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Active Automata Learning
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Black-box
interactions
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of code
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Active Automata Learning
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DFA Learning (L*, Angluin’87)

Regular Language
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DFA Learning (L*, Angluin’87)

Observation table
€ a
Membership query e |0 O
o a 0 1
Q: we L aa 1 0
A: Y/N b 0O O
ab 0 O
_ ﬁ aaa | 0 0
aab| 0 O
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DFA Learning (L*, Angluin’87)
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Observation table

€ a

Membership query e |0 O

_ o a 0 1

Q: we L aa |1 0

A: Y/N b 0 O

ab 0 O
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DFA Learning (L*, Angluin’87)

\

Observation table

€ a

Membership query e |0 O
2 a 0 1

Q: we L SR

A: Y/N b 00

ab 0 O

_ ﬁ aaa O 0
aab| 0 O

Equivalence query
Regular Language q. () = 22

A:Y/N
+ counterexample
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DFA Learning (L*, Angluin’87)
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L* at work



L* at work

Model of Windows 8 TCP implementation
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Combining Model Learning and Model Checking
to Analyze TCP Implementations

Paul Fiteriu-Brogtean, Ramon Janssen, and Frits Vaandrager(®)



L* at work

Model of Windows 8 TCP implementation Learning Error Traces (function calls)

rt_OneStep

Ext_output ...
Ext_update

Learn Assert

¥ MissionPhaseStal
' O

e
\

Ext ontpnt.

Ext rt_OneStep
~O—=0 O

Ext_initialize

tablished (during (o>

/
Send/PAIN.C)edate dose/FANC)

glrecad
_O—

Combining Model Learning and Model Checking

Learning the Language of Error
to Analyze TCP Implementations

Martin Chapman’, Hana Chockler! ™), Pascal Kesseli2, Daniel Kroening?,
. 3 . .
Paul Fiteriu-Brogtean, Ramon Janssen, and Frits Vaandrager(®) Ofer Strichman®, and Michael Tautschnig*



L* at work

Model of Windows 8 TCP implementation Learning Error Traces (function calls)

Model of Visa Debit on Barclays card
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Ext_update
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Combining Model Learning and Model Checking
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Model of Windows 8 TCP implementation
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Active learning

Infer automaton through oracle (membership and equivalence queries )

Deterministic Weighted
finite automata automata

Gold, Angluin 80’s
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Active learning

Infer automaton through oracle (membership and equivalence queries )

Deterministic \ ? ( Weighted
finite automata J k automata
Gold, Angluin 80’s

L c 24 L es?
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L* for DFASs

L* learns minimal DFA for a regular language assuming an oracle that answers:
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L* for DFASs

L* learns minimal DFA for a regular language assuming an oracle that answers:

Membership queries
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L* for DFASs

L* learns minimal DFA for a regular language assuming an oracle that answers:

Membership queries

wE L7
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L* for DFASs

L* learns minimal DFA for a regular language assuming an oracle that answers:

Membership queries

wE L7

Equivalence queries

/

No = counter-example
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L* for DFASs

S, ECA" E
—
e a
1 0 L ={a"| nis even}
S a 0 1
{ aa |1 0 ~TT-—-- aa-a¢ L
S-A aaa |0 1
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L* for DFASs

S, ECA" E
——
e a
3 1 0 L ={a"| nis even}
S a 0 1
aa |1 0 ~TT-—-- aa-a ¢ L
S-A aaa |0 1
S, E + {e}

Repeat until no more counterexamples:
1. Close table (changing S)

2. Equivalence query

3. Add suffixes of counterexample to E
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L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

S, E + {¢}
Repeat until no more counterexamples:

1. Close table (changing S)

2. Equivalence query
3. Add suffixes of counterexample to E
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L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

™
of |

> S, B« {e}
Repeat until no more counterexamples:
1. Close table (changing S)

2. Equivalence query
3. Add suffixes of counterexample to E
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L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

e —“@O——()D-
2 |0
aa | 0

S, E + {¢}

Repeat until no more counterexamples:

—>» 1. Close table (changing S)
2. Equivalence query
3. Add suffixes of counterexample to E
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L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

RO ONL

L M
O’O l—l‘(‘f)

Counterexample: aaa

S, E + {¢}
Repeat until no more counterexamples:

1. Close table (changing S)

2. Equivalence query
3. Add suffixes of counterexample to E
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L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

£ a ada aaa 3
e |1 0 O 1 @ Q
a |0 0 1 0
aa |0 1 O 0
Counterexample: aaa
S, E + {¢}

Repeat until no more counterexamples:
1. Close table (changing S)

2. Equivalence query

3. Add suffixes of counterexample to E
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L* for DFAs, example

A ={a}
a" e L <— n=0 mod3

£ a ada aaa 3
e |1 0 O 1 @ Q
a |0 0 1 0
aa |0 1 O 0
Counterexample: aaa
S, E + {¢}

Repeat until no more counterexamples:
1. Close table (changing S)
2. Equivalence query

S 3. Add suffixes of counterexample to E

Cornell Bowers C1S
Computer Science




L* for DFAs, example

A ={a}
a" e L << n=0 mod 3
g a aa dad
g 1 0 O 1 a a
> oo 1 o O——()—0)
aa 0O 1 0 0
aaa |1 0 O 1 a
Counterexample: aaa
S, E + {¢}

Repeat until no more counterexamples:
—>» 1. Close table (changing S)

2. Equivalence query

3. Add suffixes of counterexample to E
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L* for DFAs, example

A ={a}
a" e L <— n=0 mod3
€ a aa aaa
g 1 0 O 1 a a
> oo 1 o O—(0)—0)
aa 0O 1 O 0
aaa |1l 0 O 1 a
S, E + {¢}

Repeat until no more counterexamples:
1. Close table (changing S)

- 2. Equivalence query
3. Add suffixes of counterexample to E
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L* for DFAs, example

A ={a}
a e L <— n=0 mod3
E a aa daada
g 1 0 O 1 a a
> 1o 0 1 o O——0)—0)
aa 0O 1 O 0
aaa |1 0 O 1 a
Terminates!
S, E + {¢}

—>» Repeat until no more counterexamples:
1. Close table (changing S)
2. Equivalence query
3. Add suffixes of counterexample to E
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DFAs vs WFASs

S semiring (e.g. R, Q, Z,N, 2), FQ free semimodule over Q

DFA WFA
initial state in @ initial state in FQ
Q Q
} }
2 x QA S x (FQ)*
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DFAs vs WFASs

S semiring (e.g. R, Q, Z,N, 2), FQ free semimodule over Q

DFA

initial state in @

Q
!

2 x QA

WFA

initial state in FQ

Q

)
S x (FQ)*

Accepts weighted Ianguage4* — S
Multiplies along the path with final output
Sums over paths
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DFAs vs WFASs
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DFAs vs WFASs

L(e)=0
L(a)=1-0+1-1=1
L(aa)=1-1-0+1-1-14+1-2-1=3
L(aaa)=1-1-1-0+1-1-1-14+1-1-2-141-2-2-1=7
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DFAs vs WFASs

L(e)=0
L(a)=1-0+1-1=1
L(aa)=1-1-0+1-1-14+1-2-1=3
L(aaa)=1-1-1-0+1-1-1-14+1-1-2-141-2-2-1=7

L(a")=2"-1
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Learning WFAS

Table:
Cells have values from semiring rather than 0,1

Membership Queries:
Return weight associated with word

Equivalence Queries:
Submit hypothesis WFA
Counterexample = work on which weight differs
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Learning WFAS

S, E + {e}
Repeat until no more counterexamples:

1. Close table (changing S)

2. Equivalence query
3. Add suffixes of counterexample to E
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Learning WFAS

S, E + {e}
Repeat until no more counterexamples:
1.|Close table (changing S)

. Equivalence query
3. Add suffixes of counterexample to E

each lower row a linear combination of upper rows
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Learning WFAS

S, E + {e}
Repeat until no more counterexamples:
1.|Close table (changing S)

. Equivalence query
3. Add suffixes of counterexample to E

each lower row a linear combination of upper rows

[ Requirement for semiring: solving linear systems of equations should be computable. ]
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Learning WFAs, example

la 2a
L(a")=2"-1

Q“\'\_UM“,C"
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5 2
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Learning WFAs, example

la 2a
L(a")=2"-1

™
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Learning WFAs, example

1la 2a
L(a")=2"-1 R L
(o=
€
€ 0 1la
a 1 1
aa | 3

Q“\'\_UM“,C"

O
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Learning WFAs, example

la 2a
A
{Oan€
£
a 1
aa | 3 Counterexample: aaa
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Learning WFAs, example

1la 2a

L") =2"—1 @ . @

€ a dada dada
e |0 1 3 7 12
a 1 3 7 15
aa |3 7 15 31
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Learning WFAs, example

la 2a
L(a") =2" -1 R . @
{0) 1
€ a ad dada
c 10 1 3 7 Q La Q 32
a 1 3 7 15
aa |3 7 15 31 2
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Does it terminate?
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Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA
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L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA
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Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring
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Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our
algorithm instantiates one of Bergadano and Varricchio (1996)

Cornell Bowers CIS
Computer Science

&\\,um,ﬁ’

O

o e

NI
S %)
Orp 2o




Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our
algorithm instantiates one of Bergadano and Varricchio (1996)

Boolean semiring: WFAs = NFAs our algorithm instantiates
one of Bollig et al (2009)
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Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our
algorithm instantiates one of Bergadano and Varricchio (1996)

Boolean semiring: WFAs = NFAs our algorithm instantiates
one of Bollig et al (2009)
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Does it terminate?

L* for DFAs: termination consequence of regular languages
having finitely many Myhill-Nerode classes = minimal DFA

L* for WFAs: depends on the semiring

Field: terminates as a consequence of basis existence, our
algorithm instantiates one of Bergadano and Varricchio (1996)

Boolean semiring: WFAs = NFAs our algorithm instantiates
one of Bollig et al (2009)\

NFAs have no minimal representative!

Cornell Bowers CIS
Computer Science
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Learning WFAS

Does it terminate for any semiring?

No.
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The bad semiring

1la 2a

L(a") =2"—1 @ . @

Learning over()
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The bad semiring

1la 2a

L(a") =2"—1 @ . @

i

1

1

I .

1 Learning over(Q
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The bad semiring

1la 2a

L(a") =2"—1 @ . @

i
1
1
: Learning over()
1
i
v
la
OO
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The bad semiring

1la

L(a")=2"—1 3,
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The bad semiring

1la 2a

L(a) =2"—1 @ . @

L M
W= O M
~N W =L

—
L

dd
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The bad semiring

1la 2a

£(a") = 2" — 1 @ . @

E a
€ 0 1
a 1 3 G la Q la e
aa 3 7 . . .
aaa | 7 15

Cornell Bowers C1S
Computer Science




The bad semiring

L(a")=2"-1
E a

€ 0 1

a 1 3

aa 3 7

aaa | / 15

1la 2a
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Termination issue

The algorithm approximates the Hankel matrix of the language. Linear combinations of rows in:

€ a aa aaa
el 0 1 3 7
all 3 7 15
aa | 3 7 15 31
aaa | 7 15 31 63
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Termination issue

The algorithm approximates the Hankel matrix of the language. Linear combinations of rows in:

€ a aa aaa

el 0 1 3 7
all 3 7 15
aa | 3 7 15 31
aaa | 7 15 31 63

This is not finitely generated (over commutative monoids)
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Termination Conditions

Algorithm terminates assuming:

Cornell Bowers C1S
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Termination Conditions
Algorithm terminates assuming:

Progress measure with bound
number, increases when rows separate via extra column

Ascending chain condition on Hankel matrix

Subsem_lmodule chains c:onverge:gf1 cCS,C---CH are
subsemimodules, then

Sn:5n+1:Sn+2:"'

In :
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Termination Argument
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Termination Argument

Assume:
Progress measure with bound
Ascending chain condition on Hankel Matrix
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Termination Argument

Assume:

Progress measure with bound

Ascending chain condition on Hankel Matrix
Then:

Modules generated by (Sn, A*) form chain below Hankel
matrix
Converges, from that point on closedness guaranteed

Bounded progress measure = finitely many counterexamples

Counter example always leads to closedness defect or rows distinguished by new column

Cornell Bowers CIS
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Summary

Main ingredients for effective terminating algorithm:

1. Progress measure with bound
2. Ascending chain condition on Hankel matrix

3. Procedure to determine/fix closedness: solvability of finite
system of linear equations

Cornell Bowers C1S
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&\\.um,,%
O

o] =

v <

NI
S %)
Orp 2o




Learning over a field
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Learning over a field

1. Progress measure with bound
— Dimension of vector space spanned by table
— = minimal WFA size
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Learning over a field

1. Progress measure with bound
— Dimension of vector space spanned by table
— = minimal WFA size

2. Ascending chain condition on Hankel matrix
— Vector space dimension increases with strict inclusion
— Minimal WFA size = Hankel matrix dimension
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Learning over a field

1. Progress measure with bound
— Dimension of vector space spanned by table
— = minimal WFA size

2. Ascending chain condition on Hankel matrix

— Vector space dimension increases with strict inclusion
— Minimal WFA size = Hankel matrix dimension

3. Procedure for closedness: solvability of finite system of linear
equations
— Gaussian elimination
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Learning over a finite semiring
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Learning over a finite semiring

1. Progress measure with bound
— Set size of semimodule spanned by table
— < determinization of correct automaton
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Learning over a finite semiring

1. Progress measure with bound
— Set size of semimodule spanned by table
— < determinization of correct automaton

2. Ascending chain condition on Hankel matrix
— Hankel matrix size < determinization of correct automaton

Cornell Bowers CIS
Computer Science




Learning over a finite semiring

1. Progress measure with bound
— Set size of semimodule spanned by table
— < determinization of correct automaton

2. Ascending chain condition on Hankel matrix
— Hankel matrix size < determinization of correct automaton

3. Procedure for closedness: solvability of finite system of linear
equations
— Try all linear combinations of rows
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Learning over a finite semiring

1. Progress measure with bound
— Set size of semimodule spanned by table
— < determinization of correct automaton

2. Ascending chain condition on Hankel matrix
— Hankel matrix size < determinization of correct automaton

3. Procedure for closedness: solvability of finite system of linear
equations
— Try all linear combinations of rows

Fields and finite semirings OK, can we do more*

Cornell Bowers CIS
Computer Science




Principal ideal domains

Principal ideal domain = integral domain with all ideals
principal

Integral domain. commutative ring, ab=0 = a=0vb=0

All ideals principal: generated by one element

Examples: Z, Z[i], K[x] for K a field

‘ Cornell Bowers C1S
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Modules over PID

A module is free if and only if it is torsion free: pm=0 = p=0vm=0

A submodule of a free and finitely generated module is
* Free and finitely generated
* With smaller (or equal) rank

If a finitely generated free module is a quotient of another, its rank
Is smaller or equal

Cornell Bowers CIS
Computer Science

é\\_um,ﬁ’

"

§' e

NI
S %)
QFp A>




Learning over PlDs
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Learning over PlDs

1. Progress measure with bound
— Rank of the module spanned by the table (which is free and f.g!)
— < rank of Hankel matrix
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Learning over PlDs

1. Progress measure with bound
— Rank of the module spanned by the table (which is free and f.g!)
— < rank of Hankel matrix

2. Ascending chain condition on Hankel matrix
— yes
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Learning over PlDs

1. Progress measure with bound
— Rank of the module spanned by the table (which is free and f.g!)
— < rank of Hankel matrix

2. Ascending chain condition on Hankel matrix
— yes

3. Procedure for closedness: solvability of finite system of linear
equations

— Solve equations via Smith normal form (exists for PIDs), some further
assumptions on computability (hold for integers)
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Learning over PlDs

1. Progress measure with bound
— Rank of the module spanned by the table (which is free and f.g!)
— < rank of Hankel matrix

2. Ascending chain condition on Hankel matrix
— yes

3. Procedure for closedness: solvability of finite system of linear
equations

— Solve equations via Smith normal form (exists for PIDs), some further
assumptions on computability (hold for integers)

Learning algorithm terminates for the integers!

Cornell Bowers CIS
Computer Science




Key takeaway

Active learning algorithm for WFAs:

1. Termination depends on properties of the semiring: works for
fields, finite semirings, integers, not naturals.

2. Solvability of finite systems of linear equations essential.

Cornell Bowers CIS
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Key takeaway

Active learning algorithm for WFAs:

1. Termination depends on properties of the semiring: works for
fields, finite semirings, integers, not naturals.

2. Solvability of finite systems of linear equations essential.

How about probabilistic automata?
A" — [0,1]

Cornell Bowers C1S
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Probabilistic automata

1
2
€
€ 0
a | 0.25
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Probabilistic automata

O»

aa | 0.25
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Probabilistic automata

N[

D

€ a
€ 0 0.25
a (025 0.25

aa | 0.25 0.1875
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Probabilistic automata

la la

R 22 /1

\9) 2

€ a

€ 0 0.25
a 0.25 0.25
aa 0.25 0.1875
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Probabilistic automata
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Probabilistic automata
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g a Ratio

g€ 0 0.25 0

a 0.25 0.25 1

aa 0.25 0.1875 1.333...

aaa | 0.1875  0.125 15 Problem: rows of the table are

not finitely generated
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Probabllistic automata, partial solutions

Ongoing work with Leon Witzman

- If we know the number of states of target automaton, there exists an active
learning algorithm (that uses at most exponential space);

- Even if the real automaton has rational coefficients the systems we solve
might lack rational solutions (real algebraic numbers);

- Use a quadratic program to approximate solution;

- Counterexample handling (to avoid assuming number of states) unclear;

- Learning happens in convex sets, can we use this algebraic structure?

277

Cornell Bowers CIS
Computer Science




Questions?
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