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Sheaf Cohomology and Univalent Type Theory

Sheaf cohomology

Cohomology groups: invariants attached to mathematical structures

Ex.: Brauer group (1927), commutative group associated to any field

Extension groups: Schreier (1926), group acting on an abelian group

There, 2nd cohomology group (Teichmüller 1940, 3rd cohomology group)

Leray (1940s): sheaf cohomology over topological spaces

Grothendieck unified these notions with the concept of site and topos
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Sheaf cohomology

This relied on the notion of injective resolutions

Grothendieck alluded in an alternative approach using n-stacks

We explain the case n = 1, and one difficulty that appears for n = 2

We try to show that the language of dependent type theory is (surprisingly)
well adapted to describe what is going on, and present new proofs (due to David
Wärn, formalised in Agda by Louise Leclerc) of the basic results
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Sheaf cohomology

This language deals with the general case of n-stacks in a uniform way

Provides several representations of “the” category of abelian groups

All this can be expressed in a constructive and weak metatheory (weaker than
second-order arithmetic)
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Topos Theory

It [the category of sheaves] functions as a kind of ”superstructure of
measurement”, called the ”Category of Sheaves” (over the given space), which
henceforth shall be taken to incoorporate all that is most essential about that
space. This is in all respects a lawful procedure, (in terms of ”mathematical
common sense”) because it turns out that one can ”reconstitute” in all respects,
the topological space by means of the associated ”category of sheaves” (or
”arsenal” of measuring instruments)

Consider the set formed by all sheaves over a (given) topological space or,
if you like, the formidable arsenal of all the ”rulers” that can be used in taking
measurements on it.
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Sheaf models

The collection of “all” sheaves over a space has strong similarity with the
collection of “all” sets

In general, the law of Excluded Middle may not be valid

The Axiom of Choice may not be valid as well
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Sheaf models

We have “partial” or “virtual” elements

For instance G-sets for G = Z/2Z we have T = {a0, a1} with a0, a1 swapped
by the G-action then T → 1 is epi but T has no global element
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Sheaf models

We now give an example how we can use the collection of all sheaves of sets
as a way to “measure” a space

How to distinguish the real line and the circle?

For the real line all Z-torsors are trivial

But for the circle we can find a non trivial Z-torsor

A Z-torsor is a Z-set which is locally isomorphic to Z
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Sheaf models

Cover the circle S1 with 3 open U0, U1, U2

Screenshot of a letter from Ramsey to Russell 1927
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Sheaf models

Consider the helix over S1

Define H(Ui) = Z with transition maps

t01(n) = n+ 1 and t12(n) = t20(n) = n

H has no global element

But the map H → 1 is epi

H is a non trivial Z-torsor
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Sheaf models

This is to be compared with the real line R

If we have U0, U1, U2 intervals and U0∩U1, U1∩U2 nonempty and U0∩U1∩U2

empty then U0 ∩ U2 has to be empty

In term of topos over R, this is reflected by the fact that any Z-torsor is trivial

This illustrates how the notion of topos, as a mathematical universe, can be
seen as a way to “measure” a space, here a difference between the real line and
the circle
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Sheaf models

This example goes back to Russell’s point-free presentation of R (for
representing time)

Here we can define a point as a maximal set of open interval meeting two by
two

He was trying to generalise this for more complex spaces

Ramsey pointed out to him that we may have in general convex open meeting
two by two but not globally containing a point
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Torsors

For a given group G in a topos, we can look at the collection of all G-torsors

This is actually one way to define the first cohomology group of a space for a
given sheaf of groups G

H1(X,G) can be defined as the set of all G-torsors, up to isomorphisms

H1(R,Z) = 0 and H1(S1,Z) = Z
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Torsors

See J. Baez Torsors Made Easy

See also A. Blass Cohomology detects failures of the Axiom of Choice, 1983

If G is a group a G-torsor T is like the group G that has forgotten its identity

An affine space is like a vector space that has forgotten its origin

In physics, potential energy is only given up to an arbitrary constant

We have access to W = −∆U and not to “absolute” energy

A G-torsor is isomorphic to G but not canonically
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Torsors

Let G be a group, a G-torsor is a set T with a G-action a, g 7→ a · g such that
T ×G→ T × T is an isomorphism and T → 1 is epi

E.g. T = {a0, a1} as above is a G-torsor, G = Z/2Z
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Torsors

The collection of G-torsors form a groupoid BG

Any map between two G-torsors is an isomorphism!

Locally T (Ui)→ T ′(Ui) has some unique inverse

Hence we can patch these inverses to build a global inverse T ′ → T
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Torsors

G itself can be seen as a G-torsor tG the “trivial” G-torsor

The group Aut(tG) of automorphisms of tG is exactly G

If we have a morphism f : G→ H we can build a functor BG→ BH sending
tG to tH and which induces f via Aut(tG)→ Aut(tH)

If T is a G-torsor how to define f(T )??
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Torsors

Presentation in a paper of Deligne “Le symbole modéré”, 1991, 5.2, 5.3

Locally T (Ui) is isomorphic to G(Ui) and we can take H(Ui)

But there might be a patching problem

The key idea is to define f(T ) together with a map f : T → f(T ) such that
f(t · g) = f(t) · f(g)

This pair f(T ), f is determined up to unique isomorphism
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Torsors

We can patch together these local data: this is a patching problem where we
patch together sets

If we have Fi sheaf on Ui, with transition maps αij : Fi|Uij → Fj|Uij on
Uij = Ui ∩ Uj

and we have the cocycle condition αjk ◦ αij = αik

We need this whenever Ui ∩ Uj ∩ Uk is nonempty

Then we can patch together the Fi to a global sheaf F with isomorphisms
αi : F |Ui → Fi
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Internal language

Can we present these arguments in an internal way?

We are going to compare the proofs of

-any morphism of G-torsors g : T → T ′ is an isomorphism

-any group morphism f : G→ H can be lifted to a functor BG→ BH
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Internal language

If g : T → T ′ is a map of G-torsors we prove

∀t′:T ′∃!t:T g(t) = t′

Indeed, given t′ : T ′ for proving ∃!t:T g(t) = t′ we can assume T inhabited

This follows from T → 1 is epi

So to prove a given proposition ψ we can always assume that we have some
inhabitant of T

We can then apply unique choice: if we have ∀t′:T ′∃!t:T g(t) = t′ we have a
function that give t′ from t

In a topos, choice may fail but unique choice always holds!
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Internal language

-any map f : G→ H can be lifted to a map BG→ BH

The “usual” way: build f(T ) as a quotient T ×H/ '

with (t, h) ' (t · g−1, f(g) · h)

But Deligne’s argument cannot directly be represented as such internally

It uses the fact that f(T ), f is determined up to unique isomorphism

This is a new principle of unique choice, which does not hold in higher order
logic, but holds in univalent type theory
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Torsors

As Deligne writes

H1(X,G) is the set of isomorphisms class of G-torsors

For H2(X,G) we need to look at sheaves of groupoids

The language of torsors and gerbes is essentially equivalent to that of Čech
cocycles. It is more convenient and more intrinsic if we agree to speak of an object
defined up to unique isomorphism, of category defined up to unique equivalence
up to unique isomorphism, and recollement of stacks.
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Stacks

On the ”non-commutative” side, we have a good foundation work with
Giraud’s thesis, but this is limited to a formalism of 1-stacks, lending itself to
a direct geometric expression of objects of cohomology up to dimension 2 only.
The question of developing a cohomological formalism not commutative in terms
of n-stacks, imperiously suggested by numerous examples, encountered serious
conceptual difficulties.

Considering the disaffection or, to put it better, the general contempt, into
which have fallen the questions of foundations in a certain world, these difficulties
have never been addressed before I started to look at them a little over two years
ago

Grothendieck in “Récoltes et Semailles”
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Stacks

Already for groupoids, it would be quite difficult to define delooping directly
using a quotient operation

We need to follow Deligne’s more abstract method and characterise delooping
by some universal property
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Stacks

For torsors: we need the notion of “up to unique isomorphism”

For gerbes: “up to unique equivalence up to unique isomorphism”

For 2-groupoids, “up to unique 2-equivalence up to unique equivalence up to
unique isomorphism”

And so on

2-equivalence: weak notion of equivalence

Two questions: how to describe what is going on and how to explain what
are such objects (n-stacks)
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Higher Topos Theory

Generalize sheaves to stacks: sheaves of groupoids, 2-groupoids, . . .

Use language of dependent type theory to describe what is going on

We provide later one explanation of what are such objects

Use universes (type of types) U and “equality” type a0 =A a1
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Dependent Type Theory

Stratification of types

proposition
∏

a0:A

∏
a1:A

a0 =A a1

0-type or set
∏

a0:A

∏
a1:A

isProp (a0 =A a1)

1-type of groupoid
∏

a0:A

∏
a1:A

isSet (a0 =A a1)

Contractible type A× isProp A

All these types are themselves propositions!
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Dependent Type Theory

We need ‖A‖ propositional truncation

An element of ‖A‖ intuitively corresponds to local existence

A→ 1 epi
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Dependent Type Theory

A is (n+ 1)-type if a0 = a1 n-type for all a0 and a1 in A

A is (n + 1)-connected if a0 = a1 is n-connected for all a0 and a1 in A and
we have ‖A‖

If f : A→ B and b : B then
∑

a:A f(a) = b is the fiber of f at b

f : A→ B is an equivalence if all fibers are contractible
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Dependent Type Theory

We can define what is a group G in a given universe U

It has to be a set with a binary operation satisfying the usual laws

We can form the collection of all groups (in a given universe) and prove that
it is a groupoid

For defining what is a torsor, we need to have an operation ‖A‖ proposition
which expresses that A→ 1 is epi

30



Sheaf Cohomology and Univalent Type Theory

Torsors in Dependent Type Theory

If G is a group we can then define the type BG of G-torsors

BG :=
∑
X:U

‖X‖ ×
∑

a:X×G→X

ψ(X, a)

where ψ(X, a) is a proposition/type expresssing that a is a G-action such that
X ×G→ X ×X is a bijection

One can prove in type theory that BG is a groupoid
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Torsors in Dependent Type Theory

This type is pointed: it has an element tG which is the trivial G-torsor

With univalence, we can show that tG =BG tG is equal to G

If A, a is a pointed type then Ω(A, a) is the pointed type a =A a inhabited by
the constant path, this is the loop space of A, a

G, 1 is the loop space of K(G, 1) = (BG, tG)

K(G, 1) Eilenberg-MacLane space associated to G
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Torsors in Dependent Type Theory

Deligne’s argument can then be expressed directly in type theory

Given f : G→ H group morphism and T : BG then we can look at∑
T ′:BH

∑
h:T→T ′

∏
t:T

∏
g:G

h(t · g) = h(t) · f(g)

We show that this type is contractible by an argument following the type
theoretic version of Deligne’s argument

We don’t need quotient, and we use unique choice instead which follows from
the fact that to be contractible is a proposition
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Torsors in Dependent Type Theory

Something similar holds for the result stating that for a ring R the groupoid
of locally free modules of rank 1 (the Picard group of R) and the groupoid of
R×-torsors are canonically equivalent

The proof in the Stacks project Lemma 21.6.1 uses an “explicit” construction
with a quotient
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Torsors in Dependent Type Theory

In type theory, this can be seen as a special case of the following result

Mod(R) is the groupoid of R-modules and M1 the free R-module of rank 1
so that M1 = M1 is R×

TR =
∑

M :Mod(R) ‖M = M1‖ is the type of locally free modules of rank 1

Lemma: If A is a groupoid and a : A then the canonical map

Ta → B(a = a) x 7→ (x = a)

is an equivalence
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Torsors in Dependent Type Theory

The proof of this follows the same kind of reasoning: we have to show that
for any (a = a)-torsor T the fiber

∑
(x,p):Ta

(x = a) = T is contractible

It is enough to show it when T of the trivial torsor a = a and this is proved
directly

This is because to be contractible is a proposition and any torsor is merely
equal to the trivial torsor a = a.

36



Sheaf Cohomology and Univalent Type Theory

Torsors in Dependent Type Theory

Once again, Deligne presents such an argument closer to the one of type
theory in the 1977 notes

“Étale cohomology: starting points”

(first chapter of SGA4 1/2)
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Torsors in Dependent Type Theory

So we can follow Deligne’s argument and deloop a map G→ H

David Wärn noticed that the same argument proves something stronger: the
loop map

Ω : ((BG, tG)→• (BH, tH))→ Grp(G,H)

is an equivalence/bijection

Indeed, one can prove that this type∑
T ′:BH

∑
h:T→T ′

∏
t:T

∏
g:G

h(t · g) = h(t) · f(g)

is equivalent to the fiber of the map Ω at f : G→ H
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Torsors in Dependent Type Theory

Type theoretically, this story has a nice formulation

The groupoids of the form BG, tG can be characterised as exactly pointed
0-connected 1-types

Let K1(U) be the type of pointed 0-connected 1-types

Let Grp(U) the collection of groups, the same argument as before shows that
K1(U)→ Grp(U) is fully faithful

And it is essentially surjective since Ω(BG, tG) as a group is G
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Torsors in Dependent Type Theory

Thus, we can present group theory by working with pointed 0-connected
1-types and pointed maps

This is the basis of the Symmetry book

https://unimath.github.io/SymmetryBook/book.pdf

M. Bezem, U. Buchholtz, P. Cagne, B. I. Dundas, D. R. Grayson
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Connected types

More generally, the same argument gives a (new) proof of the following result.

Theorem: If A is n-connected and B (2n)-type then for a in A and b in B

((A, a)→• (B, b))→ (Ω(A, a)→• Ω(B, b))

is an equivalence

(David Wärn, formalised in Agda by Louise Leclerc)
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Application 1

Let EMn(U) be the type of pointed (n− 1)-connected n-types with n > 0

Let U• be the type of pointed types
∑

X:U X

We have the loop space function Ω : U• → U•

This defines a map Ω : EMn(U)→ EMn−1(U)

It follows from the Theorem that this map is fully faithfull

42



Sheaf Cohomology and Univalent Type Theory

Application 1

We can then show that

Ω : EMn(U)→ EMn−1(U)

is an equivalence for n > 2

Furthermore all these types are actually equivalent to the type Ab(U) of
abelian groups
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Categories in Dependent Type Theory

Each type EMm(U) is equivalent to the type Ab(U) (and all are 1-types)

Each category EMm(U) is equivalent to the category Ab(U) of abelian groups

(All this is effective if we have an effective model of type theory)

For L abelian group we write K(L, n) the corresponding object in EMm(U)

This is the nth Eilenberg-MacLane space associated to L
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Application 2: Universal characterisation of K(L, n)

To give a map K(L, n) →• (A, a) for any n-type A is equivalent to give a
map Ω(K(L, n))→• Ω(A, a), i.e. K(L, n− 1)→ Ω(A, a)

And then K(L, n− 2)→• Ω2(A, a), and so on, until we get L→ Ωn(A, a)

We thus get that to give a pointed map K(L, n)→• (A, a) is the same as to
give a group morphism L→ Ωn(A, a)
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Application 2

The n-sphere (Sn, b) has a similar universal characterisation: to give a
map (Sn, b) →• (A, a) for any pointed n-type is the same as to give a map
Z→ Ωn(A, a)

K(Z, n) satisfies the same universal property, but for A n-type

It then follows that K(Z, n) is the nth truncation of Sn

Hence πk(Sn, b) = 0 if k < n and πn(Sn, b) = Z!
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Comparison with other approaches

The proof in the HoTT book uses Freudenthal Suspension Theorem (the
original proof by G. Brunerie and D. Licata uses the decode-encode method)

Actually, this was used to define K(Z, n) as the nth truncation of Sn
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Short exact sequence

We thus get another presentation of the category of Abelian groups

What happens to the notion of short exact sequence?

How is it expressed in EMn(U)?

A sequence (A, a)→• (B, b)→• (C, c) corresponds to a short exact sequence
if, and only if, it is a fibration sequence
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Short exact sequence

If L → M → N is a short exact sequence of abelian groups we get the
fibration sequence K(L, n)→• K(M,n)→• K(N,n)

We can then obtain the long fibration sequence

. . .K(L, n− 1)→• K(M,n− 1)→• K(N,n− 1)

→• K(L, n)→• K(M,n)→• K(N,n)

This can be done for any n
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Sheaf models

So far, we have shown how to use the language of dependent type theory to
express what should happen in a sheaf model

How to model types as stacks over a site?

All (∞, 1)-toposes have strict univalent universes
M. Shulman

Constructive sheaf models of type theory
Th. C., F. Ruch and Ch. Sattler
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Sheaf models

The second paper is developped in a constructive meta theory

It is done in a relatively weak meta theory

Proof theoretic strength: dependent type theory with hierarchy of universes

Weaker than second-order arithmetic

The notion of universes in an intuitionistic setting is surprisingly weak (P.
Martin-Löf, P. Hancock, P. Aczel, E. Palmgren, E. Griffor, M. Rathjen)
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How to recover cohomology groups?

If L is a sheaf of abelian group over a space X

Compute K(L, n) in the sheaf model over X

Apply global section Γ(K(L, n)): this is a global n-type

π0(Γ(K(L, n)) is Hn(X,L)!

This is the special case X → 1 and can be generalised to X → Y
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How to recover cohomology groups

If we apply global section, and then π0 to the sequence

. . .K(L, n− 1)→• K(M,n− 1)→• K(N,n− 1)

→• K(L, n)→• K(M,n)→• K(N,n) . . .

we get the long exact sequence

. . . Hn−1(X,L)→• Hn−1(X,M)→• Hn−1(X,N)

→• Hn(X,L)→• Hn(X,M)→• Hn(X,N) . . .
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Example

Let F be a field and X be the étale site of finite separable extensions of F

This site is quite natural as a constructive representation of the separable
closure of F

See Dynamic Newton-Puiseux Theorem, Th. C. and B. Mannaa, 2013

We have a sheaf L on X which represents the separable closure of F , and the
sheaf Gm which represents the invertible elements of L
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Example

We can prove constructively that H1(X,Gm) is trivial, by showing that any
global Gm-torsor is trivial

We expect to be able to prove constructively that H2(X,Gm) is the Brauer
group of F
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Milnor’s conjecture

We can formulate Milnor’s conjecture in a weak meta theory: the canonical
map KM

n (F )/2→ Hn(X,Z/2Z) is an isomorphism

Milnor’s conjecture is about the Eilenberg-MacLane space of Z/2Z in this
topos
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Summary

We have different presentations of the category of abelian groups (in a given
universe)

The elements are pointed (n− 1)-connected n-types

This is the method that Grothendieck alluded to in a letter to Larry Breen
1975 where we don’t need injective resolutions, and which can be represented
faithfully in a weak meta theory

The uniformity and elegance of this picture is well expressed using the language
of dependent types
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Summary

If we apply this to the sheaf/stack model of dependent types, we get a
definition of cohomology groups of sheaves of abelian group, with rather direct
proofs of the basic properties (e.g. long exact sequence of cohomology groups
associated to a short exact sequence)

This can be formally represented in dependent type theory, and the formal
proofs are quite close to the informal proofs
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Dependent Type Theory

We only make use of the two Lemmas

Lemma 1: If A n-connected and B n-type then the canonical map B → BA

is an equivalence

Lemma 2: If A n-connected with a : A and P (x) family of n+ k + 1-types
over A then all fibers of the evaluation map (

∏
x:AP (x))→ P (a) are k-types

Particular case: if k = −2 then the fibers are contractible
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