ validates $\neg \exists e \in \mathbb{R}^{\mathbb{N}} . \forall x \in \mathbb{R} . \exists n \in \mathbb{N} . e(n) = x$.

Uncountability of [0, 1]

Lemma (intuitionistic)

If [0,1] *is countable then so is* \mathbb{R} *.*

Proof. Given an enumeration $e : \mathbb{N} \to [0, 1]$, we show surjectivity of $f : \mathbb{Z} \times \mathbb{N} \to \mathbb{R}$, defined by $f(k, n) = k + 2 \cdot e(n)$ Given any $x \in \mathbb{R}$, there is $k \in \mathbb{Z}$ such that k < x < k + 2, and $n \in \mathbb{N}$ such that $e(n) = \frac{1}{2} \cdot (x - k)$, hence f(k, n) = x.

Definition

A set S is

- **subcountable** if there is an injection $S \to \mathbb{N}$,
- **b** subquotient of \mathbb{N} if it is a quotient of a subset of \mathbb{N} .

Definition

A set S is

- **subcountable** if there is an injection $S \to \mathbb{N}$,
- **subquotient** of \mathbb{N} if it is a quotient of a subset of \mathbb{N} .

Theorem

In the effective topos \mathbb{R} *is a subquotient of* \mathbb{N} *.*

Definition

A set S is

- **subcountable** if there is an injection $S \to \mathbb{N}$,
- **subquotient** of \mathbb{N} if it is a quotient of a subset of \mathbb{N} .

Theorem

In the effective topos \mathbb{R} *is a subquotient of* \mathbb{N} *.*

Theorem In the realizability topos over infinite-time Turing machines \mathbb{R} is subcountable.

Definition

A set S is

- **subcountable** if there is an injection $S \to \mathbb{N}$,
- **subquotient** of \mathbb{N} if it is a quotient of a subset of \mathbb{N} .

Theorem

In the effective topos \mathbb{R} *is a subquotient of* \mathbb{N} *.*

Theorem In the realizability topos over infinite-time Turing machines \mathbb{R} is subcountable.

However, in both toposes $\mathbb R$ is uncountable because realizability toposes validate Dependent choice.

Cauchy, Dedekind and MacNeille reals

Notions of completeness:

- Cauchy reals \mathbb{R}_C : Cauchy sequences have limits.
- Dedekind reals \mathbb{R}_D : Dedekind cuts straddle reals.
- MacNeille reals \mathbb{R}_M : bounded inhabited subsets have infima and suprema.

In general $\mathbb{R}_C \subseteq \mathbb{R}_D \subseteq \mathbb{R}_M$, and the inclusions may be proper.

MacNeille reals are uncountable, but ...

Theorem (intuitionistic)

The MacNeille reals \mathbb{R}_M *are uncountable.*

Proof. See "A constructive Knaster-Tarski proof of the uncountability of the reals" by Ingo Blechschmidt and Matthias Hutzler.

MacNeille reals are uncountable, but ...

Theorem (intuitionistic)

The MacNeille reals \mathbb{R}_M *are uncountable.*

Proof. See "A constructive Knaster-Tarski proof of the uncountability of the reals" by Ingo Blechschmidt and Matthias Hutzler.

Theorem (intuitionistic)

If MacNeille reals satisfy $\forall x \in \mathbb{R}_M$. $0 < x \lor x < 1$ *then excluded middle holds.*

Proof. See On complete ordered fields, summarizing an argument by Toby Bartels.

What about uncountability of \mathbb{R}_C and \mathbb{R}_D ?

Talk overview

- 1. Uncountability and \mathbb{R}
- 2. Beating diagonalization
- 3. The parametric realizability topos

Find a magical sequence $a : \mathbb{N} \to \mathbb{R}$ such that no Turing machine can diagonalize against it when given *a* as an oracle.

Find a magical sequence $a : \mathbb{N} \to \mathbb{R}$ such that no Turing machine can diagonalize against it when given *a* as an oracle.

How about *a* enumerating all computable reals?

No, diagonalization relativizes to any oracle.

Find a magical sequence $a : \mathbb{N} \to \mathbb{R}$ such that no Turing machine can diagonalize against it when given *a* as an oracle.

How about *a* enumerating all computable reals?

No, diagonalization relativizes to any oracle.

How about *a* enumerating all reals definable in some strong theory?

▶ No! Diagonalization relativizes to **any single oracle**.

Find a magical sequence $a : \mathbb{N} \to \mathbb{R}$ such that no Turing machine can diagonalize against it when given *a* as an oracle.

How about *a* enumerating all computable reals?

No, diagonalization relativizes to any oracle.

How about *a* enumerating all reals definable in some strong theory?

▶ No! Diagonalization relativizes to **any single oracle**.

What if we design a special model of computation?

Find a magical sequence $a : \mathbb{N} \to \mathbb{R}$ such that no Turing machine can diagonalize against it when given *a* as an oracle.

How about *a* enumerating all computable reals?

No, diagonalization relativizes to any oracle.

How about *a* enumerating all reals definable in some strong theory?

▶ No! Diagonalization relativizes to **any single oracle**.

What if we design a special model of computation?

▶ No, every realizability topos validates Dependent choice.

Oracles for $x \in [0, 1]$

There is a computable proper quotient map q : 2^N → [0,1].
Say that β : N → 2 *represents* x ∈ [0,1] when q(β) = x.
Let O_x = {β ∈ 2^N | q(β) = x}.

Think of $\beta \in \mathcal{O}_x$ as an *oracle* for *x*.

Note: $\mathcal{O}_x \subseteq 2^{\mathbb{N}}$ is compact because *q* is proper.

Oracles for $a \in [0, 1]^{\mathbb{N}}$

- Let $\langle -, \rangle : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a computable bijection.
- Define $r: 2^{\mathbb{N}} \to [0,1]^{\mathbb{N}}$ by $r(\alpha)(n) = q(k \mapsto \alpha(\langle n, k \rangle))$.
- Say that $\alpha : \mathbb{N} \to 2$ represents $a \in [0,1]^{\mathbb{N}}$ when $r(\alpha) = a$.

• Let
$$\mathcal{O}_a = \{ \alpha \in 2^{\mathbb{N}} \mid q(\alpha) = a \}.$$

Think of $\alpha \in O_a$ as an *oracle* for *a*.

Note: $\mathcal{O}_a \subseteq 2^{\mathbb{N}}$ is compact because *r* is proper.

Sequences that beat diagonalization

- Diagonalization works against any single $\alpha \in \mathcal{O}_a$.
- But can it work against many oracles, parametrically?

Let φ_n^{α} be the partial map $\mathbb{N} \to \mathbb{N}$ computed by the *n*-th Turing machine with oracle α .

Definition

Given a set of oracles $S \subseteq 2^{\mathbb{N}}$, say that $n \in \mathbb{N}$ is:

- an *S*-index for $x \in [0, 1]$ when $\varphi_n^{\beta} \in \mathcal{O}_x$ for all $\beta \in S$,
- an *S*-index for $a \in [0,1]^{\mathbb{N}}$ when $\varphi_n^{\alpha} \in \mathcal{O}_a$ for all $\alpha \in S$.

A generalization of Brouwer's fixed point theorem

Let $\mathfrak{C}[0,1]^{\mathbb{N}} = \{S \subseteq [0,1]^{\mathbb{N}} \mid S \text{ is non-empty and convex}\}.$

Theorem If the graph of $f : [0,1]^{\mathbb{N}} \to \mathfrak{C}[0,1]^{\mathbb{N}}$ is closed then there is $a \in [0,1]^{\mathbb{N}}$ such that $a \in f(a)$.

There is a sequence $\mu : \mathbb{N} \to [0,1]$ *such that, for all* $x \in [0,1]$ *, if* $n \in \mathbb{N}$ *is an* \mathcal{O}_{μ} *-index for x then* $\mu(n) = x$.

There is a sequence $\mu : \mathbb{N} \to [0,1]$ *such that, for all* $x \in [0,1]$ *, if* $n \in \mathbb{N}$ *is an* \mathcal{O}_{μ} *-index for x then* $\mu(n) = x$.

Proof. Let $\mathbb{I} = \{[u, v] \mid 0 \le u \le v \le 1\}$ be the interval domain.

Steps of the construction:

1. Define $\Psi : [0,1]^{\mathbb{N}} \to \mathbb{I}^{\mathbb{N}} \subseteq \mathfrak{C}[0,1]^{\mathbb{N}}$ such that, for all $a \in [0,1]^{\mathbb{N}}$ and $n \in \mathbb{N}$, if *n* is an \mathcal{O}_a -index for $x \in [0,1]$ then $\Psi(a)(n) = \{x\}$.

There is a sequence $\mu : \mathbb{N} \to [0,1]$ *such that, for all* $x \in [0,1]$ *, if* $n \in \mathbb{N}$ *is an* \mathcal{O}_{μ} *-index for x then* $\mu(n) = x$.

Proof. Let $\mathbb{I} = \{[u, v] \mid 0 \le u \le v \le 1\}$ be the interval domain.

Steps of the construction:

- 1. Define $\Psi : [0,1]^{\mathbb{N}} \to \mathbb{I}^{\mathbb{N}} \subseteq \mathfrak{C}[0,1]^{\mathbb{N}}$ such that, for all $a \in [0,1]^{\mathbb{N}}$ and $n \in \mathbb{N}$, if *n* is an \mathcal{O}_a -index for $x \in [0,1]$ then $\Psi(a)(n) = \{x\}$.
- 2. Verify that Ψ has a closed graph and apply the fixed-point theorem to obtain $\mu \in [0,1]^{\mathbb{N}}$ such that $\mu \in \Psi(\mu)$.

There is a sequence $\mu : \mathbb{N} \to [0,1]$ *such that, for all* $x \in [0,1]$ *, if* $n \in \mathbb{N}$ *is an* \mathcal{O}_{μ} *-index for x then* $\mu(n) = x$.

Proof. Let $\mathbb{I} = \{[u, v] \mid 0 \le u \le v \le 1\}$ be the interval domain.

Steps of the construction:

- 1. Define $\Psi : [0,1]^{\mathbb{N}} \to \mathbb{I}^{\mathbb{N}} \subseteq \mathfrak{C}[0,1]^{\mathbb{N}}$ such that, for all $a \in [0,1]^{\mathbb{N}}$ and $n \in \mathbb{N}$, if *n* is an \mathcal{O}_a -index for $x \in [0,1]$ then $\Psi(a)(n) = \{x\}$.
- 2. Verify that Ψ has a closed graph and apply the fixed-point theorem to obtain $\mu \in [0,1]^{\mathbb{N}}$ such that $\mu \in \Psi(\mu)$.
- 3. If $n \in \mathbb{N}$ is an \mathcal{O}_{μ} -index for $x \in [0, 1]$ then $\mu(n) \in \Psi(\mu)(n) = \{x\}$, therefore $\mu(n) = x$.

See "Degrees of unsolvability of continuous functions" by Joseph S. Miller for details.

- 1. Uncountability and \mathbb{R}
- 2. Beating diagonalization
- 3. The parametric realizability topos

It is just a matter of technique

- Let μ be Miller's sequence.
- A tripos for \mathcal{O}_{μ} -computability.
- The tripos-to-topos construction yields a topos $\mathsf{PRT}(\mathcal{O}_{\mu})$.
- Show that $\mu : \mathbb{N} \to [0,1]$ is epi in $\mathsf{PRT}(\mathcal{O}_{\mu})$.

The parametric realizability tripos & topos

Let $\mathcal{O} \subseteq 2^{\mathbb{N}}$ be a non-empty set of oracles.

Define the tripos $\operatorname{Pred}_{\mathcal{O}} : \operatorname{Set}^{\operatorname{op}} \to \operatorname{Heyt}$ by $\operatorname{Pred}_{\mathcal{O}}(X) = (\mathcal{P}\mathbb{N}^X, \leq_X)$ where for $\phi, \psi \in \mathcal{P}\mathbb{N}^X$

 $\phi \leq_X \psi \iff \exists e \in \mathbb{N} . \forall x \in X . \forall n \in \phi(x) . \forall \alpha \in \mathcal{O} . \varphi_e^{\alpha}(n) \in \psi(x).$

The parametric realizability tripos & topos

Let $\mathcal{O} \subseteq 2^{\mathbb{N}}$ be a non-empty set of oracles.

Define the tripos $\operatorname{Pred}_{\mathcal{O}} : \operatorname{Set}^{\operatorname{op}} \to \operatorname{Heyt} \operatorname{by} \operatorname{Pred}_{\mathcal{O}}(X) = (\mathcal{P}\mathbb{N}^X, \leq_X)$ where for $\phi, \psi \in \mathcal{P}\mathbb{N}^X$

 $\phi \leq_X \psi \iff \exists e \in \mathbb{N} . \forall x \in X . \forall n \in \phi(x) . \forall \alpha \in \mathcal{O} . \varphi_e^{\alpha}(n) \in \psi(x).$

The **parametric realizability topos** $PRT(\mathcal{O})$ is the topos arising from the tripos $Pred_{\mathcal{O}}$.

The Dedekind reals in $\mathsf{PRT}(\mathcal{O})$

For $m \in \mathbb{N}$ and $x \in [0, 1]$, let $n \Vdash_I x \iff \forall \alpha \in \mathcal{O} . \varphi_n^{\alpha} \in \mathcal{O}_x.$ Let $I = \{x \in [0, 1] \mid \exists n \in \mathbb{N} . n \Vdash_I x\}.$ Theorem (I, \Vdash_I) is the Dedekind unit interval $[0, 1] \subseteq \mathbb{R}_D$ in PRT $(\mathcal{O}).$

Theorem $\mu : \mathbb{N} \to [0, 1]$ is epi in $\mathsf{PRT}(\mathcal{O}_{\mu})$.

Proof. Let $m \Vdash \mu \in [0,1]^{\mathbb{N}}$, so that $\varphi_m^{\alpha}(k) \Vdash \mu(k) \in [0,1]$ for all $k \in \mathbb{N}$ and $\alpha \in \mathcal{O}_{\mu}$.

We seek a realizer $e \in \mathbb{N}$ for the statement

$$\forall x \in [0,1] . \exists n \in \mathbb{N} . \boldsymbol{\mu}(n) = x.$$

Take *e* such that $\varphi_e^{\alpha}(k) = \langle k, 0 \rangle$ for all $k \in \mathbb{N}$ and $\alpha \in \mathcal{O}_{\mu}$.

If $n \Vdash x \in [0, 1]$ then for every $\alpha \in \mathcal{O}_{\mu}$ we have $\varphi_n^{\alpha} \in \mathcal{O}_x$, hence $\mu(n) = x$. It follows that $\varphi_e^{\alpha}(n) = \langle n, 0 \rangle$ realizes $\exists n \in \mathbb{N} \cdot \mu(n) = x$, as required.

Concluding remarks

In PRT(O_µ) the object [0, 1]^ℕ is countable as well. Therefore Lawvere's fixed point theorem implies Brouwer's fixed point theorem in the form "Every *f* : [0, 1]ⁿ → [0, 1]ⁿ has a fixed point."

Concluding remarks

- In PRT(O_µ) the object [0, 1]^ℕ is countable as well. Therefore Lawvere's fixed point theorem implies Brouwer's fixed point theorem in the form "Every *f* : [0, 1]ⁿ → [0, 1]ⁿ has a fixed point."
- It remains to explore $\mathsf{PRT}(\mathcal{O}_{\mu})$ even further.

Concluding remarks

- In PRT(O_µ) the object [0, 1]^ℕ is countable as well. Therefore Lawvere's fixed point theorem implies Brouwer's fixed point theorem in the form "Every *f* : [0, 1]ⁿ → [0, 1]ⁿ has a fixed point."
- It remains to explore $\mathsf{PRT}(\mathcal{O}_{\mu})$ even further.
- We defined a notion of a parameterized partial combinatory algebra which generalizes Turing machines parameterized by a set of oracles O. The tripos construction carries over.