
Categorification of negative information using enrichment

‣ What is negative information, and why do we care?
- It pops up in practical applications, e.g., infeasibility results in robot motion planning.
- We asked: what is the corresponding categorical notion?

‣ Idea: represent negative information by negative arrows called “norphisms,”
which complement the positive information of morphisms.

‣ A nategory is a category with some additional structure for norphisms accounting,
‣ Norphisms do not compose by themselves. They need a morphism as a “catalyst.”

‣ We can derive the norphism rules very elegantly using enriched category theory.
- Just like a -enriched category provides the data for a small category, …
- … a PN-enriched category provides the data for a nategory,

where PN is a category based on De Paiva’s GC construction.
‣ Conclusions: morphisms and norphisms are of the same substance.

Negative information can be “categorified” using enriched category theory.

Andrea Censi, Emilio Frazzoli, Jonathan Lorand, Gioele Zardini

ETH Zürich

� ��� �� �
� � �� �

� �� � ���
� � �� �

�� � � � �� � � �(� # �)� � � �

Example: robot motion planning

‣ Robot motion planning: find the optimal path between two robot configurations.
Paths should avoid obstacles and have a cost (e.g., fuel required, minimum time).

‣ As a category: objects are points in “free space,” and morphisms are paths with a cost.
Morphism composition concatenates the paths and “sums” the costs.

Example: Dijkstra’s algorithm

‣ Dijkstra’s algorithm searches a path from start to goal that minimizes the traversal cost.
‣ Exploration is uninformed.

A* (“A star”)

‣ A* searches a path from start to goal that minimizes the traversal cost.
‣ Exploration is informed:

- we have a heuristic: a lower bound on the cost-to-go from a node to the target.

Example: robot motion planning

‣ Robot motion planning: find the optimal path between two robot configurations.
Paths should avoid obstacles and have a cost (e.g., fuel required, minimum time).

‣ As a category: objects are points in “free space,” and morphisms are paths with a cost.
Morphism composition concatenates the paths and “sums” the costs.

‣ A complete algorithm can find a path (if it exists)
or give a certificate of infeasibility (if one doesn’t exist).

‣ An optimal algorithm can find (if it exists) an optimal solution:
- a feasible path, plus…
- a certificate of optimality: there is no better path.

‣ Search algorithms of the A* family achieve speed using heuristics:
lower bounds for the cost between two points.

positive information: morphism!

what is this, categorically?
positive information: morphism!

what is this, categorically?

what is this, categorically?

Absence of evidence vs evidence of absence

‣ More in general, it is common to have algorithms that run some kind of “inference”
procedure that produces “feasible points” (morphisms).

‣ At each instant, each morphism is either “proved”, “disproved”, or “unknown”.

X
Y

Z

W

absence of evidence evidence of absence

proved

disproved

unknown

proved

unknown

proved

disproved

X Y X Y

Building intuition: the case of thin categories

‣ In a thin category, there is at most one morphism per hom-set.
‣ These are preorders that represent connectivity. (Motion planning without costs.)

‣ We postulate these semantics:
- A norphisms implies that there is no morphism
- A morphism implies that there is no norphism

‣ We find that the norphisms rules are dual to the morphisms rules

Note: nonconstructive!

Norphisms composition needs morphisms as catalysts

‣ We constructively revisit the logic to obtain composition rules.

‣ The constraint splits into two rules of the type morphism + norphism → norphism:

‣ Norphism composition requires morphisms as catalysts.
‣ There is no norphism + norphism composition rule.

‣ There is no “category of norphisms.”
‣ Norphisms are complementary to morphisms but obey different rules.

�� � � � �� � � �???� � � �

� �� �� � ��
� �
��� � ��� �� �

� � �� �
� ��

�� � ��
�
� ��� � �� � ���

� � �� �

‣ We call a nategory “exact” if:

De�nition (Nategory)
A locally small nategoryC is a locally small category with the following additional
structure. For each pair of objects�,� � ObC, in addition to the set ofmorphisms
HomC(�;�), we also specify:

� A set of norphisms NomC(�;�).
� An incompatibility relation, which we write as a binary function

��� � NomC(�;�) ◊HomC(�;�)� Bool.

For all triples �,�,�, in addition to the morphism composition function

��� � HomC(�;�) ◊HomC(�;�)� HomC(�;�),

we require the existence of two norphism composition functions

��� � HomC(�;�) ◊NomC(�;�)� NomC(�;�),
��� � NomC(�;�) ◊HomC(�;�)� NomC(�;�),

and we ask that they satisfy two “equivariance” conditions:

���(� �, �) � ���(�,� # �), (equiv-1)
���(� �,�) � ���(�,� # �). (equiv-2)

���(� �, �)� ���(�,� # �)���(� �,�)� ���(�,� # �)

Canonical nategory constructions

‣ Here are some ways to get a nategory from a category C.

The combinatorial explosion … with very weak inference rules

NomC(�;�) �= � NomC(�;�) �= {�}

���(�,�) = ����(�, id�) = �

NomC(�;�) = ���(HomC(�;�))���(�,�) = � � �
� � = pre�1� (�)
� � = post�1� (�)

NomC(�;�) = ���(HomC(�;�))���(�,�) = � � �
� � = �� � = �

� � = �� � = �

No norphisms One norphism

NomC(�;�) �= {�}

���(�,�) = ����(�, id�) = �
� � = �� � = �

(for semicats)

�
�

� � � � � �
� � � � � �

� � � � � �
catalyst morphism

need to �nd a norphism here

the norphism ���(�) �
�

� � � � � �
� � � � � �

� � � � � �

we �nd incompatibility with �

���(�) �
�

� � � � � �
� � � � � �

� � � � � �pre�1�

we pull back incompatible morphisms

�
�

� � � � � �
� � � � � �

� � � � � �
���(� �)

pre�1�
� �

��� � NomC(�;�) � ���(HomC(�;�))
� � {� � HomC(�;�)� ���(�, �)}

� ��� �� �
� � �� �

Example: hiking on the Swiss mountains

Norphisms in Berg

‣ We take norphisms in Berg to be lower bounds on the path distance:

‣ A morphism is incompatible if it violates the lower bound:

‣ An optimal path is a feasible path together with a lower bound on the distance:

‣ Norphism composition rules:

NomBerg(�;�) �= ��0 � {+�}

���(�,�) = length(�) < �
�� � � � length(�)� � � �� is optimal

� � = max{� � length(�), 0}
� � = max{� � length(�), 0}

� �� �� � ��
� �
��� � ��� �� �

� � �� �
� ��

�� � ��
�
� ��� � �� � ���

� � �� �

Norphism schemas for Berg

‣ The length of a path is never less than zero:

‣ The length of a path cannot be lower than the distance in 3D:

‣ The length of a path cannot be lower than than the geodesic distance:

‣ The following bounds hold due to the constraint on inclination:

‣ Follow up: we can order schema axioms in partial order (“subnategories”?)

0� � � �
��1 � �2�� ��1, �1�� ��2, �2�
��(�1,�2)� ��1, �1�� ��2, �2�

�1� � �2� < 0��1� � �2����U � ��1, �1�� ��2, �2� �1� � �2� > 0��1� � �2����L � ��1, �1�� ��2, �2�

Different choices for norphisms for Berg

‣ We need to check the condition: optionally, the exactness condition:

NomBerg(�;�) �= ��0 � {+�}

� � = max{� � length(�), 0}
� � = max{� � length(�), 0}

NomBerg(�;�) �= � � {+�}� � = � � length(�)� � = � � length(�)

NomBerg(�;�) �= � � {+�}

� � = � ����(� � length(�))� � = � ����(� � length(�)) � � = �����(� � length(�))� � = �����(� � length(�))
NomBerg(�;�) �= � � {+�}

���(� �, �) � ���(�,� # �)���(� �,�) � ���(�,� # �) ���(� �, �)� ���(�,� # �)���(� �,�)� ���(�,� # �)

✓ valid nategory
❌ not exact

✓ valid nategory
✓ exact

✓ valid nategory
❌ not exact ❌ not exact

❌ not a nategory

De�nition (Enriched category)
Let �V,���, �, as, lu, ru� be a monoidal category, where as is the associator, lu is
the left unitor, and ru is the right unitor.
A V-enriched category E is given by a tuple �ObE, �E, �E, �E�, where

1. ObE is a set of “objects”.
2. �E is a function such that, for all pairs of objects�,� � ObE, the value�E(�,�)

is an object of V.
3. �E is a function such that, for all�,�,� � ObE, there exists amorphism�E(�,�,�)

of V, called composition morphism:

�E(�,�,�)� �E(�,�)��� �E(�,�)�V �E(�,�).

4. �E is a function such that, for each � � ObE, there exists a morphism of V:

�E(�)� ��V �E(�,�).

Moreover, for any �,�,�,� � ObE, the diagrams reported in ??must commute.

Put diagram here now

16 Categori�cation of Negative Information using Enrichment

7 Enrichment
We recall a standard de�nition of enrichment [6].

De�nition 9 (Enriched category). Let �V,���, �, as, lu, ru� be a monoidal category, where as is the
associator, lu is the left unitor, and ru is the right unitor.
A V-enriched category E is given by a tuple �ObE, �E, �E, �E�, where

1. ObE is a set of “objects”.
2. �E is a function such that, for all pairs of objects �,� � ObE, the value �E(�,�) is an object

of V.
3. �E is a function such that, for all �,�,� � ObE, there exists a morphism �E(�,�,�) of V,

called composition morphism:

�E(�,�,�)� �E(�,�)��� �E(�,�)�V �E(�,�). (80)

4. �E is a function such that, for each � � ObE, there exists a morphism of V:

�E(�)� ��V �E(�,�). (81)

Moreover, for any �,�,�,� � ObE, the diagrams reported in Appendix A must commute.
Put diagram here now

We recall a known construction that we generalize later. Consider the monoidal category

P �= �Set, ◊, 1�, (82)

where ◊ is the Cartesian product and 1 is the one-element set {�}.

Lemma 10. A category enriched in P gives the data necessary to de�ne a small category, and vice
versa.

Proof. We show one direction. Suppose that we are given a P-enriched category as a tuple �ObE,
�E, �E, �E�.We can de�ne a small category C as follows:

• Set ObC �= ObE.
• For each �,� � ObC, let HomC(�;�) �= �E(�,�).
• For each �,�,� � ObC, we know a function

�E(�,�,�) � HomC(�;�)���HomC(�;�)�Set HomC(�;�). (83)

The diagrams constraints imply that this function is associative.
Therefore, we use it to de�ne morphism composition in C, setting #�,�,� �= �E(�,�,�).

• For each � � ObC we know a function �E(�)� 1�Set HomC(�;�) that selects a morphism.
The diagrams constraints imply that such morphism satis�es unitality with respect to #�,�,� .
Therefore, we can use it to de�ne the identity at each object:

id� �= �E(�)(�). (84)

Lemma. A category enriched in P gives the data necessary to de�ne a small
category, and vice versa.

The G(C) construction

‣ The G(C) construction is due to De Paiva.
‣ It provides a nontrivial model of linear logic: all 4 connectives, 4 units, negations, and

modalities are distinct.
‣ See the recent post by Niu on the Topos website that clarifies the relation between G(C)

and Poly.

‣ Plan:
- We recall the definition of G(Set);
- We recall some of the monoidal products defined by De Paiva;
- We will define yet another one;
- We will use it as a target for enrichment.

De�nition (PN)
We call PN the monoidal category �G(Set, Bool), ��.

De�nition (G(Set))
An object of G(Set) is a tuple ��, �, ��,
where: � is a set, � is a set, � � � �Rel � is a relation.
A morphism � � ��1, �1, �1��GC ��2, �2, �2� is a pair of maps� = ���, ���,�� � �1 �Set �2,�� � �1 �Set �2,
that satisfy the property��2 � �2 ��1 � �1 ��(�2)�1�1 � �2�2 ��(�1).
Morphism composition is de�ned component-wise:(� # �)� = �� # ��,(� # �)� = �� # ��.
The identity at ��, �, �� is given by id��, �, �� = �

id�, id��.

De�nition (Category G(Set,B))
Let B be a category with �nite products and coproducts. An object of the category
G(Set,B) is a tuple

��, �, ��,
where � is a set; � is a set, � is a function

�� � ◊ � � ObB.

Amorphism � � ��1, �1, �1�� ��2, �2, �2� is a tuple of three functions

� = ���, ��, ���,
�� � �1 �Set �2,
�� � �1 �Set �2,
�� � {�2 � �2, �1 � �1}� �1(��(�2), �1)�B �2(�2, ��(�1)).

The composition of the above morphism � with �� ��2, �2, �2� � ��3, �3, �3�
is de�ned as follows:

(� # �)� = �� # ��,

(� # �)� = �� # ��,
(� # �)� � ��3, �1�� ��(��(�3), �1) #B ��(�3, ��(�1)).

More explicitly,

(� # �)� � ��3, �1��

�1((�� # ��)(�3), �1)
��(��(�3), �1)���������������� �2(��(�3), ��(�1))

��(�3, ��(�1))���������������� �3(�3, (�� # ��)(�1)).

The identity at ��, �, �� is given by �id�, id�, ��, ��� id�(�,�)�.

De�nition (G(Cat,�))
Given a category �, an object of G(Cat,�) is a tuple��, �, ��,
where � is a category, � is a category, � is a functor�� �op ◊ � � �.
Amorphism � � ��1, �1, �1��GCat ��2, �2, �2� is a tuple� = ���, ��, ���,
where� �� � �2 �Cat �1 is a functor,� �� � �1 �Cat �2 is a functor,� �� is a natural transformation between two functors�,� � �op2 ◊ �1 � �,
de�ned as � = (�� ◊ id�1) # �1,� = (id�op2 ◊ ��) # �2.

Need to �nish with composition

De�nition (G(Cat,�))
Given a category �, an object of G(Cat,�) is a tuple��, �, ��,
where � is a category, � is a category, � is a functor�� �op ◊ � � �.
Amorphism � � ��1, �1, �1��GCat ��2, �2, �2� is a tuple� = ���, ��, ���,
where� �� � �2 �Cat �1 is a functor,� �� � �1 �Cat �2 is a functor,� �� is a natural transformation between two functors�,� � �op2 ◊ �1 � �,
de�ned as � = (�� ◊ id�1) # �1,� = (id�op2 ◊ ��) # �2.

Need to �nish with composition

not weird anymore!

A monoidal product

De�nition (Monoidal product �)
The action on the objects is de�ned as follows:��1, �1, �1� �� ��2, �2, �2� = ��1 ◊ �2, �1 ◊ �2, �1 � �2��1 � �2 � ���1, �2�, ��1, �2��� �1(�1, �1) ◊�B �2(�2, �2),
where ◊�B is the product of two objects in B. The monoidal unit is1� = �{�}, {�}, ��, �� ��, ��� 1B.
The product of � � ��1, �1, �1� � ��3, �3, �3� and �� ��2, �2, �2� � ��4, �4,�4� is � �� �� ��1 ◊ �2, �1 ◊ �2, �1 � �2�� ��3 ◊ �4, �3 ◊ �4, �3 � �4�

(� �� �)� = �� ◊� ��,(� �� �)� = �� ◊� ��,(� �� �)� � ���3, �4�, ��1, �2��� ��(�3, �1) ◊�B ��(�4, �2).

… another one…

De�nition (Monoidal product�)
The action on the objects is de�ned as follows:

��1, �1, �1��� ��2, �2, �2� = ���21 ◊ ��12 , �1 ◊ �2, �1 � �2��1 � �2 � ���1, �2�, ��1, �2��� �1(�1(�2), �1) ◊�B �2(�2(�1), �2),
where ◊�B is the product of two objects in B. The monoidal unit is1� = �{�}, {�}, ��, �� ��, ��� 1B.
The product of � � ��1, �1, �1� � ��3, �3, �3� and �� ��2, �2, �2� � ��4, �4,�4� is� �� �� ���21 ◊ ��12 , �1 ◊ �2, �1 � �2�� ���43 ◊ ��34 , �3 ◊ �4, �3 � �4�
(� �� �)� = ��� # � # ��, �� # � # ���,(� �� �)� = �� ◊� ��,(� �� �)� � ���3, �4�, ��1, �2��� ��((�� # �3)(�2), �1) ◊�B ��((�� # �3)(�1), �2).

… and another one…

De�nition (Monoidal product &)
The action on the objects is de�ned as follows:

��1, �1, �1� &� ��2, �2, �2� = ��1 ◊ �2, ��21 ◊ ��12 , �1 &�2��1 &�2 � ���1, �2�, ��1, �2��� �1(�1(�2), �1) +�
B �2(�2(�1), �2),

where +�
B is the coproduct of two objects in B. The monoidal unit is1 &= �{�}, {�}, ��, �� ��, ��� 0B.

The product of � � ��1, �1, �1�� ��3, �3, �3�, �� ��2, �2, �2�� ��4, �4, �4� is� &� �� ��1 ◊ �2, ��21 ◊ ��12 , �1 &�2�� ��3 ◊ �4, ��43 ◊ ��34 , �3 &�4�
(� &� �)� = �� ◊� ��,(� &� �)� = ��� # � # ��, �� # � # ���,(� &� �)� � ���3, �4�, ��1, �2��� ��(… , �1) +�B ��(… , �2).

where +�B is the coproduct of two morphisms in B.

…and the one we need!

De�nition (Monoidal product �)
The action on the objects is de�ned as follows:

��1, �1, �1� �� ��2, �2, �2� = ���21 ◊ ��12 , �1 ◊ �2, �1 � �2��1 � �2 � ���1, �2�, ��1, �2��� �1(�1(�2), �1) +�
B �2(�2(�1), �2)

The monoidal unit is1� = �{�}, {�}, ��, �� ��, ��� 0B.
The product of � � ��1, �1, �1� � ��3, �3, �3� and �� ��2, �2, �2� � ��4, �4,�4� is� �� �� ���21 ◊ ��12 , �1 ◊ �2, �1 � �2�� ���43 ◊ ��34 , �3 ◊ �4, �3 � �4�

(� �� �)� = ��� # � # ��, �� # � # ���,(� �� �)� = �� ◊� ��,(� �� �)� � ���3, �4�, ��1, �2��� ��(�� # �3(�2), �1) +�B ��(�� # �3(�1), �2).
The “+�B” in ?? is the coproduct of two morphisms in B.

Norphisms by enrichment

Proposition. A PN-enriched category provides the data necessary to specify
a nategory. However, not all nategories can be speci�ed by the data of a PN-
enriched category, because the nategory produced has two additional neutrality
properties:

id� � = �, (neut-1)� id� = �, (neut-2)

two “distributivity” conditions:(� # �) � = � (� �), (dist-1)� (� # �) = (� �) �, (dist-2)

and a “mixed associativity” condition� (� �) = (� �) �, (assoc)

which are not necessarily satis�ed by all nategories.

De�nition (PN)
We call PN the monoidal category �G(Set, Bool), ��.

Some steps from the proof

‣ The enrichment gives, for each pair of objects X, Y, a tuple

which we use to define Hom, Nom, and i:

‣ For each object X, we have a morphism

in our case:

the forward part picks a morphism that, given the other conditions, is the identity.
The other conditions are vacuous.

‣ Next up: composition operations..

�E(�)� �PN �PN �E(�,�)

�E(�,�) = �NomC(�;�),HomC(�;�), ����

�E(�,�) = ��, �, ��

� = �E(�)� �{�}, {�}, ���PN �HomC(�;�),NomC(�;�), ����

Derivation of morphism composition operations

‣ For each triple X, Y, Z, enrichment gives a morphism of PN

unrolling:

‣ The forward part recovers morphism composition:

‣ The backward part gives the morphism composition functions:

‣ The last component can be evaluated to get:

expanding:

which is equivalent to 2 morphisms:

�E(�,�,�)� �E(�,�)���PN �E(�,�)�PN �E(�,�)
���� � �N��

H�� ◊N��
H�� ,H�� ◊H�� , ��� � �����PN �N�� ,H�� , ����

���� � �N�� ,H�� , �������PN �N�� ,H�� , �����PN �N�� ,H�� , ����

�� � HomC(�;�) ◊HomC(�;�)� HomC(�;�)
�� � N�� � N��

H�� ◊N��
H��

� N�� ◊H�� � N�� ,
� H�� ◊N�� � N��

��1(�, ��, ��)� ���(� �,�)�Bool ���(�,� # �)��2(�, ��, ��)� ���(� �, �)�Bool ���(�,� # �)

��(�, ��, ��)� (��� � ���)(�(� �), (� �)�, ��, ��)�Bool ���(�,� # �)
��(�, ��, ��)� ���(� �,�) +�

Bool ���(� �, �)�Bool ���(�,� # �)
���(� �, �) � ���(�,� # �)���(� �,�) � ���(�,� # �)

Norphisms by enrichment

Proposition. A PN-enriched category provides the data necessary to specify
a nategory. However, not all nategories can be speci�ed by the data of a PN-
enriched category, because the nategory produced has two additional neutrality
properties:

id� � = �, (neut-1)� id� = �, (neut-2)

two “distributivity” conditions:(� # �) � = � (� �), (dist-1)� (� # �) = (� �) �, (dist-2)

and a “mixed associativity” condition� (� �) = (� �) �, (assoc)

which are not necessarily satis�ed by all nategories.

De�nition (PN)
We call PN the monoidal category �G(Set, Bool), ��.

DP

‣ A morphism in DP is a design problem, an expert

‣ The composition in DP is given by

‣ Norphisms (nesign problems) are infeasibility relations

‣ These are still monotone maps, now stating infeasibility

De�nition (Design Problem)
A design problem (DP) is a tuple ��,�, ��, where �,� are posets and � is a mono-
tone map of the form

�� �op ◊��Pos Bool.

De�nition (Series composition)
Let �� � �� � and �� � �� � be design problems. We de�ne their series
composition (� # �)� � �� � as:

(� # �)� �op ◊� �Pos Bool
���, �� �

�

���
�(��, �) � �(��, �).

Example: you cannot build a perpetual motion machine

Morphisms and norphisms in DP

‣ Start from and

‣ Compatibility ensures that there are no contradictions

‣ How do design problems and nesign problems compose?

‣ Starting from a and

‣ Starting from and

Morphisms and norphisms in DP

‣ Let’s consider the example of two dams

‣ Consider posets

‣ Dams transform potential energy into kinetic energy

‣ Let’s say we have feasibility and infeasibility information about a dam

‣ These produce a nesign problem describing infeasibility between
kinetic energies: can I get 10 J from 9 J? No!

Conclusions and future work

‣ Negative information can be categorified using negative arrows (norphisms).
- (as opposed to using some logic on top of category theory…)

‣ Norphisms behave fundamentally differently than morphisms.
They compose using morphisms as catalysts.

‣ “Nategories” generalize categories to account for the norphism machinery.

‣ We can derive the norphism rules very elegantly using enriched category theory.
- Just like a Set-enriched category provides the data for a small category, …
- … a PN-enriched category provides the data for a nategory.

‣ Future work
- PN enrichment is too strong; induces more properties.
- Surveying natural norphism structures in the wild.
- Explore more the idea of algorithms producing both positive and negative information.
- Generalization to higher-level concepts. What would a “nunctor” be?

� ��� �� �
� � �� �

� �� � ���
� � �� �

�� � � � �� � � �(� # �)� � � �

