Learning weighted automata

Alexandra Silva

Active Automata Learning

Active Automata Learning

Q: $w \in \mathcal{L}$?

Observation table

	ϵ	\boldsymbol{a}
ϵ	0	0
a	0	1
aa	1	0
\overline{b}	0	0
ab	0	0
aaa	0	0
aab	0	0

Membership query

Q: $w \in \mathcal{L}$?

A: Y/N

Q: $\mathcal{L}(H) = \mathcal{L}$?

A: Y/N

+ counterexample

	ϵ	\boldsymbol{a}
ϵ	0	0
a	0	1
aa	1	0
\overline{b}	0	0
ab	0	0
aaa	0	0
aab	0	0

Observation table

	1	
ab		
aab		

Learns the Minimal DFA

Model of Windows 8 TCP implementation

Combining Model Learning and Model Checking to Analyze TCP Implementations

Paul Fiterău-Broștean, Ramon Janssen, and Frits Va
andrager $^{(\boxtimes)}$

Model of Windows 8 TCP implementation

Combining Model Learning and Model Checking to Analyze TCP Implementations

Paul Fiterău-Broștean, Ramon Janssen, and Frits Vaandrager^(⊠)

Learning Error Traces (function calls)

Learning the Language of Error

Martin Chapman 1, Hana Chockler 1 (), Pascal Kesseli 2, Daniel Kroening 2, Ofer Strichman 3, and Michael Tautschnig 4

Model of Windows 8 TCP implementation

Combining Model Learning and Model Checking to Analyze TCP Implementations

Paul Fiterău-Broștean, Ramon Janssen, and Frits Vaandrager^(⊠)

Learning Error Traces (function calls)

Learning the Language of Error

Martin Chapman¹, Hana Chockler^{1(⊠)}, Pascal Kesseli², Daniel Kroening², Ofer Strichman³, and Michael Tautschnig⁴

Model of Visa Debit on Barclays card

Formal models of bank cards for free

Fides Aarts, Joeri de Ruiter, and Erik Poll

Model of Windows 8 TCP implementation

Combining Model Learning and Model Checking to Analyze TCP Implementations

Paul Fiterău-Broștean, Ramon Janssen, and Frits Vaandrager^(⊠)

Infer automaton through oracle (membership and equivalence queries)

Deterministic finite automata

Gold, Angluin 80's

Weighted automata

Infer automaton through oracle (membership and equivalence queries)

Deterministic finite automata

Gold, Angluin 80's

Weighted automata

$$L \in 2^{A^*}$$

Infer automaton through oracle (membership and equivalence queries)

Deterministic finite automata

Gold, Angluin 80's

Weighted automata

$$L \in 2^{A^*}$$

$$L \in \mathbb{S}^{A^*}$$
 Semiring

Infer automaton through oracle (membership and equivalence queries)

$$L \in \mathbb{S}^{A^*}$$

$$L \in \mathbb{S}^{A^*}$$

Semiring

L* learns minimal DFA for a *regular language* assuming an oracle that answers:

L* learns minimal DFA for a *regular language* assuming an oracle that answers:

Membership queries

$$w \in \mathcal{L}$$
?

L* learns minimal DFA for a *regular language* assuming an oracle that answers:

Membership queries

$$w \in \mathcal{L}$$
?

Equivalence queries

$$\mathcal{L}(H) = \mathcal{L}?$$

L* learns minimal DFA for a *regular language* assuming an oracle that answers:

Membership queries

$$w \in \mathcal{L}$$
?

Equivalence queries

$$\mathcal{L}(H) = \mathcal{L}?$$
No = counter-example

$$S, E \subseteq A^*$$

$$S, E \subseteq A^*$$

$$S, E \leftarrow \{\varepsilon\}$$

- 1. Close table (changing S)
- 2. Equivalence query
- 3. Add suffixes of counterexample to E

$$A = \{a\}$$

$$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$

$$S, E \leftarrow \{\varepsilon\}$$

- 1. Close table (changing S)
- 2. Equivalence query
- 3. Add suffixes of counterexample to E

$$A = \{a\}$$

$$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$

$$\begin{array}{c|c} & \varepsilon \\ \hline \varepsilon & 1 \\ \hline a & 0 \end{array}$$

- 1. Close table (changing S)
- 2. Equivalence query
- 3. Add suffixes of counterexample to E

$$A = \{a\}$$

$$S, E \leftarrow \{\varepsilon\}$$

- 1. Close table (changing S)
 - 2. Equivalence query
 - 3. Add suffixes of counterexample to E

$$A = \{a\}$$

Counterexample: aaa

$$S, E \leftarrow \{\varepsilon\}$$

- 1. Close table (changing S)
- 2. Equivalence query
 - 3. Add suffixes of counterexample to E

$$A = \{a\}$$

$$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$

Counterexample: aaa

$$S, E \leftarrow \{\varepsilon\}$$

- 1. Close table (changing S)
- 2. Equivalence query
- 3. Add suffixes of counterexample to E

$$A = \{a\}$$

$$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$

Counterexample: aaa

$$S, E \leftarrow \{\varepsilon\}$$

- 1. Close table (changing S)
- 2. Equivalence query

$$A = \{a\}$$

$$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$

Counterexample: aaa

$$S, E \leftarrow \{\varepsilon\}$$

- 1. Close table (changing S)
 - 2. Equivalence query
 - 3. Add suffixes of counterexample to E

$$A = \{a\}$$

$$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$

$$S, E \leftarrow \{\varepsilon\}$$

- 1. Close table (changing S)
- 2. Equivalence query
 - 3. Add suffixes of counterexample to E

$$A = \{a\}$$

$$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$

Terminates!

$$S, E \leftarrow \{\varepsilon\}$$

- 1. Close table (changing S)
- 2. Equivalence query
- 3. Add suffixes of counterexample to E

 \mathbb{S} semiring (e.g. \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{N} , 2), FQ free semimodule over Q

DFA

WFA

initial state in Q

initial state in FQ

$$Q$$

$$\downarrow$$

$$2 \times Q^A$$

$$\begin{matrix} Q \\ \downarrow \\ \mathbb{S} \times (FQ)^A \end{matrix}$$

 \mathbb{S} semiring (e.g. \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{N} , 2), FQ free semimodule over Q

DFA

WFA

initial state in Q

initial state in FQ

$$Q$$

$$\downarrow$$
 $\mathbb{S} \times (FQ)^A$

Accepts weighted language $A^* \to \mathbb{S}$ Multiplies along the path with final output Sums over paths

$$\mathcal{L}(arepsilon) = 0$$
 $\mathcal{L}(a) = 1 \cdot 0 + 1 \cdot 1 = 1$
 $\mathcal{L}(aa) = 1 \cdot 1 \cdot 0 + 1 \cdot 1 \cdot 1 + 1 \cdot 2 \cdot 1 = 3$
 $\mathcal{L}(aaa) = 1 \cdot 1 \cdot 1 \cdot 0 + 1 \cdot 1 \cdot 1 \cdot 1 + 1 \cdot 1 \cdot 2 \cdot 1 + 1 \cdot 2 \cdot 2 \cdot 1 = 7$

DFAs vs WFAs

$$\mathcal{L}(arepsilon) = 0$$
 $\mathcal{L}(a) = 1 \cdot 0 + 1 \cdot 1 = 1$
 $\mathcal{L}(aa) = 1 \cdot 1 \cdot 0 + 1 \cdot 1 \cdot 1 + 1 \cdot 2 \cdot 1 = 3$
 $\mathcal{L}(aaa) = 1 \cdot 1 \cdot 1 \cdot 0 + 1 \cdot 1 \cdot 1 \cdot 1 + 1 \cdot 1 \cdot 2 \cdot 1 + 1 \cdot 2 \cdot 2 \cdot 1 = 7$

$$\mathcal{L}(a^n)=2^n-1$$

Table:

Cells have values from semiring rather than 0,1

Membership Queries:

Return weight associated with word

Equivalence Queries:

Submit hypothesis WFA

Counterexample = work on which weight differs

$$S, E \leftarrow \{\varepsilon\}$$

Repeat until no more counterexamples:

- 1. Close table (changing S)
- 2. Equivalence query
- 3. Add suffixes of counterexample to E

$$S, E \leftarrow \{\varepsilon\}$$

Repeat until no more counterexamples:

- 1. Close table (changing S)
- 2. Equivalence query
- 3. Add suffixes of counterexample to E

each lower row a linear combination of upper rows

$$S, E \leftarrow \{\varepsilon\}$$

Repeat until no more counterexamples:

- 1. Close table (changing S)
- 2. Equivalence query
- 3. Add suffixes of counterexample to E

each lower row a linear combination of upper rows

Requirement for semiring: solving linear systems of equations should be computable.

$$\mathcal{L}(a^n)=2^n-1$$

$$\mathcal{L}(a^n)=2^n-1$$

$$egin{array}{c|c} arepsilon & arepsilon \ \hline arepsilon & \mathbf{0} \ \hline a & \mathbf{1} \ \hline \end{array}$$

$$\mathcal{L}(a^n)=2^n-1$$

	ε
ε	0
a	1
aa	3

$$\mathcal{L}(a^n)=2^n-1$$

	ε
ε	0
а	1
aa	3

Counterexample: aaa

$$\mathcal{L}(a^n)=2^n-1$$

	arepsilon	a	aa	aaa
$\overline{\varepsilon}$	0	1	3	7
a	1	3	7	15
aa	3	7	15	31

$$\mathcal{L}(a^n)=2^n-1$$

	ε	a	aa	aaa
arepsilon	0	1	3	7
a	1	3	7	15
aa	3	7	15	31

L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA

L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA

L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our algorithm instantiates one of Bergadano and Varricchio (1996)

L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our algorithm instantiates one of Bergadano and Varricchio (1996)

Boolean semiring: WFAs = NFAs our algorithm instantiates one of Bollig et al (2009)

L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our algorithm instantiates one of Bergadano and Varricchio (1996)

Boolean semiring: WFAs = NFAs our algorithm instantiates one of Bollig et al (2009)

L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our algorithm instantiates one of Bergadano and Varricchio (1996)

Boolean semiring: WFAs = NFAs our algorithm instantiates one of Bollig et al (2009)

NFAs have no minimal representative!

Does it terminate for any semiring?

No.

$$\mathcal{L}(a^n)=2^n-1$$

Learning over \mathbb{Q}

$$\mathcal{L}(a^n) = 2^n - 1$$

$$\downarrow 0$$

$$\downarrow 1$$

$$\downarrow 0$$

$$\downarrow 1$$

$$\downarrow 0$$

$$\mathcal{L}(a^n)=2^n-1$$

	arepsilon	a
ε	0	1
а	1	3

$$\mathcal{L}(a^n)=2^n-1$$

	ε	a
ε	0	1
а	1	3
aa	3	7

$$\mathcal{L}(a^n)=2^n-1$$

	ε	a
arepsilon	0	1
a	1	3
aa	3	7
aaa	7	15

$$\mathcal{L}(a^n)=2^n-1$$

	ε	a
arepsilon	0	1
a	1	3
aa	3	7
aaa	7	15

Termination issue

The algorithm approximates the Hankel matrix of the language. Linear combinations of rows in:

	ε		aa	aaa	
arepsilon	0	1	3	7	
a	1	3	7	15	
ε a aa aaa	3	1 3 7 15	15	31	
aaa	7	15	31	63	

Termination issue

The algorithm approximates the Hankel matrix of the language. Linear combinations of rows in:

	ε	a	aa	aaa	
arepsilon	0	1	3	7	
a	1	3	7	15	
aa	3	7	15	31	
aaa	7	1 3 7 15	31	63	

This is not finitely generated (over commutative monoids)

Termination Conditions

Algorithm terminates assuming:

Termination Conditions

Algorithm terminates assuming:

Progress measure with bound

number, increases when rows separate via extra column

Ascending chain condition on Hankel matrix

Subsemimodule chains converge: $\dot{\mathbf{S}}_1^{\mathbf{f}}\subseteq S_2\subseteq\cdots\subseteq H$ subsemimodules, then

are

 $\exists n:$

$$S_n = S_{n+1} = S_{n+2} = \cdots$$

Termination Argument

Termination Argument

Assume:

Progress measure with bound Ascending chain condition on Hankel Matrix

Termination Argument

Assume:

Progress measure with bound Ascending chain condition on Hankel Matrix

Then:

Modules generated by (S_n, A*) form chain below Hankel matrix

Converges, from that point on closedness guaranteed

Bounded progress measure ⇒ finitely many counterexamples

Counter example always leads to closedness defect or rows distinguished by new column

Summary

Main ingredients for effective terminating algorithm:

- 1. Progress measure with bound
- 2. Ascending chain condition on Hankel matrix
- 3. Procedure to determine/fix closedness: solvability of finite system of linear equations

Learning over a field

Learning over a field

- 1. Progress measure with bound
 - Dimension of vector space spanned by table
 - ≤ minimal WFA size

Learning over a field

1. Progress measure with bound

- Dimension of vector space spanned by table
- ≤ minimal WFA size

2. Ascending chain condition on Hankel matrix

- Vector space dimension increases with strict inclusion
- Minimal WFA size = Hankel matrix dimension

Learning over a field

- 1. Progress measure with bound
 - Dimension of vector space spanned by table
 - ≤ minimal WFA size
- 2. Ascending chain condition on Hankel matrix
 - Vector space dimension increases with strict inclusion
 - Minimal WFA size = Hankel matrix dimension
- 3. Procedure for closedness: solvability of finite system of linear equations
 - Gaussian elimination

1. Progress measure with bound

- Set size of semimodule spanned by table
- ≤ determinization of correct automaton

- 1. Progress measure with bound
 - Set size of semimodule spanned by table
 - ≤ determinization of correct automaton
- 2. Ascending chain condition on Hankel matrix
 - Hankel matrix size ≤ determinization of correct automaton

- 1. Progress measure with bound
 - Set size of semimodule spanned by table
 - ≤ determinization of correct automaton
- 2. Ascending chain condition on Hankel matrix
 - Hankel matrix size ≤ determinization of correct automaton
- 3. Procedure for closedness: solvability of finite system of linear equations
 - Try all linear combinations of rows

- 1. Progress measure with bound
 - Set size of semimodule spanned by table
 - ≤ determinization of correct automaton
- 2. Ascending chain condition on Hankel matrix
 - Hankel matrix size ≤ determinization of correct automaton
- 3. Procedure for closedness: solvability of finite system of linear equations
 - Try all linear combinations of rows

Fields and finite semirings OK, can we do more?

Principal ideal domains

Principal ideal domain = integral domain with all ideals principal

Integral domain: commutative ring, $ab=0 \Rightarrow a=0 \lor b=0$

All ideals principal: generated by one element

Examples: Z, Z[i], K[x] for K a field

Modules over PID

A module is free if and only if it is torsion free: $pm=0 \Rightarrow p=0 \lor m=0$

A submodule of a free and finitely generated module is

- Free and finitely generated
- With **smaller** (or equal) rank

If a finitely generated free module is a quotient of another, its rank is smaller or equal

1. Progress measure with bound

- Rank of the module spanned by the table (which is free and f.g!)
- ≤ rank of Hankel matrix

- 1. Progress measure with bound
 - Rank of the module spanned by the table (which is free and f.g!)
 - ≤ rank of Hankel matrix
- 2. Ascending chain condition on Hankel matrix
 - yes

- 1. Progress measure with bound
 - Rank of the module spanned by the table (which is free and f.g!)
 - ≤ rank of Hankel matrix
- 2. Ascending chain condition on Hankel matrix
 - yes
- 3. Procedure for closedness: solvability of finite system of linear equations
 - Solve equations via Smith normal form (exists for PIDs), some further assumptions on computability (hold for integers)

- 1. Progress measure with bound
 - Rank of the module spanned by the table (which is free and f.g!)
 - ≤ rank of Hankel matrix
- 2. Ascending chain condition on Hankel matrix
 - yes
- 3. Procedure for closedness: solvability of finite system of linear equations
 - Solve equations via Smith normal form (exists for PIDs), some further assumptions on computability (hold for integers)

Learning algorithm terminates for the integers!

Key takeaway

Active learning algorithm for WFAs:

- 1. Termination depends on properties of the semiring: works for fields, finite semirings, integers, not naturals.
- 2. Solvability of finite systems of linear equations essential.

Key takeaway

Active learning algorithm for WFAs:

- 1. Termination depends on properties of the semiring: works for fields, finite semirings, integers, not naturals.
- 2. Solvability of finite systems of linear equations essential.

How about probabilistic automata?

$$A^* \rightarrow [0,1]$$

$$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$

$$\begin{array}{c|c} & \varepsilon \\ \hline \varepsilon & 0 \\ \hline a & 0.25 \end{array}$$

$$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$

$$egin{array}{c|c} arepsilon & arepsilon \ \hline arepsilon & 0.25 \ \hline aa & 0.25 \ \hline \end{array}$$

$$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$

	arepsilon	а
ε	0	0.25
a	0.25	0.25
aa	0.25	0.1875

$$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$

	arepsilon	a
ε	0	0.25
a	0.25	0.25
aa	0.25	0.1875
aaa	0.1875	0.125

$$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$

	arepsilon	а	Ratio
arepsilon	0	0.25	0
a	0.25	0.25	1
aa	0.25	0.1875	1.333
aaa	0.1875	0.125	1.5

$$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$

	arepsilon	а	Ratio
$\overline{\varepsilon}$	0	0.25	0
а	0.25	0.25	1
aa	0.25	0.1875	1.333
aaa	0.1875	0.125	1.5

Problem: rows of the table are not finitely generated

Probabilistic automata, partial solutions

Ongoing work with Leon Witzman

- If we know the number of states of target automaton, there exists an active learning algorithm (that uses at most exponential space);
- Even if the real automaton has rational coefficients the systems we solve might lack rational solutions (real algebraic numbers);
- Use a quadratic program to approximate solution;
- Counterexample handling (to avoid assuming number of states) unclear;
- Learning happens in convex sets, can we use this algebraic structure?

???

