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The Shannon entropy of a finite probability
distribution p = (p1,...,Pn) 1S

H(p) = — ipz' In(p; ).

It gives rise to a sequence of real-valued
continuous functions on topological simplices,

{HI An — R}nZla

where

An :={(p1,..-,pn) | Pi > 0and » p; =1}.



a description of The chain rule

S h dNNon e ntI‘O py | N The chain rule tells us how entropy behaves
T h e la N gu age Of 0 pe rad = when probability distributions are combined in

a certain way. Pictures help illustrate this.

Composing probabilities

It's convenient to illustrate a probability

e preliminaries distribution p = (3, 3) as a tree:
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Since p has two leaves, it may be composed with two probability distributions by multiplication.
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po(g,r)
This composition defines a map on simplicies
0: Ag X Az X Ay — A2_|_3.

More generally, any probability distribution on n elements may be composed with n probability
distributions in a similar way.
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We can also compose one leaf at a time.
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This partial composition defines two maps on simplicies

05: Ay X Ag — Aa_1)42,

where: =1, 2.
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Identity

The distribution on a single element
u = (1) € A; serves as an identity for this
algebraic structure:

1/ 15 15 15

» _ Y _

po1u P P o2 U
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Identity Punchline

The distribution on a single element Topological simplices A;, Ay, Ag, ... together
u = (1) € A; serves as an identity for this with composition maps

algebraic structure:

N 11 1 1 1 Oi: Bn X Am — Anim-1

Y _ =

poi1u D DPo2U
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for 1 < i < n (and associativity and unital
axioms) form a operad’, an abstract structure
with origins in algebraic topology.

"Here, we mean a one object multicategory with no symmetric group action. For more, see chapter 12 of Tom Leinster's book Entropy and Diversity: An Axiomatic
Approach.
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The chain rule

The collection of continuous functions {H: A,, — R},>1
satisfies the following rule:

H(po(g,r)) = H(p) + 5 H(q) + 5 H(r)
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The chain rule

The collection of continuous functions {H: A,, — R},>1
satisfies the following rule: q q

H(po(g,r)) = H(p) + $H(q) + 3 H(r)

or more generally

H(po(q', ¢, ...,q")) = H(p) +zn:pz-H(q")

for any probability distributions p € A,, and ¢; € Ay,.

po(q',q%...,q")

This is "the most important algebraic property of Shannon
entropy" (Tom Leinster, Entropy and Diversity: The Axiomatic
Approach).
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Theorem (Leinster, '21).

Let{I: A,, — R},>; be a sequence of functions.
The following are equivalent:
1. The functions I

e are continuous

- satisfy the chain rule.

2. I =cH forsomec € R.
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Theorem (Leinster, '21). Some History

Let {I: A,, — R},>1 be a sequence of functions. .
The following are equivalent:

1. The functions I
e« are continuous
- satisfy the chain rule.

2. I =cH forsomec € R.

This is Theorem 2.5.1 of Tom's book
Entropy and Diversity (2021).

It's also used in an operadic and category
theoretical characterization given by Tom
around 2011 (see also Theorem 12.3.1).}

Tom's operadic characterization motivated
the 2011 Baez-Fritz-Leinster paper.”

It is based on a 1950s theorem by D.
Faddeev, which is similar to Shannon's
original characterization.

11f you're a veteran reader of the n-Category Café, you might remember this result from "An Operadic Introduction to Entropy" (Leinster, The n-Category Café, 2011).
2"A characterization of entropy in terms of information loss" Entropy 2011, 13(11), 1945-1957.
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Theorem (Faddeev, '57).

Let{I: A,, — R},>; be a sequence of functions.
The following are equivalent:

1. The functions I
« are continuous

- satisfy a special case of the chain rule

- are invariant under bijections
- satisfy I(3, 3) = 1.
2. I=H. H(po((¢g,1—q),u,...,u) = H(p) +p1H(g,1 - q)
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Theorem (Faddeev, '57). Theorem (Shannon, '49).°

Let {I: A, — R},>; be a sequence of functions. Let {I: A, — R},>; be a sequence of functions.
The following are equivalent: The following are equivalent:
1. The functions I 1. The functions I
e are continuous e are continuous
- satisfy a special case of the chain rule - satisfy the chain rule
- are invariant under bijections e are monotonic on uniform
distributions.

satisfy I(3, %) = 1.

2. I =cH forsomec € R.
2. I =H.

*I've modified this slightly to draw a connection with Faddeev's and Leinster's theorems. For Shannon's original statement and proof, see Theorem 2 in "The
Mathematical Theory of Communication."
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"The Mathematical Theory
of Communication”

(Shannon, 1949)
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3. If a choice be broken down into two successive choices, the

original H should be the weighted sum of the individual
values of H. The meaning of this 1s i1llustrated in Fig. 6. At
the left we have three possibilities p, =31, p, = %, ps = ¢.
On the right we first choose between two possibilities each
with probability 1, and if the second occurs make another
choice with probabilities %, 3. The final results have the
same probabilities as before. We require, in this special case,

that
H(3,3,3) =HG,3) +3 HGE, 3).

The coefficient 1 is the weighting factor introduced because this
second choice only occurs half the time.

Y2 Y2

1/6
1/6

Fig. 6. — Decomposition of a choice from three possibilities.



The chain rule is the product rule

from the perspective of operads.

H(po(q'...,q") = H(p) + ) piH(q)



The chain rule is the product rule

from the perspective of operads.

In other words,

entropy < derivations of A



[dea:

We wish to upgrade entropy {H: A,, — R},>; to
a sequence of continuous functions

{d: An —> -}n21
satisfying the product rule:
d(po; q) = dpof g+ pof dg

forallpe A, andge A,, and 1 < i < n that
recovers the chain rule, in some sense.
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[dea:

We wish to upgrade entropy {H: A,, — R},>; to
a sequence of continuous functions

{d! An —> -}n21
satisfying the product rule:
d(po; q) = dpof g+ pof dg

forallpe A, andge A,, and 1 < i < n that
recovers the chain rule, in some sense.
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Let M be the space of real-valued continuous
functions on n-dimensional Euclidean space:

pelA, +— dp:R" >R

We will call such sequences a derivation of A.



Example: right composition dp o;* g

Let p € A, be a probability distribution on two elements, and let dp: R? — R be a continuous
function. It can be convex combinations, or constant at entropy, or something else.

Suppose g € A;. Let's say ¢ = (3, 3,0).

JOr
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Example: right composition dp o;* g

Let p € A, be a probability distribution on two elements, and let dp: R? — R be a continuous
function. It can be convex combinations, or constant at entropy, or something else.

Suppose g € A;. Let's say ¢ = (2, 1,0). Define a new function dp off ¢: R* — R as follows:

X1 X2 I3 T4

2 1
3 3 0

(dp Of q)(x) — = dp(%fﬂl + %332 + 0333, 5134)
dp
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Example: left composition p of dg

Given a probability distribution g € As, let dg: R® — R be a continuous function, e.g. convex
combinations, or constant at entropy, or something else.

Suppose p € Ay, let's say p = (3, 7).

D¢
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Example: left composition p of dg

Given a probability distribution g € As, let dg: R® — R be a continuous function, e.g. convex
combinations, or constant at entropy, or something else.

Suppose p € Ay, let's say p = (3, 1). Define a new function p of dg: R* — R as follows:

L1 X2 I3 A4

N
=
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&
&
&
=P
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Putting it all together...

For each n > 1let B = End,, (R) denote the space of continuous functions R® — R equipped with
the product topology. We are interested in sequences of continuous functions

{d: A, — End,,(R)},,>1
where the codomain is equipped with continuous right/left composition maps:
of: End, (R) x A,, — End,, 1,1 (R) oi: Ay, X End,, (R) — Endyim—1(R)
foralln,m > 1and 1 < ¢ < n, that satisty the product rule:

d(p o; q) = dp o;* g+ p oF dg.
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Shannon entropy defines a derivation.

Shannon entropy defines a sequence of ds satisfying the product rule: d(p o; q) = dp o g + p ot dg.
Let n > 1 and for each probability distribution p € A,, let dp: R® — R be constant at entropy:
dp(x) = H(p) Vx e R".

Then forany g e A,, andx € R*™™ ! and1 < i < n,

d(poi q)(x) = H(poiq) ““=™° H(p)+p:H(g) = (dpoF q)(x) + (p oL dg)(x).

dp(stuff) p; dq(stuff)
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Conversely...

There's something to say in the other direction, too.
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Conversely...

There's something to say in the other direction, too.

Suppose {d: A, — End, (R)},>1 1s a sequence
of continuous functions satisfying the product
rule.

Define a new sequence {I: A, — R},>1
as follows:

I(p) :=dp(0) Vp € A,

where 0 = (0,...,0) € R".
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Conversely...

There's something to say in the other direction, too.

suppose {d: A, — End,,(R)},>1 1S a sequence The I are continuous, and moreover
of continuous functions satisfying the product
rule. I(po(q,...,q") =dpo(q,...,q"))(0)
Define a new sequence {I: A,, — R},>1 can show 5

" "= = dp(0 idq’ (0
as follows: p(0) + ;p 7(0)

I(p) := dp(0) Vp € A, =1I(p) + ) _pil(q).

where 0 = (0,...,0) € R". .
( ) By Leinster's theorem, dp(0) = I(p) = cH(p) for

some constant ¢ € R.
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Theorem

entropy < derivations of A

Shannon entropy defines a derivation of the operad of topological simplices, and for every
derivation of this operad there exists a point at which it is given by a constant multiple of
Shannon entropy.

29



Corollary

the chain rule

Proof: For eachn > 1letd: A,, — End, (R) be constant at entropy p — dp = H(p). Thendis a
derivation, and evaluating at any input x gives the following:

H(po(q,...,q") =d(po(q,...,q"))(x)

ANV dp(stuff) + Z p;dq’ (stuff)

1=1

= H(p) +§n:piH(qi)-
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For more detalls...

See "Entropy as a Topological Operad Derivation" (B., 2021):
arxXiv:2107.09581 / Entropy 2021, 23(9), 1195.
This theorem was motivated by a remark of John Baez in "Entropy as a Functor" (nLab, 2011).

« Operads can be defined in any symmetric monoidal category, not just spaces.

»  The left/right compositions of and of comprise a bimodule structure, which can be defined on
any operad.

- Likewise, derivations valued in a bimodule can be defined on any operad.

« Question: What are the values of arbitrary derivations away from zero, dp(x) = ?
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What's more interesting

(to me) is if/how this relates to other results.
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Fig. 6. — Decomposition of a choice from three possibilities.



34

We define the conditional entropy of y, H.(y) as the average of
the entropy of y for each value of z, weighted according to the
probability of getting that particular x. That is

H.(y) = — 2p(i,j) log p(s).

This quantity measures how uncertain we are of y on the average
when we know x. Substituting the value of p;(y) we obtain

H.(y) = — 2p(i,J) log p(G,5) + 2p(,j) log 2.p(, j)

= H(z,y) — H(x)
or
H(zx,y) = H(x) + H,(y).

The uncertainty (or entropy) of the joint event z, y is the uncer-
tainty of x plus the uncertainty of y when x 1s known.



Suppose z = {e,0} and y = {y1,y2,y3}, then:

p(y2|e)

p(y1|e) p(ysle)  p(yilo)

35

p(y2|o)

p(y3lo)

| |




Conditional entropy satisfies H(z,y) = H(z) + H(y | z).

If we let zH(y) := H(y | «) then this becomes

H(z,y) = H(z) + H(y)

which looks like a derivation. In fact, it's the 1-cocycle condition in group cohomology. (Such maps
are called "crossed homomorphisms.")

In 2015, this analogy was fleshed out in full detail, leading to information cohomology where
entropy represents the unique 1-cocyle of a certain cochain complex:

- P. Baudot, D. Bennequin, "The Homological Nature of Entropy" (Entropy, 2015)
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Just getting started

New ways of thinking about entropy aren't new, but there's also a sense in which this
subject is "just getting started" (Baez).

A good place to start is the Categorical Semantics of Entropy symposium at the CUNY ITS
(May 2022) - see talks on YouTube.
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Operads

Topological simplices:

- Tom Leinster, "Entropy as an Internal
Algebra" (chapter 12, Entropy and Diversity)

« See also, "An Operadic Introduction to
Entropy" (2011, n-Category Cafe)

- Matilde Marcolli and Ryan Thorngren,
"Thermodynamic Semirings," (2012)

- Introduce "thermodynamic semirings"
as the algebra for a certain operad,
related to A
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Topological simplices:
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« See also, "An Operadic Introduction to
Entropy" (2011, n-Category Cafe)
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Convex relations:

- John Baez, Owen Lynch, Joe Moeller:
"Compositional Thermostatics" (2021)

Construct an operad whose algebras
are thermostatic systems (e.g. entropy-
like functions) in a unifying framework
for thermodynamics and classical/
guantum statistical mechanics

Connection(s)?



Category Theory

Polynomial functors

- David Spivak, "Polynomial Functors and
Shannon Entropy" (2022)

Quantum

- Arthur Parzygnat, "A functorial
characterization of von Neumann
entropy" (2020)

« Also see YouTube talk "On
characterizing classical and quantum
entropy" + references therein
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Category Theory

Polynomial functors Quantum & homological algebra
- David Spivak, "Polynomial Functors and - Tom Mainiero, "Homological tools for the
Shannon Entropy" (2022) guantum mechanic" (2019)

- entropy appears in the Euler
characteristic of a cochain complex
Quantum associated to a quantum state

- Arthur Parzygnat, "A functorial
characterization of von Neumann

entropy" (2020) Homological algebra & topos theory
« Also see YouTube talk "On - P.Baudot, D. Bennequin, "Homological
characterizing classical and quantum nature of entropy" (2015)

entropy" + references therein , ,
- Information cohomology
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What's the connection?

- operads

- category theory

- polynomial functors
- guantum physics

- homological algebra
- topos theory

. entropy



