Learning weighted
automata

Alexandra Silva

& Y
O
o] =
v <
L&)
S %)
Orp 2o

Cornell Bowers CIS

Computer Science

Active Automata Learning

Al

Black-box
interactions

 —

Zoom-in
specific part
of code

Incrementally
build a model

Refine with
properties of
Interest

...............

end

\ 'Avda
_SMAIZN)

Cornell Bowers C1S
Computer Science

Active Automata Learning

)
&y

Automated

*‘_uu,,,c,

O

o] =

v <

NI
S %)
Orp 2o

Cornell Bowers C1S
Computer Science

DFA Learning (L*, Angluin’87)

Regular Language

D q_)
‘ Cornell Bowers CIS

Computer Science

*‘}\.um,,e,

"

o 2

v <

NI
S %)
Orp 2o

DFA Learning (L*, Angluin’87)

Observation table
€ a
Membership query e |0 O
o a 0 1
Q: we L aa 1 0
A: Y/N b 0O O
ab 0 O
_ ﬁ aaa | 0 0
aab| 0 O

Regular Language

Cornell Bowers C1S
Computer Science

DFA Learning (L*, Angluin’87)

\

Observation table

€ a

Membership query e |0 O

_ o a 0 1

Q: we L aa |1 0

A: Y/N b 0 O

ab 0 O

_ ﬁ aaa | 0 0

aab | 0 O

Regular Language
@Y
—)
N

b a,b a
Cornell Bowers CIS

Computer Science

DFA Learning (L*, Angluin’87)

\

Observation table

€ a

Membership query e |0 O
2 a 0 1

Q: we L SR

A: Y/N b 00

ab 0 O

_ ﬁ aaa O 0
aab| 0 O

Equivalence query
Regular Language q. () = 22

A:Y/N
+ counterexample

Cornell Bowers CIS

Computer Science

DFA Learning (L*, Angluin’87)

)
&y

Learns the Minimal DFA

L* at work

L* at work

Model of Windows 8 TCP implementation

condPANrdata
PALAALA/AINN)

‘ /) PAsdata/AINN)
(FAAINN)

oD

Send/PANCrdate OSEIANG)

\
\ o "
N\ \ \ \
\] SRAZRN, -\
\ \
\g\l:aelum,n | SATRING) W\ R
| [RATAR PAsdatal/- \
N /
~ -
J

Combining Model Learning and Model Checking
to Analyze TCP Implementations

Paul Fiteriu-Brogtean, Ramon Janssen, and Frits Vaandrager(®)

L* at work

Model of Windows 8 TCP implementation Learning Error Traces (function calls)

rt_OneStep

Ext_output ...
Ext_update

Learn Assert

¥ MissionPhaseStal
' O

e
\

Ext ontpnt.

Ext rt_OneStep
~O—=0 O

Ext_initialize

tablished (during (o>

/
Send/PAIN.C)edate dose/FANC)

glrecad
_O—

Combining Model Learning and Model Checking

Learning the Language of Error
to Analyze TCP Implementations

Martin Chapman’, Hana Chockler! ™), Pascal Kesseli2, Daniel Kroening?,
. 3 . .
Paul Fiteriu-Brogtean, Ramon Janssen, and Frits Vaandrager(®) Ofer Strichman®, and Michael Tautschnig*

L* at work

Model of Windows 8 TCP implementation Learning Error Traces (function calls)

Model of Visa Debit on Barclays card

rt_OneStep

Ext_update

N
£
3
z
£
I

¥ MissionPhaseStal

L Ext_output .

,
=

‘GET PROCESSING OPTIONS (+1) INTERNAL AUTHENTICATE (=)

Selected {DDA) 5 0ther (=)

INTERNAL AUTHENTICATE (=) JGET PROCESSING OPTIONS (+1)

Ext ontpnt.

Ext rt_OneStep
~O—=0 O

R GENERATE AC ARQC / TC (=]
Ext_initialize ARQC

tablished (during (o>

/
Send/PAIN.C)edate dose/FANC)

glrecad
_O—

Combining Model Learning and Model Checking

. Learning the Language of Error Formal models of bank cards for free
to Analyze TCP Implementations
Martin Chapman', Ham'x Chocl;lerl(g), Pasca.l Kesseli’,-Daniel Kroening?,
Paul Fiteriu-Brogtean, Ramon Janssen, and Frits Vaandrager(®) Ofer Strichman?, and Michael Tutachnig!

Fides Aarts, Joeri de Ruiter, and Erik Poll

L* at work

Model of Windows 8 TCP implementation

condPANrdata
PALAALA/AINN)

‘ /) PAsdata/AINN)
(FAAINN)

oD

Send/PANCrdate OSEIANG)

\
\ o "
N\ \ \ \
\] SRAZRN, -\
\ \
\g\l:aelum,n | SATRING) W\ R
| [RATAR PAsdatal/- \
N /
~ -
J

Combining Model Learning and Model Checking
to Analyze TCP Implementations

Paul Fiteriu-Brogtean, Ramon Janssen, and Frits Vaandrager(®)

Active learning

Infer automaton through oracle (membership and equivalence queries)

Deterministic Weighted
finite automata automata

Gold, Angluin 80’s

Cornell Bowers C1S
Computer Science

Active learning

Infer automaton through oracle (membership and equivalence queries)

Deterministic Weighted
finite automata automata

Gold, Angluin 80’s

L 24

Cornell Bowers C1S
Computer Science

Active learning

Infer automaton through oracle (membership and equivalence queries)

Deterministic Weighted
finite automata automata

Gold, Angluin 80’s

L c 24 L es?

Semiring

Cornell Bowers C1S
Computer Science

Active learning

Infer automaton through oracle (membership and equivalence queries)

Deterministic \ ? (Weighted
finite automata J k automata
Gold, Angluin 80’s

L c 24 L es?

Semiring

Cornell Bowers C1S
Computer Science

L* for DFASs

L* learns minimal DFA for a regular language assuming an oracle that answers:

Cornell Bowers CIS
Computer Science

L* for DFASs

L* learns minimal DFA for a regular language assuming an oracle that answers:

Membership queries

wE L7

Cornell Bowers CIS
Computer Science

L* for DFASs

L* learns minimal DFA for a regular language assuming an oracle that answers:

Membership queries

wE L7

Equivalence queries

Cornell Bowers CIS
Computer Science

L* for DFASs

L* learns minimal DFA for a regular language assuming an oracle that answers:

Membership queries

wE L7

Equivalence queries

/

No = counter-example

Cornell Bowers CIS
Computer Science

L* for DFASs

S, ECA" E
—
e a
1 0 L ={a"| nis even}
S a 0 1
{ aa |1 0 ~TT-—-- aa-a¢ L
S-A aaa |0 1

Cornell Bowers C1S
Computer Science

L* for DFASs

S, ECA" E
——
e a
3 1 0 L ={a"| nis even}
S a 0 1
aa |1 0 ~TT-—-- aa-a ¢ L
S-A aaa |0 1
S, E + {e}

Repeat until no more counterexamples:
1. Close table (changing S)

2. Equivalence query

3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science

L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

S, E + {¢}
Repeat until no more counterexamples:

1. Close table (changing S)

2. Equivalence query
3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science

L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

™
of |

> S, B« {e}
Repeat until no more counterexamples:
1. Close table (changing S)

2. Equivalence query
3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science

L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

e —“@O——()D-
2 |0
aa | 0

S, E + {¢}

Repeat until no more counterexamples:

—>» 1. Close table (changing S)
2. Equivalence query
3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science

L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

RO ONL

L M
O’O l—l‘(‘f)

Counterexample: aaa

S, E + {¢}
Repeat until no more counterexamples:

1. Close table (changing S)

2. Equivalence query
3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science

L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

£ a ada aaa 3
e |1 0 O 1 @ Q
a |0 0 1 0
aa |0 1 O 0
Counterexample: aaa
S, E + {¢}

Repeat until no more counterexamples:
1. Close table (changing S)

2. Equivalence query

3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science

L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

£ a ada aaa 3
e |1 0 O 1 @ Q
a |0 0 1 0
aa |0 1 O 0
Counterexample: aaa
S, E + {¢}

Repeat until no more counterexamples:
1. Close table (changing S)
2. Equivalence query

S 3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science

L* for DFAs, example

A ={a}
a" e L << n=0 mod 3
g a aa dad
g 1 0 O 1 a a
> oo 1 o O——()—0)
aa 0O 1 0 0
aaa |1 0 O 1 a
Counterexample: aaa
S, E + {¢}

Repeat until no more counterexamples:
—>» 1. Close table (changing S)

2. Equivalence query

3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science

L* for DFAs, example

A ={a}
a" e L <— n=0 mod3
€ a aa aaa
g 1 0 O 1 a a
> oo 1 o O—(0)—0)
aa 0O 1 O 0
aaa |1l 0 O 1 a
S, E + {¢}

Repeat until no more counterexamples:
1. Close table (changing S)

- 2. Equivalence query
3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science

L* for DFAs, example

A ={a}
a e L <— n=0 mod3
E a aa daada
g 1 0 O 1 a a
> 1o 0 1 o O——0)—0)
aa 0O 1 O 0
aaa |1 0 O 1 a
Terminates!
S, E + {¢}

—>» Repeat until no more counterexamples:
1. Close table (changing S)
2. Equivalence query
3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science

DFAs vs WFASs

S semiring (e.g. R, Q, Z,N, 2), FQ free semimodule over Q

DFA WFA
initial state in @ initial state in FQ
Q Q
} }
2 x QA S x (FQ)*

Cornell Bowers C1S
Computer Science

DFAs vs WFASs

S semiring (e.g. R, Q, Z,N, 2), FQ free semimodule over Q

DFA

initial state in @

Q
!

2 x QA

WFA

initial state in FQ

Q

)
S x (FQ)*

Accepts weighted Ianguage4* — S
Multiplies along the path with final output
Sums over paths

Cornell Bowers C1S
Computer Science

DFAs vs WFASs

*‘_uu,,,c,

O

o e

NI
S %)
Orp 2o

Cornell Bowers C1S
Computer Science

DFAs vs WFASs

L(e)=0
L(a)=1-0+1-1=1
L(aa)=1-1-0+1-1-14+1-2-1=3
L(aaa)=1-1-1-0+1-1-1-14+1-1-2-141-2-2-1=7

Cornell Bowers C1S
Computer Science

DFAs vs WFASs

L(e)=0
L(a)=1-0+1-1=1
L(aa)=1-1-0+1-1-14+1-2-1=3
L(aaa)=1-1-1-0+1-1-1-14+1-1-2-141-2-2-1=7

L(a")=2"-1

Cornell Bowers C1S
Computer Science

Learning WFAS

Table:
Cells have values from semiring rather than 0,1

Membership Queries:
Return weight associated with word

Equivalence Queries:
Submit hypothesis WFA
Counterexample = work on which weight differs

Cornell Bowers C1S
Computer Science

Learning WFAS

S, E + {e}
Repeat until no more counterexamples:

1. Close table (changing S)

2. Equivalence query
3. Add suffixes of counterexample to E

Cornell Bowers CIS
Computer Science

Learning WFAS

S, E + {e}
Repeat until no more counterexamples:
1.|Close table (changing S)

. Equivalence query
3. Add suffixes of counterexample to E

each lower row a linear combination of upper rows

Cornell Bowers C1S
Computer Science

Learning WFAS

S, E + {e}
Repeat until no more counterexamples:
1.|Close table (changing S)

. Equivalence query
3. Add suffixes of counterexample to E

each lower row a linear combination of upper rows

[Requirement for semiring: solving linear systems of equations should be computable.]

Cornell Bowers C1S
Computer Science

Learning WFAs, example

la 2a
L(a")=2"-1

Q“\'_UM“,C"

O

5 2

NG
6* 5
OFp A2

Cornell Bowers CIS
Computer Science

Learning WFAs, example

la 2a
L(a")=2"-1

™

Q“\'_UM“,C"

O

o] 2

(v] <

NG
6* 5
OFp A2

Cornell Bowers CIS
Computer Science

Learning WFAs, example

1la 2a
L(a")=2"-1 R L
(o=
€
€ 0 1la
a 1 1
aa | 3

Q“\'_UM“,C"

O

o] 2

(v] <

NG
6* 5
OFp A2

Cornell Bowers CIS

Computer Science

Learning WFAs, example

la 2a
A
{Oan€
£
a 1
aa | 3 Counterexample: aaa

*‘_uu,,,e,
O
o] =
v <
()
S %
Orp 2o

Cornell Bowers CIS

Computer Science

Learning WFAs, example

1la 2a

L") =2"—1 @ . @

€ a dada dada
e |0 1 3 7 12
a 1 3 7 15
aa |3 7 15 31

Cornell Bowers CIS
Computer Science

Learning WFAs, example

la 2a
L(a") =2" -1 R . @
{0) 1
€ a ad dada
c 10 1 3 7 Q La Q 32
a 1 3 7 15
aa |3 7 15 31 2

Cornell Bowers CIS
Computer Science

Does it terminate?

Cornell Bowers C1S
Computer Science

Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

Cornell Bowers C1S
Computer Science

& Y
O
o] =
v <
L&)
S %)
Orp 2o

Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

Cornell Bowers C1S
Computer Science

& Y
O
o] =
v <
L&)
S %)
Orp 2o

Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

‘ Cornell Bowers C1S
Computer Science

& Y
O
o e
L&)
S %)
Orp 2o

Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our
algorithm instantiates one of Bergadano and Varricchio (1996)

Cornell Bowers CIS
Computer Science

&\\,um,ﬁ’

O

o e

NI
S %)
Orp 2o

Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our
algorithm instantiates one of Bergadano and Varricchio (1996)

Boolean semiring: WFAs = NFAs our algorithm instantiates
one of Bollig et al (2009)

‘ Cornell Bowers C1S
Computer Science

Q‘\\,um,ﬁ’

O

o] =

v <

NG
S %)
Orp 2o

Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our
algorithm instantiates one of Bergadano and Varricchio (1996)

Boolean semiring: WFAs = NFAs our algorithm instantiates
one of Bollig et al (2009)

‘ Cornell Bowers C1S
Computer Science

Q‘\\,um,ﬁ’

O

o] =

v <

NG
S %)
Orp 2o

Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our
algorithm instantiates one of Bergadano and Varricchio (1996)

Boolean semiring: WFAs = NFAs our algorithm instantiates
one of Bollig et al (2009)\

NFAs have no minimal representative!

Cornell Bowers CIS
Computer Science

&\\,um,ﬁ’

"

§' e

NI
S %)
Oron

Learning WFAS

Does it terminate for any semiring?

No.

Cornell Bowers C1S
Computer Science

The bad semiring

1la 2a

L(a") =2"—1 @ . @

Learning over()

Cornell Bowers C1S
Computer Science

The bad semiring

1la 2a

L(a") =2"—1 @ . @

i

1

1

I .

1 Learning over(Q
1

i

v

la

OO

—2a

Cornell Bowers C1S
Computer Science

The bad semiring

1la 2a

L(a") =2"—1 @ . @

i
1
1
: Learning over()
1
i
v
la
OO

Cornell Bowers C1S
Computer Science

The bad semiring

1la

L(a")=2"—1 3,

™
=IO M
Wl

*‘_uu,,,c,

O

o e

NI
S %)
Orp 2o

Cornell Bowers C1S
Computer Science

The bad semiring

1la 2a

L(a) =2"—1 @ . @

L M
W= O M
~N W =L

—
L

dd

Cornell Bowers C1S
Computer Science

The bad semiring

1la 2a

£(a") = 2" — 1 @ . @

E a
€ 0 1
a 1 3 G la Q la e
aa 3 7 . . .
aaa | 7 15

Cornell Bowers C1S
Computer Science

The bad semiring

L(a")=2"-1
E a

€ 0 1

a 1 3

aa 3 7

aaa | / 15

1la 2a

Cornell Bowers C1S
Computer Science

Termination issue

The algorithm approximates the Hankel matrix of the language. Linear combinations of rows in:

€ a aa aaa
el 0 1 3 7
all 3 7 15
aa | 3 7 15 31
aaa | 7 15 31 63

Cornell Bowers C1S
Computer Science

Termination issue

The algorithm approximates the Hankel matrix of the language. Linear combinations of rows in:

€ a aa aaa

el 0 1 3 7
all 3 7 15
aa | 3 7 15 31
aaa | 7 15 31 63

This is not finitely generated (over commutative monoids)

Cornell Bowers C1S
Computer Science

Termination Conditions

Algorithm terminates assuming:

Cornell Bowers C1S
Computer Science

*‘}\.UM:,,%

O

o] =

v <

NI
S %)
Orp 2o

Termination Conditions
Algorithm terminates assuming:

Progress measure with bound
number, increases when rows separate via extra column

Ascending chain condition on Hankel matrix

Subsem_lmodule chains c:onverge:gf1 cCS,C---CH are
subsemimodules, then

Sn:5n+1:Sn+2:"'

In :

Cornell Bowers CIS
Computer Science

Termination Argument

*‘_uu,,,e,

O

§ e

NI
S %
Orp 2o

Cornell Bowers CIS
Computer Science

Termination Argument

Assume:
Progress measure with bound
Ascending chain condition on Hankel Matrix

Cornell Bowers C1S
Computer Science

*‘}\.um,,e'

O

o] =

v <

NI
S %)
Orp 2o

Termination Argument

Assume:

Progress measure with bound

Ascending chain condition on Hankel Matrix
Then:

Modules generated by (Sn, A*) form chain below Hankel
matrix
Converges, from that point on closedness guaranteed

Bounded progress measure = finitely many counterexamples

Counter example always leads to closedness defect or rows distinguished by new column

Cornell Bowers CIS
Computer Science

Summary

Main ingredients for effective terminating algorithm:

1. Progress measure with bound
2. Ascending chain condition on Hankel matrix

3. Procedure to determine/fix closedness: solvability of finite
system of linear equations

Cornell Bowers C1S
Computer Science

&\\.um,,%
O

o] =

v <

NI
S %)
Orp 2o

Learning over a field

Cornell Bowers CIS
Computer Science

Learning over a field

1. Progress measure with bound
— Dimension of vector space spanned by table
— = minimal WFA size

Cornell Bowers CIS
Computer Science

Learning over a field

1. Progress measure with bound
— Dimension of vector space spanned by table
— = minimal WFA size

2. Ascending chain condition on Hankel matrix
— Vector space dimension increases with strict inclusion
— Minimal WFA size = Hankel matrix dimension

Cornell Bowers C1S
Computer Science

Learning over a field

1. Progress measure with bound
— Dimension of vector space spanned by table
— = minimal WFA size

2. Ascending chain condition on Hankel matrix

— Vector space dimension increases with strict inclusion
— Minimal WFA size = Hankel matrix dimension

3. Procedure for closedness: solvability of finite system of linear
equations
— Gaussian elimination

Cornell Bowers CIS
Computer Science

Learning over a finite semiring

*‘_uu,,,e,

O

o e

NI
S %)
Orp 2o

Cornell Bowers C1S
Computer Science

Learning over a finite semiring

1. Progress measure with bound
— Set size of semimodule spanned by table
— < determinization of correct automaton

Cornell Bowers C1S
Computer Science

Learning over a finite semiring

1. Progress measure with bound
— Set size of semimodule spanned by table
— < determinization of correct automaton

2. Ascending chain condition on Hankel matrix
— Hankel matrix size < determinization of correct automaton

Cornell Bowers CIS
Computer Science

Learning over a finite semiring

1. Progress measure with bound
— Set size of semimodule spanned by table
— < determinization of correct automaton

2. Ascending chain condition on Hankel matrix
— Hankel matrix size < determinization of correct automaton

3. Procedure for closedness: solvability of finite system of linear
equations
— Try all linear combinations of rows

Cornell Bowers CIS
Computer Science

Learning over a finite semiring

1. Progress measure with bound
— Set size of semimodule spanned by table
— < determinization of correct automaton

2. Ascending chain condition on Hankel matrix
— Hankel matrix size < determinization of correct automaton

3. Procedure for closedness: solvability of finite system of linear
equations
— Try all linear combinations of rows

Fields and finite semirings OK, can we do more*

Cornell Bowers CIS
Computer Science

Principal ideal domains

Principal ideal domain = integral domain with all ideals
principal

Integral domain. commutative ring, ab=0 = a=0vb=0

All ideals principal: generated by one element

Examples: Z, Z[i], K[x] for K a field

‘ Cornell Bowers C1S
Computer Science

Q“\'\,Umvé:’

O

5 2

NI
Q) &
Q5p A ™

Modules over PID

A module is free if and only if it is torsion free: pm=0 = p=0vm=0

A submodule of a free and finitely generated module is
* Free and finitely generated
* With smaller (or equal) rank

If a finitely generated free module is a quotient of another, its rank
Is smaller or equal

Cornell Bowers CIS
Computer Science

é_um,ﬁ’

"

§' e

NI
S %)
QFp A>

Learning over PlDs

*‘_uu,,,e,

O

o e

NI
S %)
Orp 2o

Cornell Bowers C1S
Computer Science

Learning over PlDs

1. Progress measure with bound
— Rank of the module spanned by the table (which is free and f.g!)
— < rank of Hankel matrix

Cornell Bowers C1S
Computer Science

Learning over PlDs

1. Progress measure with bound
— Rank of the module spanned by the table (which is free and f.g!)
— < rank of Hankel matrix

2. Ascending chain condition on Hankel matrix
— yes

Cornell Bowers C1S
Computer Science

Learning over PlDs

1. Progress measure with bound
— Rank of the module spanned by the table (which is free and f.g!)
— < rank of Hankel matrix

2. Ascending chain condition on Hankel matrix
— yes

3. Procedure for closedness: solvability of finite system of linear
equations

— Solve equations via Smith normal form (exists for PIDs), some further
assumptions on computability (hold for integers)

Cornell Bowers CIS
Computer Science

Learning over PlDs

1. Progress measure with bound
— Rank of the module spanned by the table (which is free and f.g!)
— < rank of Hankel matrix

2. Ascending chain condition on Hankel matrix
— yes

3. Procedure for closedness: solvability of finite system of linear
equations

— Solve equations via Smith normal form (exists for PIDs), some further
assumptions on computability (hold for integers)

Learning algorithm terminates for the integers!

Cornell Bowers CIS
Computer Science

Key takeaway

Active learning algorithm for WFAs:

1. Termination depends on properties of the semiring: works for
fields, finite semirings, integers, not naturals.

2. Solvability of finite systems of linear equations essential.

Cornell Bowers CIS
Computer Science

*“\'_U'M.,é:’

O

o] 2

V] <

NI
S %)
QFp A2

Key takeaway

Active learning algorithm for WFAs:

1. Termination depends on properties of the semiring: works for
fields, finite semirings, integers, not naturals.

2. Solvability of finite systems of linear equations essential.

How about probabilistic automata?
A" — [0,1]

Cornell Bowers C1S
Computer Science

*‘}\.UM:,,%

O

o] =

v <

NI
S %)
Orp 2o

Probabilistic automata

1
2
€
€ 0
a | 0.25

‘ Cornell Bowers C1S
Computer Science

Q“\'_UM“,C"

v

o] 2

v <

N
6* 5
Okp A2

Probabilistic automata

O»

aa | 0.25

‘ Cornell Bowers C1S
Computer Science

Q“\'_UM“,C"

v

o] 2

v <

N
6* 5
Okp A2

Probabilistic automata

N[

D

€ a
€ 0 0.25
a (025 0.25

aa | 0.25 0.1875

Cornell Bowers CIS
Computer Science

Probabilistic automata

la la

R 22 /1

\9) 2

€ a

€ 0 0.25
a 0.25 0.25
aa 0.25 0.1875
aaa | 0.1875 0.125

Cornell Bowers CIS
Computer Science

Probabilistic automata

32 32
s
Ox @ =
€ a Ratio
€ 0 0.25 0
a 0.25 0.25 1

aa 0.25 0.1875 1.333...
aaa | 0.1875 0.125 1.5

Cornell Bowers C1S
Computer Science

Probabilistic automata

1 15
R %a 1 n L
’\(_)/ 2 L£(a") = on+1

g a Ratio

g€ 0 0.25 0

a 0.25 0.25 1

aa 0.25 0.1875 1.333...

aaa | 0.1875 0.125 15 Problem: rows of the table are

not finitely generated

Cornell Bowers CIS
Computer Science

Probabllistic automata, partial solutions

Ongoing work with Leon Witzman

- If we know the number of states of target automaton, there exists an active
learning algorithm (that uses at most exponential space);

- Even if the real automaton has rational coefficients the systems we solve
might lack rational solutions (real algebraic numbers);

- Use a quadratic program to approximate solution;

- Counterexample handling (to avoid assuming number of states) unclear;

- Learning happens in convex sets, can we use this algebraic structure?

277

Cornell Bowers CIS
Computer Science

Questions?

Cornell Bowers C1S
Computer Science

