Entropy as an Operad Derivation

Tai-Danae Bradley SandboxAQ · The Master's University

May 26, 2022

a description of Shannon entropy in the language of operads

- preliminaries
- result
- \bullet related works \star

a description of Shannon entropy in the language of operads

distribution $p = (p_1, \ldots, p_n)$ is

H(p) =

It gives rise to a sequence of real-valued continuous functions on topological simplices,

 $\{H: \Delta$

• preliminaries

- result
- related works ★

where

 $\Delta_n := \{(p_1, \ldots, p_n)\}$

The Shannon entropy of a finite probability

$$1-\sum_{i=1}^n p_i \ln(p_i).$$

$$\Delta_n o \mathbb{R} \}_{n \geq 1},$$

$$p_i)\mid p_i\geq 0 ext{ and } \sum_i p_i=1\}.$$

a description of Shannon entropy in the language of operads

The chain rule

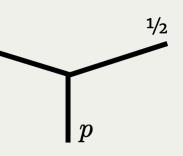
The chain rule tells us how entropy behaves when probability distributions are combined in a certain way. Pictures help illustrate this.

Composing probabilities

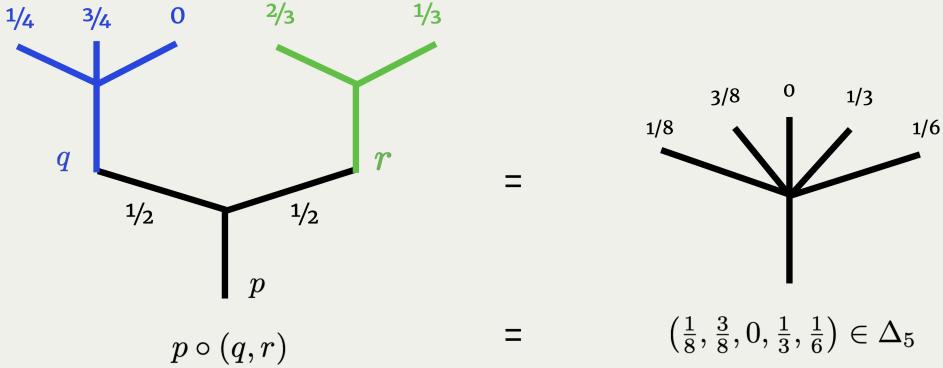
distribution $p = (\frac{1}{2}, \frac{1}{2})$ as a tree:

- preliminaries
- result
- related works ★

It's convenient to illustrate a probability



Since *p* has two leaves, it may be composed with two probability distributions by multiplication.

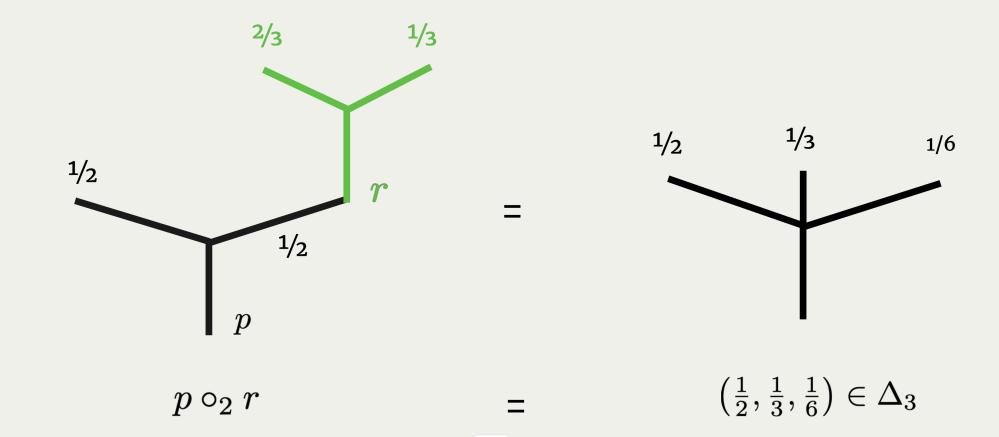


This composition defines a map on simplicies

$$\circ: \Delta_2 \times \Delta_3 \times \Delta_2 o \Delta_{2+3}.$$

More generally, any probability distribution on *n* elements may be composed with *n* probability distributions in a similar way.

We can also compose one leaf at a time.



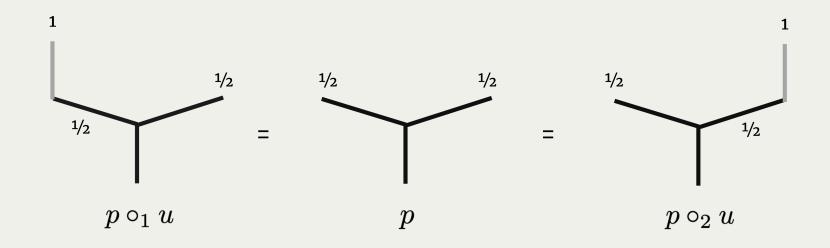
This partial composition defines two maps on simplicies

 $\circ_i : \Delta_2 imes \Delta_2 o \Delta_{(2-1)+2},$

where i = 1, 2.

Identity

The distribution on a single element $u = (1) \in \Delta_1$ serves as an identity for this algebraic structure:

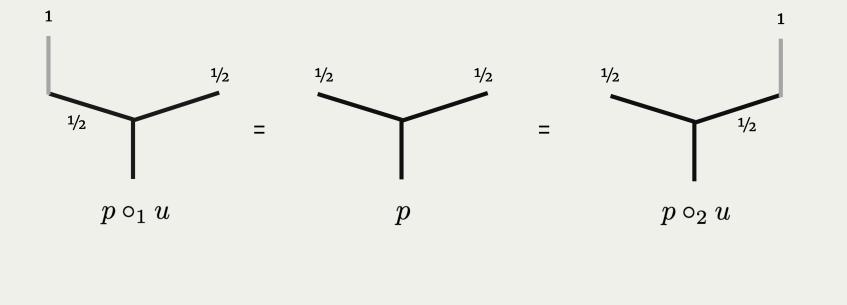


Identity

The distribution on a single element $u = (1) \in \Delta_1$ serves as an identity for this algebraic structure:

Punchline

Topological simplices $\Delta_1, \Delta_2, \Delta_3, \ldots$ together with composition maps



for $1 \le i \le n$ (and associativity and unital axioms) form a operad^{*}, an abstract structure with origins in algebraic topology.

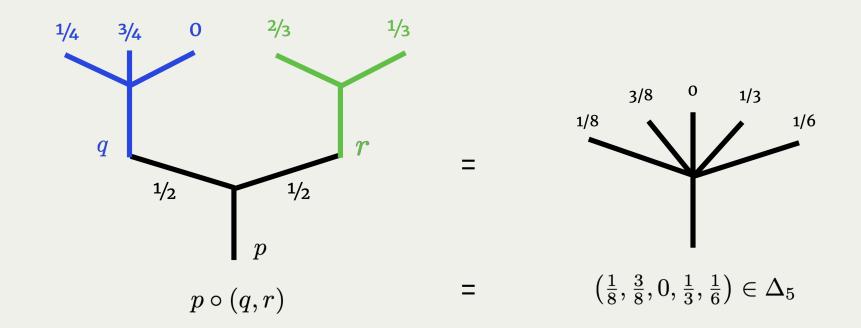
^{*} Here, we mean a one object multicategory with no symmetric group action. For more, see chapter 12 of Tom Leinster's book Entropy and Diversity: An Axiomatic Approach.

 $\circ_i: \Delta_n \times \Delta_m \to \Delta_{n+m-1}$

The chain rule

The collection of continuous functions $\{H: \Delta_n \to \mathbb{R}\}_{n \ge 1}$ satisfies the following rule:

 $H(p\circ (q,r))=H(p)+rac{1}{2}H(q)+rac{1}{2}H(r)$



The chain rule

The collection of continuous functions $\{H: \Delta_n \to \mathbb{R}\}_{n \ge 1}$ satisfies the following rule:

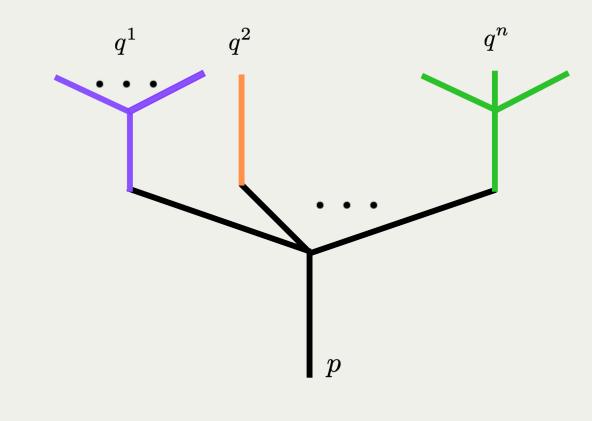
$$H(p\circ (q,r))=H(p)+rac{1}{2}H(q)+rac{1}{2}H(r)$$

or more generally

$$H(p\circ (q^1,q^2,\ldots,q^n))=H(p)+\sum_{i=1}^n p_i H(q^i)$$

for any probability distributions $p \in \Delta_n$ and $q_i \in \Delta_{k_i}$.

This is "the most important algebraic property of Shannon entropy" (Tom Leinster, Entropy and Diversity: The Axiomatic Approach).



 $p \circ (q^1, q^2, \dots, q^n)$

Theorem (Leinster, '21).

Let $\{I: \Delta_n \to \mathbb{R}\}_{n \ge 1}$ be a sequence of functions. The following are equivalent:

- 1. The functions *I*
 - are continuous
 - satisfy the chain rule.
- 2. I = cH for some $c \in \mathbb{R}$.

Theorem (Leinster, '21).

Let ${I: \Delta_n \to \mathbb{R}}_{n>1}$ be a sequence of functions. The following are equivalent:

- The functions *I*
 - are continuous
 - satisfy the chain rule.
- 2. I = cH for some $c \in \mathbb{R}$.

Some History

- Entropy and Diversity (2021).
- •
- original characterization.

¹If you're a veteran reader of the *n*-Category Café, you might remember this result from "An Operadic Introduction to Entropy" (Leinster, The *n*-Category Café, 2011). ² "A characterization of entropy in terms of information loss" Entropy 2011, 13(11), 1945-1957.

This is Theorem 2.5.1 of Tom's book

It's also used in an operadic and category theoretical characterization given by Tom around 2011 (see also Theorem 12.3.1).¹

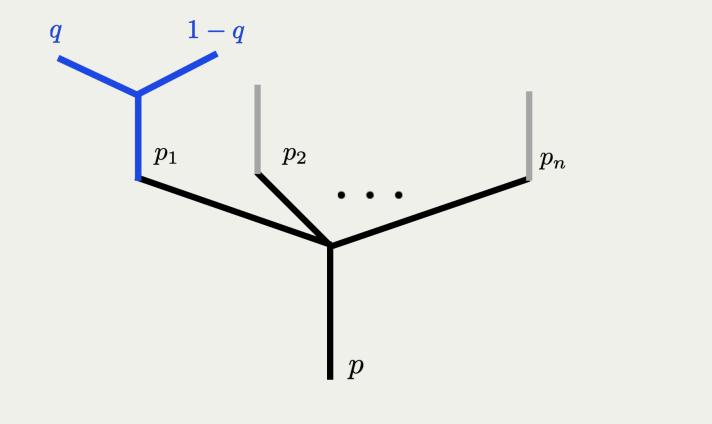
Tom's operadic characterization motivated the 2011 Baez-Fritz-Leinster paper.²

It is based on a 1950s theorem by D. Faddeev, which is similar to Shannon's Theorem (Faddeev, '57).

Let $\{I: \Delta_n \to \mathbb{R}\}_{n \ge 1}$ be a sequence of functions. The following are equivalent:

- The functions *I* 1.
 - are continuous
 - satisfy a special case of the chain rule
 - are invariant under bijections
 - satisfy $I(\frac{1}{2}, \frac{1}{2}) = 1$. •

2. I = H.



$H(p\circ ((q,1-q),u,\ldots,u)=H(p)+p_1H(q,1-q))$

Theorem (Faddeev, '57).

Let ${I: \Delta_n \to \mathbb{R}}_{n>1}$ be a sequence of functions. The following are equivalent:

- The functions *I*
 - are continuous
 - satisfy a special case of the chain rule
 - are invariant under bijections
 - satisfy $I(\frac{1}{2}, \frac{1}{2}) = 1$. •

2. I = H.

³ I've modified this slightly to draw a connection with Faddeev's and Leinster's theorems. For Shannon's original statement and proof, see Theorem 2 in "The Mathematical Theory of Communication."

Theorem (Shannon, '49).³

The following are equivalent:

- The functions *I* 1.
 - are continuous
 - satisfy the chain rule
 - are monotonic on uniform distributions.
- 2. I = cH for some $c \in \mathbb{R}$.

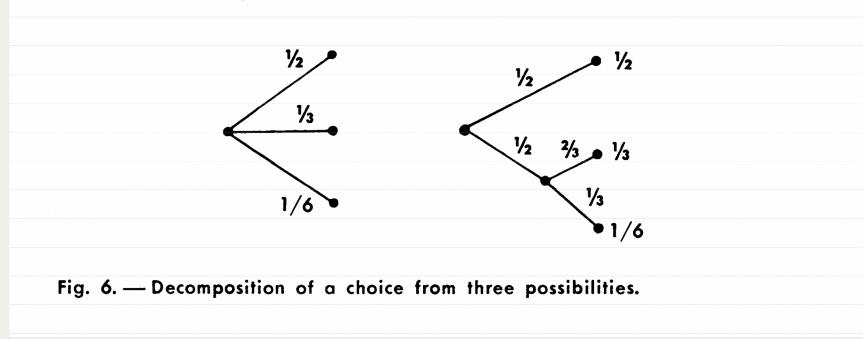
Let ${I: \Delta_n \to \mathbb{R}}_{n>1}$ be a sequence of functions.

"The Mathematical Theory of Communication"

(Shannon, 1949)

that

The coefficient $\frac{1}{2}$ is the weighting factor introduced because this second choice only occurs half the time.



3. If a choice be broken down into two successive choices, the original H should be the weighted sum of the individual values of H. The meaning of this is illustrated in Fig. 6. At the left we have three possibilities $p_1 = \frac{1}{2}$, $p_2 = \frac{1}{3}$, $p_3 = \frac{1}{6}$. On the right we first choose between two possibilities each with probability $\frac{1}{2}$, and if the second occurs make another choice with probabilities $\frac{2}{3}$, $\frac{1}{3}$. The final results have the same probabilities as before. We require, in this special case,

$H(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}) = H(\frac{1}{2}, \frac{1}{2}) + \frac{1}{2} H(\frac{2}{3}, \frac{1}{3}).$

The chain rule is the product rule

from the perspective of operads.

$$H(p\circ (q^1,\ldots,q^n))=H(p)+\sum_i q^n$$

$p_i H(q^i)$

The chain rule is the product rule

from the perspective of operads.

In other words,

entropy \leftrightarrows derivations of Δ

Idea:

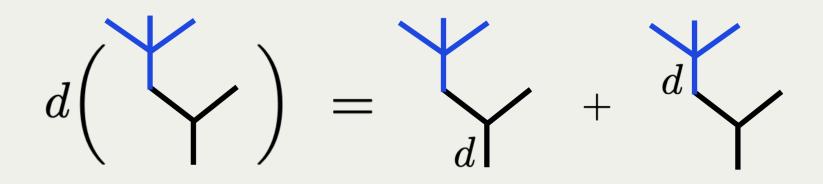
We wish to upgrade entropy $\{H: \Delta_n \to \mathbb{R}\}_{n \ge 1}$ to a sequence of continuous functions

$$\{d:\Delta_n o lacksquare$$
 }_{n>1}

satisfying the product rule:

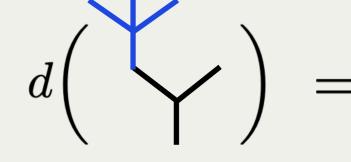
$$d(p\circ_i q)=dp\circ^R_i q+p\circ^L_i dq$$

for all $p \in \Delta_n$ and $q \in \Delta_m$ and $1 \le i \le n$ that recovers the chain rule, in some sense.



Idea:

We wish to upgrade entropy $\{H: \Delta_n \to \mathbb{R}\}_{n \ge 1}$ to a sequence of continuous functions



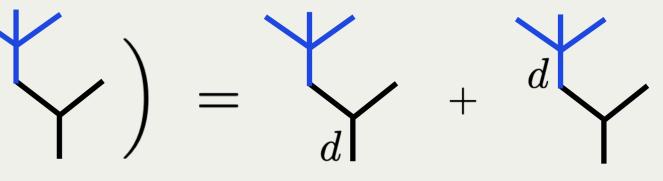
$$\{d:\Delta_n o lacksquare$$
 }_{n\geq 1}

satisfying the product rule:

$$d(p\circ_i q)=dp\circ^R_i q+p\circ^L_i dq$$

for all $p \in \Delta_n$ and $q \in \Delta_m$ and $1 \le i \le n$ that recovers the chain rule, in some sense.

We will call such sequences a derivation of Δ .



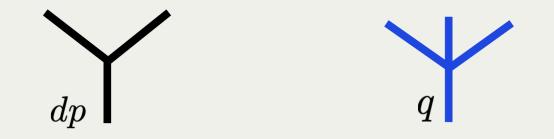
Let **be** the space of real-valued continuous functions on *n*-dimensional Euclidean space:

$p\in\Delta_n \quad\mapsto\quad dp{:}\,\mathbb{R}^n o\mathbb{R}$

Example: right composition $dp \circ_i^R q$

Let $p \in \Delta_2$ be a probability distribution on two elements, and let $dp: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function. It can be convex combinations, or constant at entropy, or something else.

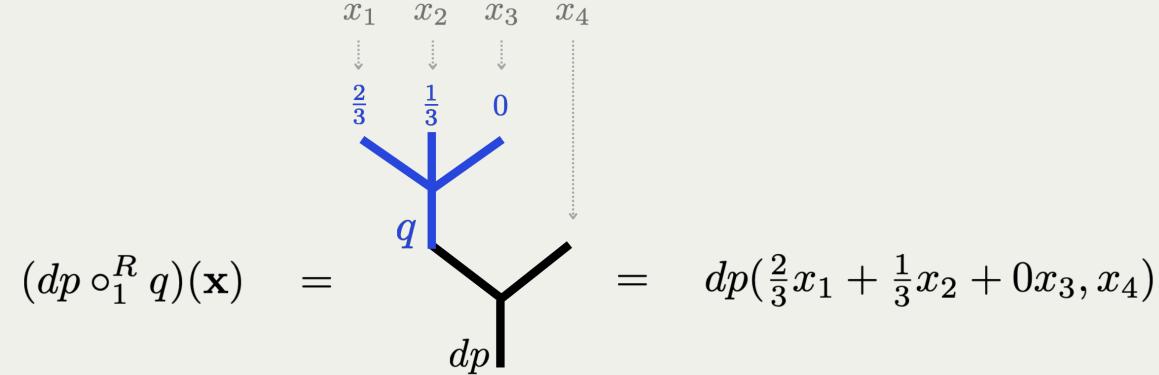
Suppose $q \in \Delta_3$. Let's say $q = (\frac{2}{3}, \frac{1}{3}, 0)$.



Example: right composition $dp \circ_i^R q$

Let $p \in \Delta_2$ be a probability distribution on two elements, and let $dp: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function. It can be convex combinations, or constant at entropy, or something else.

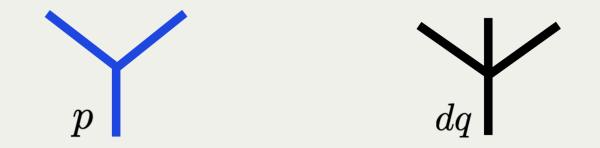
Suppose $q \in \Delta_3$. Let's say $q = (\frac{2}{3}, \frac{1}{3}, 0)$. Define a new function $dp \circ_1^R q: \mathbb{R}^4 \to \mathbb{R}$ as follows:



Example: left composition $p \circ_i^L dq$

Given a probability distribution $q \in \Delta_3$, let $dq: \mathbb{R}^3 \to \mathbb{R}$ be a continuous function, e.g. convex combinations, or constant at entropy, or something else.

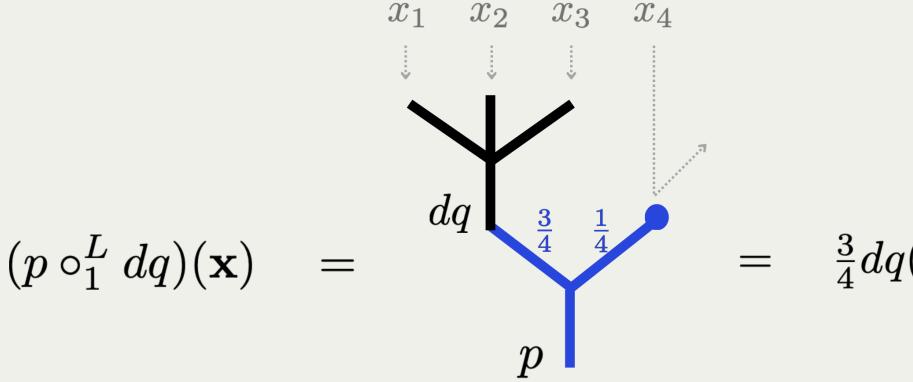
Suppose $p \in \Delta_2$, let's say $p = (\frac{3}{4}, \frac{1}{4})$.



Example: left composition $p \circ_i^L dq$

Given a probability distribution $q \in \Delta_3$, let $dq: \mathbb{R}^3 \to \mathbb{R}$ be a continuous function, e.g. convex combinations, or constant at entropy, or something else.

Suppose $p \in \Delta_2$, let's say $p = (\frac{3}{4}, \frac{1}{4})$. Define a new function $p \circ_1^L dq: \mathbb{R}^4 \to \mathbb{R}$ as follows:



 $\frac{3}{4}dq(x_1,x_2,x_3)$

Putting it all together...

For each $n \geq 1$ let $\blacksquare = \operatorname{End}_n(\mathbb{R})$ denote the space of continuous functions $\mathbb{R}^n \to \mathbb{R}$ equipped with the product topology. We are interested in sequences of continuous functions

$$\{d{:}\,\Delta_n o \operatorname{End}_n(\mathbb{R})\}_{n\geq 1}$$

where the codomain is equipped with continuous right/left composition maps:

$$\circ^R_i \colon \mathrm{End}_n(\mathbb{R}) imes \Delta_m o \mathrm{End}_{n+m-1}(\mathbb{R}) \qquad \quad \circ^L_i \colon \Delta_n imes \mathrm{End}_m(\mathbb{R})$$

for all $n, m \ge 1$ and $1 \le i \le n$, that satisfy the product rule:

$$d(p\circ_i q)=dp\circ^R_i q+p\circ^L_i dq.$$

 $\mathbb{R}) \to \operatorname{End}_{n+m-1}(\mathbb{R})$

Shannon entropy defines a derivation.

Shannon entropy defines a sequence of ds satisfying the product rule: $d(p \circ_i q) = dp \circ_i^R q + p \circ_i^L dq$.

Let $n \ge 1$ and for each probability distribution $p \in \Delta_n$ let $dp: \mathbb{R}^n \to \mathbb{R}$ be constant at entropy:

$$dp(\mathbf{x}) = H(p) \quad orall \mathbf{x} \in \mathbb{R}^n.$$

Then for any $q \in \Delta_m$ and $\mathbf{x} \in \mathbb{R}^{n+m-1}$ and $1 \leq i \leq n$,

$$egin{aligned} d(p \circ_i q)(\mathbf{x}) \ = \ H(p \circ_i q) \ \stackrel{ ext{chain rule}}{=} \ H(p) + p_i H(q) \ = \ (dp \circ^R_i q)(dp) \ & dp(ext{stuff}) \end{aligned}$$

$(\mathbf{x}) + (p \circ_i^L dq)(\mathbf{x}).$

 $p_i dq$ (stuff)

Conversely...

There's something to say in the other direction, too.

Conversely...

There's something to say in the other direction, too.

Suppose $\{d: \Delta_n \to \operatorname{End}_n(\mathbb{R})\}_{n \ge 1}$ is a sequence of continuous functions satisfying the product rule.

Define a new sequence $\{I: \Delta_n \to \mathbb{R}\}_{n \ge 1}$ as follows:

$$I(p):=dp(\mathbf{0}) \quad orall p \in \Delta_n$$

where $\mathbf{0} = (0, \ldots, 0) \in \mathbb{R}^n$.

28

Conversely...

There's something to say in the other direction, too.

Suppose $\{d: \Delta_n \to \operatorname{End}_n(\mathbb{R})\}_{n \ge 1}$ is a sequence of continuous functions satisfying the product rule.

The *I* are continuous, and moreover

 $I(p \circ (q^1, \ldots, q^n)) =$

Define a new sequence $\{I: \Delta_n \to \mathbb{R}\}_{n \geq 1}$ as follows:

$$I(p):=dp(\mathbf{0}) \quad orall p \in \Delta_r$$

where **0** = $(0, ..., 0) \in \mathbb{R}^{n}$.

some constant $c \in \mathbb{R}$.

$$I(p):=dp(\mathbf{0}) \quad orall p \in \Delta_n$$

$$= d(p \circ (q^1, \ldots, q^n))(\mathbf{0})$$

$$\stackrel{ ext{can show}}{=} dp(\mathbf{0}) + \sum_i p_i dq^i(\mathbf{0})$$

$$=I(p)+\sum_i p_i I(q^i).$$

By Leinster's theorem, $dp(\mathbf{0}) = I(p) = cH(p)$ for

Theorem

entropy \leftrightarrows derivations of Δ

Shannon entropy defines a derivation of the operad of topological simplices, and for every derivation of this operad there exists a point at which it is given by a constant multiple of Shannon entropy.

Corollary

the chain rule

Proof: For each $n \ge 1$ let $d: \Delta_n \to \operatorname{End}_n(\mathbb{R})$ be constant at entropy $p \mapsto dp \equiv H(p)$. Then d is a derivation, and evaluating at any input **x** gives the following:

$$H(p\circ (q^1,\ldots,q^n))=d(p\circ (q^1,\ldots,q^n))(\mathbf{x})$$

$$\stackrel{ ext{can show}}{=} dp(ext{stuff}) + \sum_{i=1}^n p_i dq^i(ext{stuff})$$

$$=H(p)+\sum_{i=1}^n p_i H(q^i).$$

tuff)

For more details...

See "Entropy as a Topological Operad Derivation" (B., 2021):

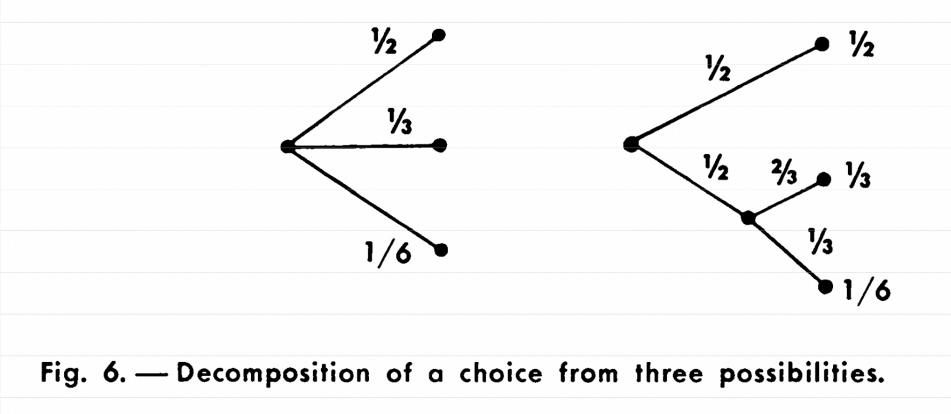
arXiv:2107.09581 / Entropy 2021, 23(9), 1195.

This theorem was motivated by a remark of John Baez in "Entropy as a Functor" (nLab, 2011).

- **Operads** can be defined in any symmetric monoidal category, not just spaces.
- The left/right compositions o_i^L and o_i^R comprise a bimodule structure, which can be defined on any operad.
- Likewise, derivations valued in a bimodule can be defined on any operad.
- Question: What are the values of arbitrary derivations away from zero, $dp(\mathbf{x}) = ?$

What's more interesting

(to me) is if/how this relates to other results.



We define the conditional entropy of y, $H_x(y)$ as the average of the entropy of y for each value of x, weighted according to the probability of getting that particular x. That is

$$H_x(y) = -\sum_{i,j} p(i,j) \log p_i(j).$$

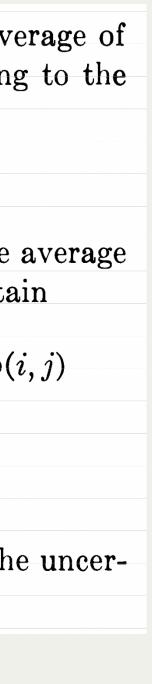
This quantity measures how uncertain we are of y on the average when we know x. Substituting the value of $p_i(j)$ we obtain

$$H_{x}(y) = -\sum_{i,j} p(i,j) \log p(i,j) + \sum_{i,j} p(i,j) \log \sum_{j} p(i$$

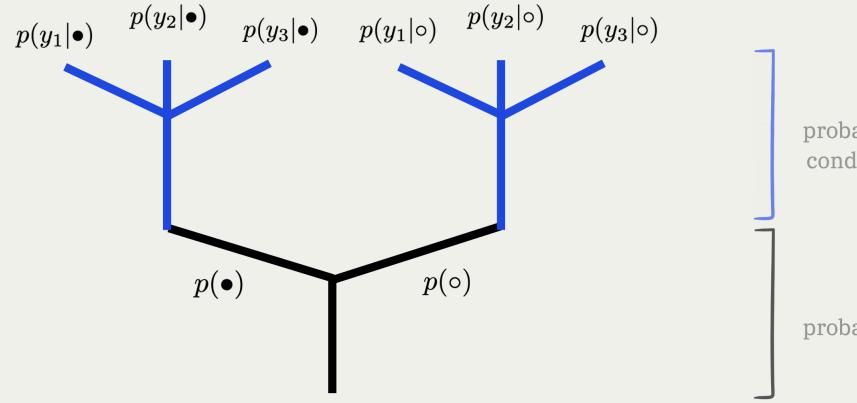
or

$$H(x, y) = H(x) + H_x(y).$$

The uncertainty (or entropy) of the joint event x, y is the uncertainty of x plus the uncertainty of y when x is known.



Suppose $x = \{\bullet, \circ\}$ and $y = \{y_1, y_2, y_3\}$, then:



H(x,y) = H(x) + xH(y)

probabilities on Y, conditioned on X

probabilities on X

Conditional entropy satisfies $H(x, y) = H(x) + H(y \mid x)$.

If we let $xH(y) := H(y \mid x)$ then this becomes

$$H(x,y) = H(x) + xH(y)$$

which looks like a derivation. In fact, it's the 1-cocycle condition in group cohomology. (Such maps are called "crossed homomorphisms.")

In 2015, this analogy was fleshed out in full detail, leading to information cohomology where entropy represents the unique 1-cocyle of a certain cochain complex:

P. Baudot, D. Bennequin, "The Homological Nature of Entropy" (Entropy, 2015)

Just getting started

New ways of thinking about entropy aren't new, but there's also a sense in which this subject is "just getting started" (Baez).

A good place to start is the Categorical Semantics of Entropy symposium at the CUNY ITS (May 2022) - see talks on YouTube.

Operads

Topological simplices:

- Tom Leinster, "Entropy as an Internal Algebra" (chapter 12, Entropy and Diversity)
 - See also, "An Operadic Introduction to Entropy" (2011, *n*-Category Café)
- Matilde Marcolli and Ryan Thorngren, "Thermodynamic Semirings," (2012)
 - introduce "thermodynamic semirings" as the algebra for a certain operad, related to Δ

Operads

Topological simplices:

- Tom Leinster, "Entropy as an Internal Algebra" (chapter 12, Entropy and Diversity)
 - See also, "An Operadic Introduction to Entropy" (2011, *n*-Category Café)
- Matilde Marcolli and Ryan Thorngren, "Thermodynamic Semirings," (2012)
 - introduce "thermodynamic semirings" as the algebra for a certain operad, related to Δ

Convex relations:

- - Connection(s)?

John Baez, Owen Lynch, Joe Moeller: "Compositional Thermostatics" (2021)

> Construct an operad whose algebras are thermostatic systems (e.g. entropylike functions) in a unifying framework for thermodynamics and classical/ quantum statistical mechanics

Category Theory

Polynomial functors

• David Spivak, "Polynomial Functors and Shannon Entropy" (2022)

Quantum

- Arthur Parzygnat, "A functorial characterization of von Neumann entropy" (2020)
 - Also see YouTube talk "On characterizing classical and quantum entropy" + references therein

Category Theory

Polynomial functors

David Spivak, "Polynomial Functors and Shannon Entropy" (2022)

Quantum

- Arthur Parzygnat, "A functorial characterization of von Neumann entropy" (2020)
 - Also see YouTube talk "On characterizing classical and quantum entropy" + references therein

Quantum & homological algebra

- quantum mechanic" (2019)

Homological algebra & topos theory

- nature of entropy" (2015)
 - information cohomology

Tom Mainiero, "Homological tools for the

entropy appears in the Euler characteristic of a cochain complex associated to a quantum state

P. Baudot, D. Bennequin, "Homological

What's the connection?

- operads
- category theory
- polynomial functors
- quantum physics
- homological algebra
- topos theory
- entropy

?