Learning weighted automata Alexandra Silva ## Active Automata Learning ## Active Automata Learning Q: $w \in \mathcal{L}$? #### **Observation table** | | ϵ | \boldsymbol{a} | |----------------|------------|------------------| | ϵ | 0 | 0 | | a | 0 | 1 | | aa | 1 | 0 | | \overline{b} | 0 | 0 | | ab | 0 | 0 | | aaa | 0 | 0 | | aab | 0 | 0 | #### **Membership query** Q: $w \in \mathcal{L}$? A: Y/N Q: $\mathcal{L}(H) = \mathcal{L}$? **A: Y/N** + counterexample | | ϵ | \boldsymbol{a} | |----------------|------------|------------------| | ϵ | 0 | 0 | | a | 0 | 1 | | aa | 1 | 0 | | \overline{b} | 0 | 0 | | ab | 0 | 0 | | aaa | 0 | 0 | | aab | 0 | 0 | #### Observation table | | 1 | | |-----|---|--| | | | | | ab | | | | | | | | aab | | | ### **Learns the Minimal DFA** #### **Model of Windows 8 TCP implementation** Combining Model Learning and Model Checking to Analyze TCP Implementations Paul Fiterău-Broștean, Ramon Janssen, and Frits Va
andrager $^{(\boxtimes)}$ #### **Model of Windows 8 TCP implementation** Combining Model Learning and Model Checking to Analyze TCP Implementations Paul Fiterău-Broștean, Ramon Janssen, and Frits Vaandrager^(⊠) #### **Learning Error Traces (function calls)** #### Learning the Language of Error Martin Chapman 1, Hana Chockler 1 (), Pascal Kesseli 2, Daniel Kroening 2, Ofer Strichman 3, and Michael Tautschnig 4 #### **Model of Windows 8 TCP implementation** Combining Model Learning and Model Checking to Analyze TCP Implementations Paul Fiterău-Broștean, Ramon Janssen, and Frits Vaandrager^(⊠) #### **Learning Error Traces (function calls)** #### Learning the Language of Error Martin Chapman¹, Hana Chockler^{1(⊠)}, Pascal Kesseli², Daniel Kroening², Ofer Strichman³, and Michael Tautschnig⁴ #### Model of Visa Debit on Barclays card #### Formal models of bank cards for free Fides Aarts, Joeri de Ruiter, and Erik Poll #### **Model of Windows 8 TCP implementation** Combining Model Learning and Model Checking to Analyze TCP Implementations Paul Fiterău-Broștean, Ramon Janssen, and Frits Vaandrager^(⊠) Infer automaton through oracle (membership and equivalence queries) Deterministic finite automata Gold, Angluin 80's Weighted automata Infer automaton through oracle (membership and equivalence queries) Deterministic finite automata Gold, Angluin 80's Weighted automata $$L \in 2^{A^*}$$ Infer automaton through oracle (membership and equivalence queries) Deterministic finite automata Gold, Angluin 80's Weighted automata $$L \in 2^{A^*}$$ $$L \in \mathbb{S}^{A^*}$$ Semiring Infer automaton through oracle (membership and equivalence queries) $$L \in \mathbb{S}^{A^*}$$ $$L \in \mathbb{S}^{A^*}$$ Semiring L* learns minimal DFA for a *regular language* assuming an oracle that answers: L* learns minimal DFA for a *regular language* assuming an oracle that answers: **Membership queries** $$w \in \mathcal{L}$$? L* learns minimal DFA for a *regular language* assuming an oracle that answers: #### **Membership queries** $$w \in \mathcal{L}$$? #### **Equivalence queries** $$\mathcal{L}(H) = \mathcal{L}?$$ L* learns minimal DFA for a *regular language* assuming an oracle that answers: #### **Membership queries** $$w \in \mathcal{L}$$? #### **Equivalence queries** $$\mathcal{L}(H) = \mathcal{L}?$$ No = counter-example $$S, E \subseteq A^*$$ $$S, E \subseteq A^*$$ $$S, E \leftarrow \{\varepsilon\}$$ - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E $$A = \{a\}$$ $$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$ $$S, E \leftarrow \{\varepsilon\}$$ - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E $$A = \{a\}$$ $$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$ $$\begin{array}{c|c} & \varepsilon \\ \hline \varepsilon & 1 \\ \hline a & 0 \end{array}$$ - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E $$A = \{a\}$$ $$S, E \leftarrow \{\varepsilon\}$$ - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E $$A = \{a\}$$ Counterexample: aaa $$S, E \leftarrow \{\varepsilon\}$$ - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E $$A = \{a\}$$ $$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$ Counterexample: aaa $$S, E \leftarrow \{\varepsilon\}$$ - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E $$A = \{a\}$$ $$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$ Counterexample: aaa $$S, E \leftarrow \{\varepsilon\}$$ - 1. Close table (changing S) - 2. Equivalence query $$A = \{a\}$$ $$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$ Counterexample: aaa $$S, E \leftarrow \{\varepsilon\}$$ - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E $$A = \{a\}$$ $$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$ $$S, E \leftarrow \{\varepsilon\}$$ - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E $$A = \{a\}$$ $$a^n \in \mathcal{L} \iff n \equiv 0 \mod 3$$ #### **Terminates!** $$S, E \leftarrow \{\varepsilon\}$$ - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E \mathbb{S} semiring (e.g. \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{N} , 2), FQ free semimodule over Q DFA WFA initial state in Q initial state in FQ $$Q$$ $$\downarrow$$ $$2 \times Q^A$$ $$\begin{matrix} Q \\ \downarrow \\ \mathbb{S} \times (FQ)^A \end{matrix}$$ \mathbb{S} semiring (e.g. \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{N} , 2), FQ free semimodule over Q DFA WFA initial state in Q initial state in FQ $$Q$$ $$\downarrow$$ $\mathbb{S} \times (FQ)^A$ Accepts weighted language $A^* \to \mathbb{S}$ Multiplies along the path with final output Sums over paths $$\mathcal{L}(arepsilon) = 0$$ $\mathcal{L}(a) = 1 \cdot 0 + 1 \cdot 1 = 1$ $\mathcal{L}(aa) = 1 \cdot 1 \cdot 0 + 1 \cdot 1 \cdot 1 + 1 \cdot 2 \cdot 1 = 3$ $\mathcal{L}(aaa) = 1 \cdot 1 \cdot 1 \cdot 0 + 1 \cdot 1 \cdot 1 \cdot 1 + 1 \cdot 1 \cdot 2 \cdot 1 + 1 \cdot 2 \cdot 2 \cdot 1 = 7$ #### DFAs vs WFAs $$\mathcal{L}(arepsilon) = 0$$ $\mathcal{L}(a) = 1 \cdot 0 + 1 \cdot 1 = 1$ $\mathcal{L}(aa) = 1 \cdot 1 \cdot 0 + 1 \cdot 1 \cdot 1 + 1 \cdot 2 \cdot 1 = 3$ $\mathcal{L}(aaa) = 1 \cdot 1 \cdot 1 \cdot 0 + 1 \cdot 1 \cdot 1 \cdot 1 + 1 \cdot 1 \cdot 2 \cdot 1 + 1 \cdot 2 \cdot 2 \cdot 1 = 7$ $$\mathcal{L}(a^n)=2^n-1$$ #### Table: Cells have values from semiring rather than 0,1 #### **Membership Queries:** Return weight associated with word #### **Equivalence Queries:** Submit hypothesis WFA Counterexample = work on which weight differs $$S, E \leftarrow \{\varepsilon\}$$ #### Repeat until no more counterexamples: - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E $$S, E \leftarrow \{\varepsilon\}$$ #### Repeat until no more counterexamples: - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E each lower row a linear combination of upper rows $$S, E \leftarrow \{\varepsilon\}$$ #### Repeat until no more counterexamples: - 1. Close table (changing S) - 2. Equivalence query - 3. Add suffixes of counterexample to E each lower row a linear combination of upper rows **Requirement for semiring**: solving linear systems of equations should be computable. $$\mathcal{L}(a^n)=2^n-1$$ $$\mathcal{L}(a^n)=2^n-1$$ $$egin{array}{c|c} arepsilon & arepsilon \ \hline arepsilon & \mathbf{0} \ \hline a & \mathbf{1} \ \hline \end{array}$$ $$\mathcal{L}(a^n)=2^n-1$$ | | ε | |---------------|---------------| | ε | 0 | | a | 1 | | aa | 3 | $$\mathcal{L}(a^n)=2^n-1$$ | | ε | |---------------|---------------| | ε | 0 | | а | 1 | | aa | 3 | Counterexample: aaa $$\mathcal{L}(a^n)=2^n-1$$ | | arepsilon | a | aa | aaa | |--------------------------|-----------|---|----|-----| | $\overline{\varepsilon}$ | 0 | 1 | 3 | 7 | | a | 1 | 3 | 7 | 15 | | aa | 3 | 7 | 15 | 31 | $$\mathcal{L}(a^n)=2^n-1$$ | | ε | a | aa | aaa | |-----------|---------------|---|----|-----| | arepsilon | 0 | 1 | 3 | 7 | | a | 1 | 3 | 7 | 15 | | aa | 3 | 7 | 15 | 31 | L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA L* for WFAs: depends on the semiring L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA L* for WFAs: depends on the semiring Field: terminates as a consequence of basis existence, our algorithm instantiates one of Bergadano and Varricchio (1996) L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA L* for WFAs: depends on the semiring Field: terminates as a consequence of basis existence, our algorithm instantiates one of Bergadano and Varricchio (1996) **Boolean semiring:** WFAs = NFAs our algorithm instantiates one of Bollig et al (2009) L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA L* for WFAs: depends on the semiring Field: terminates as a consequence of basis existence, our algorithm instantiates one of Bergadano and Varricchio (1996) **Boolean semiring:** WFAs = NFAs our algorithm instantiates one of Bollig et al (2009) L* for DFAs: termination consequence of regular languages having finitely many Myhill-Nerode classes = minimal DFA L* for WFAs: depends on the semiring Field: terminates as a consequence of basis existence, our algorithm instantiates one of Bergadano and Varricchio (1996) **Boolean semiring:** WFAs = NFAs our algorithm instantiates one of Bollig et al (2009) NFAs have no minimal representative! Does it terminate for any semiring? No. $$\mathcal{L}(a^n)=2^n-1$$ Learning over \mathbb{Q} $$\mathcal{L}(a^n) = 2^n - 1$$ $$\downarrow 0$$ $$\downarrow 1$$ $$\downarrow 0$$ $$\downarrow 1$$ $$\downarrow 0$$ $$\mathcal{L}(a^n)=2^n-1$$ | | arepsilon | a | |---------------|-----------|---| | ε | 0 | 1 | | а | 1 | 3 | $$\mathcal{L}(a^n)=2^n-1$$ | | ε | a | |---------------|---------------|---| | ε | 0 | 1 | | а | 1 | 3 | | aa | 3 | 7 | $$\mathcal{L}(a^n)=2^n-1$$ | | ε | a | |-----------|---------------|----| | arepsilon | 0 | 1 | | a | 1 | 3 | | aa | 3 | 7 | | aaa | 7 | 15 | $$\mathcal{L}(a^n)=2^n-1$$ | | ε | a | |-----------|---------------|----| | arepsilon | 0 | 1 | | a | 1 | 3 | | aa | 3 | 7 | | aaa | 7 | 15 | #### Termination issue The algorithm approximates the Hankel matrix of the language. Linear combinations of rows in: | | ε | | aa | aaa | | |---------------------|---------------|-------------------|----|-----|--| | arepsilon | 0 | 1 | 3 | 7 | | | a | 1 | 3 | 7 | 15 | | | ε
a
aa
aaa | 3 | 1
3
7
15 | 15 | 31 | | | aaa | 7 | 15 | 31 | 63 | | | | | | | | | #### Termination issue The algorithm approximates the Hankel matrix of the language. Linear combinations of rows in: | | ε | a | aa | aaa | | |-----------|---------------|-------------------|----|-----|--| | arepsilon | 0 | 1 | 3 | 7 | | | a | 1 | 3 | 7 | 15 | | | aa | 3 | 7 | 15 | 31 | | | aaa | 7 | 1
3
7
15 | 31 | 63 | | | | | | | | | This is not finitely generated (over commutative monoids) #### **Termination Conditions** Algorithm terminates assuming: #### **Termination Conditions** Algorithm terminates assuming: #### **Progress measure with bound** number, increases when rows separate via extra column #### Ascending chain condition on Hankel matrix Subsemimodule chains converge: $\dot{\mathbf{S}}_1^{\mathbf{f}}\subseteq S_2\subseteq\cdots\subseteq H$ subsemimodules, then are $\exists n:$ $$S_n = S_{n+1} = S_{n+2} = \cdots$$ # **Termination Argument** # **Termination Argument** #### Assume: Progress measure with bound Ascending chain condition on Hankel Matrix # **Termination Argument** #### Assume: Progress measure with bound Ascending chain condition on Hankel Matrix #### Then: Modules generated by (S_n, A*) form chain below Hankel matrix Converges, from that point on closedness guaranteed Bounded progress measure ⇒ finitely many counterexamples Counter example always leads to closedness defect or rows distinguished by new column ### Summary #### Main ingredients for effective terminating algorithm: - 1. Progress measure with bound - 2. Ascending chain condition on Hankel matrix - 3. Procedure to determine/fix closedness: solvability of finite system of linear equations ## Learning over a field # Learning over a field - 1. Progress measure with bound - Dimension of vector space spanned by table - ≤ minimal WFA size # Learning over a field #### 1. Progress measure with bound - Dimension of vector space spanned by table - ≤ minimal WFA size #### 2. Ascending chain condition on Hankel matrix - Vector space dimension increases with strict inclusion - Minimal WFA size = Hankel matrix dimension # Learning over a field - 1. Progress measure with bound - Dimension of vector space spanned by table - ≤ minimal WFA size - 2. Ascending chain condition on Hankel matrix - Vector space dimension increases with strict inclusion - Minimal WFA size = Hankel matrix dimension - 3. Procedure for closedness: solvability of finite system of linear equations - Gaussian elimination #### 1. Progress measure with bound - Set size of semimodule spanned by table - ≤ determinization of correct automaton - 1. Progress measure with bound - Set size of semimodule spanned by table - ≤ determinization of correct automaton - 2. Ascending chain condition on Hankel matrix - Hankel matrix size ≤ determinization of correct automaton - 1. Progress measure with bound - Set size of semimodule spanned by table - ≤ determinization of correct automaton - 2. Ascending chain condition on Hankel matrix - Hankel matrix size ≤ determinization of correct automaton - 3. Procedure for closedness: solvability of finite system of linear equations - Try all linear combinations of rows - 1. Progress measure with bound - Set size of semimodule spanned by table - ≤ determinization of correct automaton - 2. Ascending chain condition on Hankel matrix - Hankel matrix size ≤ determinization of correct automaton - 3. Procedure for closedness: solvability of finite system of linear equations - Try all linear combinations of rows #### Fields and finite semirings OK, can we do more? ### Principal ideal domains Principal ideal domain = integral domain with all ideals principal *Integral domain*: commutative ring, $ab=0 \Rightarrow a=0 \lor b=0$ All ideals principal: generated by one element Examples: Z, Z[i], K[x] for K a field #### Modules over PID A module is free if and only if it is torsion free: $pm=0 \Rightarrow p=0 \lor m=0$ A submodule of a free and finitely generated module is - Free and finitely generated - With **smaller** (or equal) rank If a finitely generated free module is a quotient of another, its rank is smaller or equal #### 1. Progress measure with bound - Rank of the module spanned by the table (which is free and f.g!) - ≤ rank of Hankel matrix - 1. Progress measure with bound - Rank of the module spanned by the table (which is free and f.g!) - ≤ rank of Hankel matrix - 2. Ascending chain condition on Hankel matrix - yes - 1. Progress measure with bound - Rank of the module spanned by the table (which is free and f.g!) - ≤ rank of Hankel matrix - 2. Ascending chain condition on Hankel matrix - yes - 3. Procedure for closedness: solvability of finite system of linear equations - Solve equations via Smith normal form (exists for PIDs), some further assumptions on computability (hold for integers) - 1. Progress measure with bound - Rank of the module spanned by the table (which is free and f.g!) - ≤ rank of Hankel matrix - 2. Ascending chain condition on Hankel matrix - yes - 3. Procedure for closedness: solvability of finite system of linear equations - Solve equations via Smith normal form (exists for PIDs), some further assumptions on computability (hold for integers) #### Learning algorithm terminates for the integers! ### Key takeaway #### Active learning algorithm for WFAs: - 1. Termination depends on properties of the semiring: works for fields, finite semirings, integers, not naturals. - 2. Solvability of finite systems of linear equations essential. # Key takeaway #### Active learning algorithm for WFAs: - 1. Termination depends on properties of the semiring: works for fields, finite semirings, integers, not naturals. - 2. Solvability of finite systems of linear equations essential. #### How about probabilistic automata? $$A^* \rightarrow [0,1]$$ $$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$ $$\begin{array}{c|c} & \varepsilon \\ \hline \varepsilon & 0 \\ \hline a & 0.25 \end{array}$$ $$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$ $$egin{array}{c|c} arepsilon & arepsilon \ \hline arepsilon & 0.25 \ \hline aa & 0.25 \ \hline \end{array}$$ $$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$ | | arepsilon | а | |---------------|-----------|--------| | ε | 0 | 0.25 | | a | 0.25 | 0.25 | | aa | 0.25 | 0.1875 | $$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$ | | arepsilon | a | |---------------|-----------|--------| | ε | 0 | 0.25 | | a | 0.25 | 0.25 | | aa | 0.25 | 0.1875 | | aaa | 0.1875 | 0.125 | $$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$ | | arepsilon | а | Ratio | |-----------|-----------|--------|-------| | arepsilon | 0 | 0.25 | 0 | | a | 0.25 | 0.25 | 1 | | aa | 0.25 | 0.1875 | 1.333 | | aaa | 0.1875 | 0.125 | 1.5 | $$\mathcal{L}(a^n) = \frac{n}{2^{n+1}}$$ | | arepsilon | а | Ratio | |--------------------------|-----------|--------|-------| | $\overline{\varepsilon}$ | 0 | 0.25 | 0 | | а | 0.25 | 0.25 | 1 | | aa | 0.25 | 0.1875 | 1.333 | | aaa | 0.1875 | 0.125 | 1.5 | **Problem:** rows of the table are not finitely generated #### Probabilistic automata, partial solutions #### Ongoing work with Leon Witzman - If we know the number of states of target automaton, there exists an active learning algorithm (that uses at most exponential space); - Even if the real automaton has rational coefficients the systems we solve might lack rational solutions (real algebraic numbers); - Use a quadratic program to approximate solution; - Counterexample handling (to avoid assuming number of states) unclear; - Learning happens in convex sets, can we use this algebraic structure? ???