Categorification of negative information using enrichment

Andrea Censi, Emilio Frazzoli, Jonathan Lorand, Gioele Zardini ETH Zürich

- What is negative information, and why do we care?
 - It pops up in practical applications, e.g., infeasibility results in robot motion planning.
 - We asked: what is the corresponding categorical notion?
- Idea: represent negative information by negative arrows called "norphisms," which <u>complement</u> the positive information of **morphisms**.
- A **nategory** is a category with some additional structure for **norphisms** accounting,
- Norphisms do not compose by themselves. They need a morphism as a "catalyst."

$$f: X \to Y \quad g: Y \to Z \qquad \qquad Y \xleftarrow{f} \stackrel{n}{\leftarrow} X \xrightarrow{n} Z \qquad \qquad X \xrightarrow{n} X \xrightarrow{$$

• We can derive the norphism rules very elegantly using **enriched category theory**.

- Just like a $\mathbf{P} \coloneqq \langle \mathbf{Set}, \mathbf{x}, 1 \rangle$ -enriched category provides the data for a small category, ...
- ... a **PN**-enriched category provides the data for a nategory, where **PN** is a category based on De Paiva's **GC** construction.
- **Conclusions**: morphisms and norphisms are of the same substance. Negative information can be "categorified" using enriched category theory.

$$Z \stackrel{\mathsf{g}}{\leftarrow} Y$$

 $\stackrel{\bullet}{\longrightarrow} g Y$

Example: robot motion planning

- **Robot motion planning:** find the optimal path between two robot configurations. Paths should avoid obstacles and have a cost (e.g., fuel required, minimum time).
- As a category: objects are points in "free space," and morphisms are paths with a cost. Morphism composition concatenates the paths and "sums" the costs.

Example: Dijkstra's algorithm

- Dijkstra's algorithm searches a path from start to goal that m
- Exploration is **uninformed**.

b j r R Z start i q y C I M Q goal

ninimizes the traversal cost.				
oriority	стс	СТБ		
0.00	0.00	0.00		

- A* searches a path from start to goal that minimizes the travers
- Exploration is **informed**:
 - we have a heuristic: a lower bound on the cost-to-go from

9

node

rsal cost.					
m a node to the target.					
priority	стс	СТG			
9.00	0.00	9.00			

Example: robot motion planning

- **Robot motion planning:** find the optimal path between two robot configurations. Paths should avoid obstacles and have a cost (e.g., fuel required, minimum time).
- As a category: objects are points in "free space," and morphisms are paths with a cost. Morphism composition concatenates the paths and "sums" the costs.

- A *complete* algorithm can find a **path** (if it exists) or give a **certificate of infeasibility** (if one doesn't exist).
- An optimal algorithm can find (if it exists) an optimal solution:
 - a feasible path, plus...
 - a certificate of optimality: there is no better path.
- Search algorithms of the A* family achieve speed using heuristics: lower bounds for the cost between two points.

positive information: morphism! what is this, categorically?

positive information: morphism! what is this, categorically?

what is this, categorically?

Absence of evidence vs evidence of absence

- More in general, it is common to have algorithms that run some kind of "inference" procedure that produces "feasible points" (morphisms).
- At each instant, each morphism is either "proved", "disproved", or "unknown".

Building intuition: the case of thin categories

- In a thin category, there is at most one morphism per hom-set.
- These are preorders that represent connectivity. (Motion planning without costs.)
- We postulate these semantics:
 - A norphisms $n: X \to Y$ implies that there is no morphism $f: X \to Y$
 - A morphism $f: X \to Y$ implies that there is no norphism $n: X \to Y$

We find that the norphisms rules are dual to the morphisms rules

$$\frac{\top}{X \to X} \qquad \frac{f: X \to Y \quad g: Y \to Z}{(f \circ g): X \to Z}.$$

$$\frac{X \dashrightarrow X}{\perp} \qquad \frac{o: X \dashrightarrow Z \qquad Y: \operatorname{Ob}_{\mathbb{C}}}{(n: X \dashrightarrow Y) \lor (m: Y \dashrightarrow Z)}$$

Note: nonconstructive!

•

Norphisms composition needs morphisms as catalysts

- We **constructively** revisit the logic to obtain **composition rules**.
- The constraint splits into **two rules** of the type morphism \rightarrow norphism:

- Norphism composition requires morphisms as catalysts.
- There is no norphism + norphism composition rule.

$$n: X \dashrightarrow Y \quad m: Y \dashrightarrow Z$$
$$???: X \dashrightarrow Z$$

- There is no "category of norphisms."
- Norphisms are complementary to morphisms but obey different rules.

$$\stackrel{f}{\leftarrow} X \stackrel{n}{\dashrightarrow} Z$$

$$\stackrel{f \leftrightarrow n}{\longrightarrow} Z$$

$$\xrightarrow{n} Z \xleftarrow{g} Y$$

$$n - g \longrightarrow Y$$

Definition (Nategory)

A locally small *nategory* \mathbf{C} is a locally small category with the structure. For each pair of objects $X, Y \in Ob_{\mathbf{C}}$, in addition the $Hom_{\mathbf{C}}(X;Y)$, we also specify:

- ▷ A set of norphisms $Nom_{\mathbf{C}}(X; Y)$.
- ▷ An *incompatibility relation*, which we write as a bin

 i_{XY} : Nom_C(X; Y) × Hom_C(X; Y) –

For all triples X, Y, Z, in addition to the morphism compo

 \mathcal{P}_{XYZ} : Hom_C(X; Y) × Hom_C(Y; Z) → Hom

we require the existence of two norphism composition fu

 $\bullet_{XYZ} : \operatorname{Hom}_{\mathbf{C}}(X;Y) \times \operatorname{Nom}_{\mathbf{C}}(X;Z) \to \operatorname{Non}_{\mathbf{C}}(X;Z)$ $\bullet_{XYZ} : \operatorname{Nom}_{\mathbf{C}}(X;Z) \times \operatorname{Hom}_{\mathbf{C}}(Y;Z) \to \operatorname{Non}_{\mathbf{C}}(Y;Z)$

and we ask that they satisfy two "equivariance" condition

 $i_{YZ}(f \leftrightarrow n, g) \Rightarrow i_{XZ}(n, f \circ g),$ $i_{XY}(n \leftarrow g, f) \Rightarrow i_{XZ}(n, f \circ g).$

• We call a nategory "*exact*" if:

$$i_{YZ}(f \leftrightarrow n, g) \Leftrightarrow i_{XZ}(n, f \circ g)$$
$$i_{XY}(n \leftarrow g, f) \Leftrightarrow i_{XZ}(n, f \circ g)$$

the following add n to the set of mor	ditional phisms
oinary function	
→ Bool .	
position functior	1
$\operatorname{om}_{\mathbf{C}}(X;Z),$	
functions	
$\operatorname{om}_{\mathbf{C}}(Y;Z),$ $\operatorname{om}_{\mathbf{C}}(X;Y),$	
ons:	
(e	quiv-1)
(e	quiv-2)

Canonical nategory constructions

Here are some ways to get a nategory from a category C.

No norphisms

One norphism

 $Nom_{\mathbf{C}}(X;Y) := \emptyset$

 $Nom_{\mathbf{C}}(X;Y) := \{\bullet\}$

- $i_{XX}(\bullet, \mathrm{id}_X) = \bot$
 - $i_{XY}(\bullet, f) = \top$
 - $f \bullet \bullet \bullet = \bullet$ • $\bullet g = \bullet$

The combinatorial explosion ... with very weak inference rules

 $Nom_{\mathbb{C}}(X;Y) = Pow(Hom_{\mathbb{C}}(X;Y))$

 $i_{XY}(n, f) = f \in n$ $i_{XY}(n, f) = f \in n$

$$f \leftarrow n = \text{pre}_{f}^{-1}(n)$$
$$n \leftarrow g = \text{post}_{g}^{-1}(n)$$

(for semicats)

$$Nom_{\mathbf{C}}(X;Y) := \{\bullet\}$$
$$\underbrace{i_{XX}(\bullet, \mathrm{id}_X) = \mathsf{I}}_{i_{XY}}(\bullet, f) = \mathsf{I}$$
$$f \bullet \bullet \bullet = \bullet$$
$$\bullet \bullet g = \bullet$$

 $Nom_{\mathbf{C}}(X;Y) = Pow(Hom_{\mathbf{C}}(X;Y))$

$$f \bullet n = \emptyset$$
$$n \bullet g = \emptyset$$

 $J_{XY}: \operatorname{Nom}_{\mathbf{C}}(X;Y) \to \operatorname{Pow}(\operatorname{Hom}_{\mathbf{C}}(X;Y))$ $\mapsto \{ f \in \operatorname{Hom}_{\mathbb{C}}(X;Y) : i_{XY}(n,f) \}$ n

 $Y \stackrel{f}{\leftarrow} X \stackrel{n}{\dashrightarrow} Z$

 $Y \xrightarrow{f \bullet \bullet n} Z$

Example: hiking on the Swiss mountains

Definition 5 (Berg). Let $h: \mathbb{R}^2 \to \mathbb{R}_{>0}$ be a C^1 function, describing the elevation of a mountain. The set with elements $\langle a, b, h(a, b) \rangle$ is a manifold M that is embedded in \mathbb{R}^3 . Let $\sigma = [\sigma_L, \sigma_U] \subset \mathbb{R}$ be a closed interval of real numbers. The category $\mathbf{Berg}_{h,\sigma}$ is specified as follows:

- 1. An object X is a pair $\langle \mathbf{p}, \mathbf{v} \rangle \in \mathscr{T}\mathbb{M}$, where $\mathbf{p} = \langle \mathbf{p}_x, \mathbf{p}_y, \mathbf{p}_z \rangle$ is the position, v is the velocity, and $\mathscr{T}M$ is the tangent bundle of the manifold.
- 2. Morphisms are C^1 paths on the manifold. At each point of a path we define the *steepness* as:

$$s(\langle \mathbf{p}, \mathbf{v} \rangle) \coloneqq \mathbf{v}_z / \sqrt{\mathbf{v}_x^2 + \mathbf{v}_y^2}.$$

We choose as morphisms only the paths that have the steepness values contained in the interval σ :

Hom_{Berg_{h,\sigma}}(X;Y) = {*f* is a C^1 path from X to Y and $s(f) \subseteq \sigma$ }, (19)

- 3. Morphism composition is given by concatenation of paths.
- 4. Given any object, the identity morphism is the trivial self path with only one point.

(18)

Norphisms in Berg

• We take **norphisms** in **Berg** to be **lower bounds on the path distance**:

 $Nom_{Berg}(X;Y) := \mathbb{R}_{\geq 0} \cup \{+\infty\}$

• A morphism is incompatible if it violates the lower bound:

 $i_{XY}(n, f) = \text{length}(f) < n$

An optimal path is a feasible path together with a lower bound on the distance:

 $f: X \to Y \quad \text{length}(f): X \dashrightarrow Y$

f is optimal

Norphism composition rules:

 $f \leftarrow n = \max\{n - \operatorname{length}(f), 0\}$ $n \rightarrow g = \max\{n - \operatorname{length}(g), 0\}$

Norphism schemas for Be

The length of a path is never less than zero:

 $0: X \dashrightarrow X$

The length of a path cannot be lower than the distance in 3D:

$$\|\mathbf{p}^1 - \mathbf{p}^2\|$$
: $\langle \mathbf{p}^1, \mathbf{v}^1 \rangle \dashrightarrow \langle \mathbf{p}^2, \mathbf{v}^2 \rangle$

The length of a path cannot be lower than than the geodesic dist

$$d_{\mathbb{M}}(\mathbf{p}^1, \mathbf{p}^2) \colon \langle \mathbf{p}^1, \mathbf{v}^1 \rangle \dashrightarrow \langle \mathbf{p}^2, \mathbf{v}^2 \rangle$$

The following bounds hold due to the constraint on inclination

$$\mathbf{p}_{z}^{1} - \mathbf{p}_{z}^{2} < 0 \qquad \mathbf{p}_{z}^{1} - \mathbf{p}_{z}^{2} > 0$$
$$|\mathbf{p}_{z}^{1} - \mathbf{p}_{z}^{2}| / \sigma_{\mathrm{U}} : \langle \mathbf{p}^{1}, \mathbf{v}^{1} \rangle \longrightarrow \langle \mathbf{p}^{2}, \mathbf{v}^{2} \rangle \qquad |\mathbf{p}_{z}^{1} - \mathbf{p}_{z}^{2}| / \sigma_{\mathrm{L}} : \langle \mathbf{p}^{1}, \mathbf{v}^{1} \rangle \longrightarrow \langle \mathbf{p}^{2}, \mathbf{v}^{2} \rangle$$

Follow up: we can order schema axioms in partial order ("subnategories"?)

$$rg$$

listance:
n:
 $-\mathbf{p}_z^2 > 0$

Different choices for norphisms for Berg

We need to check the condition:	optionally
$i_{YZ}(f \leftrightarrow n, g) \Rightarrow i_{XZ}(n, f \circ g)$ $i_{XY}(n \leftarrow g, f) \Rightarrow i_{XZ}(n, f \circ g)$	$\frac{i_{YZ}(f \leftrightarrow n)}{i_{XY}(n \leftarrow g)}$
$Nom_{Berg}(X;Y) := \mathbb{R}_{\geq 0} \cup \{+\infty\}$	Nom _{Berg} (
$f \leftarrow n = \max\{n - \operatorname{length}(f), 0\}$ $n \leftarrow g = \max\{n - \operatorname{length}(g), 0\}$	$f \bullet n$ $n \bullet g$
 ✓ valid nategory ➤ not exact 	\checkmark
$\operatorname{Nom}_{\operatorname{\mathbf{Berg}}}(X;Y) := \mathbb{Z} \cup \{+\infty\}$	Nom _{Berg}
$f \leftarrow n = floor(n - length(f))$ $n \leftarrow g = floor(n - length(g))$	$f \bullet n =$ $n \bullet g =$
✓ valid nategory	×
× not exact	×

y, the exactness condition:

 $n,g) \Leftrightarrow i_{XZ}(n,f \ {}^{\circ}_{9}g)$ $g,f) \Leftrightarrow i_{XZ}(n,f \ {}^{\circ}_{9}g)$

 $(X;Y) := \mathbb{R} \cup \{+\infty\}$

n = n - length(f)

g = n - length(g)

valid nategory

exact

 $_{\mathbf{g}}(X;Y) := \mathbb{Z} \cup \{+\infty\}$

= round(n - length(f))

= round(n - length(g))

not a nategory

X not exact

Definition (Enriched category)

Let $\langle \mathbf{V}, \boldsymbol{\otimes}, \mathbf{1}, as, lu, ru \rangle$ be a monoidal category, where *as* is the associator, *lu* is the left unitor, and *ru* is the right unitor.

A V-enriched category **E** is given by a tuple $\langle Ob_E, \alpha_E, \beta_E, \gamma_E \rangle$, where

- 1. Ob_E is a set of "objects".
- 2. $\alpha_{\mathbf{E}}$ is a function such that, for all pairs of objects $X, Y \in Ob_{\mathbf{E}}$, the value $\alpha_{\mathbf{E}}(X, Y)$ is an object of **V**.
- 3. $\beta_{\mathbf{E}}$ is a function such that, for all $X, Y, Z \in Ob_{\mathbf{E}}$, there exists a morphism $\beta_{\mathbf{E}}(X, Y, Z)$ of **V**, called *composition morphism*:

$$\beta_{\mathbf{E}}(X,Y,Z): \alpha_{\mathbf{E}}(X,Y) \otimes \alpha_{\mathbf{E}}(Y,Z) \to_{\mathbf{V}} \alpha_{\mathbf{E}}(Y,Z)$$

4. $\gamma_{\mathbf{E}}$ is a function such that, for each $X \in Ob_{\mathbf{E}}$, there exists a morphism of **V**:

$$\gamma_{\mathbf{E}}(X) : \mathbf{1} \to_{\mathbf{V}} \alpha_{\mathbf{E}}(X, X).$$

$$\alpha_{\mathbf{E}}(X,Y) \otimes \alpha_{\mathbf{E}}(Y,U) \xrightarrow{} \alpha_{\mathbf{E}}(X,Y,U) \xrightarrow{} \alpha_{\mathbf{E}}(X,U) \xrightarrow{} \alpha_{\mathbf{E}}(X,Z,U) \xrightarrow{} \alpha_{\mathbf{E}}(X,Z,U)$$

$$\alpha_{\mathbf{E}}(X,Y) \otimes \alpha_{\mathbf{E}}(Y,Y) \xrightarrow{\beta_{\mathbf{E}}(X,Y,Y)} \alpha_{\mathbf{E}}(X,Y) \xrightarrow{\beta_{\mathbf{E}}(X,X,Y)} \alpha_{\mathbf{E}}(X,X)$$

$$id_{\alpha_{\mathbf{E}}(X,Y)} \otimes \gamma_{\mathbf{E}}(Y) \uparrow \qquad ru \qquad lu \qquad 1 \otimes e^{\alpha_{\mathbf{E}}(X,Y)} \otimes 1 \qquad 1 \otimes e^{\alpha_{\mathbf{E}}(X,Y)} \otimes 1 \qquad 1 \otimes e^{\alpha_{\mathbf{E}}(X,Y)} \otimes e^{\alpha_{\mathbf{E}}(X,Y,Y)} \otimes e^{\alpha_{\mathbf{E}}(X,Y$$

(X,Z). $\int \beta_{\mathbf{E}}(X,Y,Z) \otimes \operatorname{id}_{\alpha_{\mathbf{E}}(Z,U)}$ $Z) \otimes \alpha_{\mathbf{E}}(Z,U)$

 $\chi(X) \otimes \alpha_{\mathbf{E}}(X,Y)$ $\gamma_{\mathbf{E}}(X) \otimes \operatorname{id}_{\alpha_{\mathbf{E}}(X,Y)}$ $\alpha_{\mathbf{E}}(X,Y)$

Lemma. A category enriched in **P** gives the data necessary to define a small category, and vice versa.

Proof. We show one direction. Suppose that we are given a **P**-enriched category as a tuple $\langle Ob_{\mathbf{F}}, \mathbf{F} \rangle$ $\alpha_{\rm E}, \beta_{\rm E}, \gamma_{\rm E}$). We can define a small category **C** as follows:

- Set $Ob_{\mathbf{C}} := Ob_{\mathbf{E}}$.
- For each $X, Y \in Ob_{\mathbb{C}}$, let $\operatorname{Hom}_{\mathbb{C}}(X; Y) := \alpha_{\mathbb{E}}(X, Y)$.
- For each $X, Y, Z \in Ob_{\mathbf{C}}$, we know a function

 $\beta_{\mathbf{E}}(X, Y, Z)$: Hom_C(X; Y) \otimes Hom_C(Y; Z) $\rightarrow_{\mathbf{Set}}$ Hom_C(X; Z).

The diagrams constraints imply that this function is associative. Therefore, we use it to define morphism composition in **C**, setting ${}^{\circ}_{X,Y,Z} := \beta_{\mathbf{E}}(X,Y,Z)$.

• For each $X \in Ob_{\mathbb{C}}$ we know a function $\gamma_{\mathbb{E}}(X) \colon 1 \to_{\mathbf{Set}} Hom_{\mathbb{C}}(X;X)$ that selects a morphism. The diagrams constraints imply that such morphism satisfies unitality with respect to ${}^{\circ}_{X,Y,Z}$. Therefore, we can use it to define the identity at each object:

$$\mathrm{id}_X := \gamma_{\mathbf{E}}(X)(\bullet).$$

(83)

(84)

The G(C) construction

- ▶ The **G(C)** construction is due to De Paiva.
- > It provides a nontrivial model of **linear logic:** all 4 connectives, 4 units, negations, and modalities are distinct.
- See the recent post by Niu on the Topos website that clarifies the relation between G(C)and **Poly**.
- Plan:
 - We recall the definition of **G(Set)**;
 - We recall some of the monoidal products defined by De Paiva;
 - We will define *yet another one*;
 - We will use it as a target for enrichment.

Definition (**PN**)

We call **PN** the monoidal category $\langle G(Set, Bool), \sqcup \rangle$.

Definition (**G**(**Set**)) An object of **G**(**Set**) is a tuple

 $\langle Q, A, C \rangle$,

where: Q is a set, A is a set, $C : Q \rightarrow_{\text{Rel}} A$ is a relation A morphism $\mathbf{r} : \langle Q_1, A_1, C_1 \rangle \rightarrow_{\text{GC}} \langle Q_2, A_2, C_2 \rangle$ is a p

$$\mathbf{r} = \langle \mathbf{r}_{\flat}, \mathbf{r}^{\sharp} \rangle,$$

$$\mathbf{r}_{\flat} : \mathbf{Q}_{1} \leftarrow_{\mathbf{Set}} \mathbf{Q}_{2},$$

$$\mathbf{r}^{\sharp} : \mathbf{A}_{1} \rightarrow_{\mathbf{Set}} \mathbf{A}_{2},$$

that satisfy the property

 $\forall q_2 : Q_2 \quad \forall a_1 : A_1 \quad r_{\flat}(q_2)C_1a_1 \Rightarrow$

Morphism composition is defined component-wise:

$$(\mathbf{r} \circ \mathbf{s})_{\flat} = s_{\flat} \circ r_{\flat},$$
$$(\mathbf{r} \circ \mathbf{s})^{\sharp} = r^{\sharp} \circ s^{\sharp}.$$

The identity at $\langle Q, A, C \rangle$ is given by $id_{\langle Q, A, C \rangle} = \langle id_Q \rangle$

on.
pair of maps
$$q_2 C_2 r^{\sharp}(a_1).$$

Definitio

Let **B** be a G(Set, B)

where Q

A morphi

tion (Category G(Set, B))
a category with finite products and coproducts. An object of the category
b) is a tuple

$$\langle Q, A, \varkappa \rangle$$
,
 χ is a set; A is a set, \varkappa is a function
 $\kappa : Q \times A \to Ob_B$.
hism $\mathbf{r} : \langle Q_1, A_1, \varkappa_1 \rangle \to \langle Q_2, A_2, \varkappa_2 \rangle$ is a tuple of three functions
 $\mathbf{r} = \langle r_b, r^z, r^z \rangle$,
 $r_b : Q_1 \leftarrow Set Q_2$,
 $r^{\sharp} : A_1 \to Set A_2$,
 $r^{\varphi} : \{q_2 : Q_2, a_1 : A_1\} \to \kappa_1(r_b(q_2), a_1) \to_B \kappa_2(q_2, r^{\sharp}(a_1))$.
hoposition of the above morphism \mathbf{r} with $\mathbf{s} : \langle Q_2, A_2, \varkappa_2 \rangle \to \langle Q_3, A_3, \varkappa_3 \rangle$
and as follows:
 $(\mathbf{r} \notin \mathbf{s})_{\psi} = s_{\psi} \And r_{\psi}$,
 $(\mathbf{r} \notin \mathbf{s})^{\sharp} = r^{\sharp} \And s^{\sharp}$,
 $(\mathbf{r} \notin \mathbf{s})^{\sharp} = r^{\sharp} \And s^{\sharp}$,
 $(\mathbf{r} \Re)^{\sharp} : \langle q_3, a_1 \rangle \mapsto r^*(s_{\psi}(q_3), a_1) \mathring{}_B s^*(q_3, r^{\sharp}(a_1))$.
plicitly,
 $\langle q_3, a_1 \rangle \mapsto$
 $1((s_{\psi} \And r_{\psi})(q_3), a_1) \frac{r^*(s_{\psi}(q_3), a_1)}{2} \kappa_2(s_{\psi}(q_3), r^z(a_1)) \frac{s^*(q_3, r^z(a_1))}{2} \kappa_3(q_3, (r^{\sharp} \And s^{\sharp})(a_1))$.

The comp is defined

$$(\mathbf{r} \circ \mathbf{s})_{\flat} = s_{\flat} \circ r_{\flat},$$

$$(\mathbf{r} \circ \mathbf{s})^{\sharp} = r^{\sharp} \circ s^{\sharp},$$

$$(\mathbf{r} \circ \mathbf{s})^{\ast} : \langle q_{3}, a_{1} \rangle \mapsto r^{\ast}(s_{\flat}(q_{3}), a_{1}) \circ_{\mathbf{B}} s^{\ast}(q_{3}, r^{\sharp}(a_{1})).$$

More expl

$$(\mathbf{r} \overset{\circ}{,} \mathbf{s})^{*} : \langle q_{3}, a_{1} \rangle \mapsto$$

$$\kappa_{1}((s_{\flat} \overset{\circ}{,} r_{\flat})(q_{3}), a_{1}) \xrightarrow{r^{*}(s_{\flat}(q_{3}), a_{1})} \kappa_{2}(s_{\flat}(q_{3}), r^{\ddagger}(a_{1})) \xrightarrow{s^{*}(q_{3}, r_{\flat})} \kappa_{2}(s_{\flat}(q_{3}), r^{\ddagger}(q_{3})) \xrightarrow{s^{*}(q_{3}, r_{\flat})} \kappa_{2}(s_{\flat}(q_{3}), r^{\ddagger}(q_{3})) \xrightarrow{s^{*}(q_{3}, r_{\flat})} \kappa_{2}(s_{\flat}(q_{3}), r^{\ddagger}(q_{3})) \xrightarrow{s^{*}(q_{3}, r_{\flat})} \kappa_{2}(s_{\flat}(q_{3}), r^{\ddagger}(q_{3})) \xrightarrow{s^{*}(q_{3}, r_{\flat})} \kappa_{2}(s_{5}, r^{\flat})} \kappa_{2$$

The identity at $\langle Q, A, \kappa \rangle$ is given by $\langle id_Q, id_A, \langle q, a \rangle \mapsto id_{\kappa(q,a)} \rangle$.

Definition (**G**(**Cat**, **B**)) Given a category **B**, an object of **G**(**Cat**, **B**) is a tuple

 $\langle Q, A, \kappa \rangle$,

where Q is a category, A is a category, κ is a functor

$$\kappa: Q^{\mathrm{op}} \times A \to \mathbf{B}.$$

A morphism **r** : $\langle Q_1, A_1, \kappa_1 \rangle \rightarrow_{\text{GCat}} \langle Q_2, A_2, \kappa_2 \rangle$ is a tuple

$$\mathbf{r} = \langle \mathbf{r}_{\flat}, \mathbf{r}^{\sharp}, \mathbf{r}^{\ast} \rangle,$$

where

- \triangleright r_{\flat} : $Q_2 \rightarrow_{Cat} Q_1$ is a functor,
- $\triangleright r^{\sharp} : A_1 \rightarrow_{\mathbf{Cat}} A_2$ is a functor,
- ▷ r* is a natural transformation between two functors

$$F, G: \mathbb{Q}_2^{\mathrm{op}} \times A_1 \to \mathbf{B},$$

defined as

$$F = (\mathbf{r}_{\flat} \times \mathrm{id}_{A_1}) \overset{\circ}{,} \overset{\kappa}{}_1,$$
$$G = (\mathrm{id}_{Q_2^{\mathrm{op}}} \times \mathbf{r}^{\sharp}) \overset{\circ}{,} \overset{\kappa}{}_2.$$

Definition (**G**(**Cat**, **B**)) Given a category **B**, an object of **G**(**Cat**, **B**) is a tuple

$$\langle Q, A, \kappa \rangle$$
,

where Q is a category, A is a category, κ is a functor

$$\kappa: Q^{\mathrm{op}} \times A \to \mathbf{B}.$$

A morphism **r** : $\langle Q_1, A_1, \kappa_1 \rangle \rightarrow_{\text{GCat}} \langle Q_2, A_2, \kappa_2 \rangle$ is a tuple

$$\mathbf{r} = \langle r_{\flat}, r^{\sharp}, r^{\ast} \rangle,$$

where

$$r_{b}: Q_{2} \rightarrow_{Cat} Q_{1} \text{ is a functor,}$$

$$r^{\ddagger}: A_{1} \rightarrow_{Cat} A_{2} \text{ is a functor,}$$

$$r^{\ast} \text{ is a natural transformation between two functors}$$

$$F, G: Q_{2}^{\text{op}} \times A_{1} \rightarrow \mathbf{B},$$
defined as
$$F = (r_{b} \times \text{id}_{A_{1}}) \stackrel{\circ}{,} \kappa_{1},$$

$$G = (\text{id}_{Q_{2}^{\text{op}}} \times r^{\ddagger}) \stackrel{\circ}{,} \kappa_{2}.$$

nymore!

A monoidal product

Definition (Monoidal product *) The action on the objects is defined as follows:

 $\langle Q_1, A_1, \kappa_1 \rangle * \langle Q_2, A_2, \kappa_2 \rangle = \langle Q_1 \times Q_2, A_1 \times A_2, \kappa_1 * \kappa_2 \rangle$

 $\kappa_1 * \kappa_2 : \langle \langle q_1, q_2 \rangle, \langle a_1, a_2 \rangle \rangle \mapsto \kappa_1(q_1, a_1) \times_{\mathbf{B}}^{\cdot} \kappa_2(q_2, a_2),$

where $\times_{\mathbf{B}}^{\cdot}$ is the product of two objects in **B**. The monoidal unit is

$$1_* = \langle \{\bullet\}, \{\bullet\}, \top \rangle, \qquad \forall : \langle \bullet, \bullet \rangle \mapsto 1_{\mathbf{B}}$$

The product of \mathbf{r} : $\langle Q_1, A_1, \kappa_1 \rangle \rightarrow \langle Q_3, A_3, \kappa_3 \rangle$ and \mathbf{s} : $\langle Q_2, A_2, \kappa_2 \rangle \rightarrow \langle Q_4, A_4, \kappa_4 \rangle$ is

 $\mathbf{r} *^{\rightarrow} \mathbf{s} \colon \langle Q_1 \times Q_2, A_1 \times A_2, \kappa_1 * \kappa_2 \rangle \to \langle Q_3 \times Q_4, A_3 \times A_4, \kappa_3 * \kappa_4 \rangle$

$$(\mathbf{r} \ast^{\rightarrow} \mathbf{s})_{\flat} = r_{\flat} \times^{\rightarrow} s_{\flat},$$

$$(\mathbf{r} \ast^{\rightarrow} \mathbf{s})^{\sharp} = r^{\sharp} \times^{\rightarrow} s^{\sharp},$$

$$(\mathbf{r} \ast^{\rightarrow} \mathbf{s})^{\ast} : \langle \langle q_{3}, q_{4} \rangle, \langle a_{1}, a_{2} \rangle \rangle \mapsto r^{\ast}(q_{3}, a_{1}) \times^{\rightarrow}_{\mathbf{B}},$$

... another one...

Definition (Monoidal product \otimes) The action on the objects is defined as follows:

 $\langle Q_1, A_1, \kappa_1 \rangle \otimes^{\cdot} \langle Q_2, A_2, \kappa_2 \rangle = \langle Q_1^{A_2} \times Q_2^{A_1}, A_1 \times A_2, \kappa_1 \otimes \kappa_2 \rangle$

 $\kappa_1 \otimes \kappa_2 : \langle \langle q_1, q_2 \rangle, \langle a_1, a_2 \rangle \rangle \mapsto \kappa_1(q_1(a_2), a_1) \times_{\mathbf{B}}^{\cdot} \kappa_2(q_2(a_1), a_2),$

where $\times_{\mathbf{B}}^{\cdot}$ is the product of two objects in **B**. The monoidal unit is

$$\mathbf{l}_{\otimes} = \langle \{\bullet\}, \{\bullet\}, \mathsf{T} \rangle, \qquad \mathsf{T} : \langle \bullet, \bullet \rangle \mapsto \mathbf{1}_{\mathbf{B}}$$

The product of \mathbf{r} : $\langle Q_1, A_1, \kappa_1 \rangle \rightarrow \langle Q_3, A_3, \kappa_3 \rangle$ and \mathbf{s} : $\langle Q_2, A_2, \kappa_2 \rangle \rightarrow \langle Q_4, A_4, \kappa_4 \rangle$ is

$$\mathbf{r} \otimes^{\stackrel{\rightarrow}{}} \mathbf{s} \colon \langle Q_1^{A_2} \times Q_2^{A_1}, A_1 \times A_2, \kappa_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, k_1 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_2 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_2 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_2 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_2 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_2 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \times Q_4^{A_4}, k_4 \otimes \kappa_2 \rangle \to \langle Q_4^{A_4} \otimes \kappa_2 \rangle \to \langle Q_4^{A$$

$$(\mathbf{r} \otimes^{\stackrel{\circ}{}} \mathbf{s})_{\flat} = \langle s^{\sharp} \, {}_{9}^{\circ} - {}_{9}^{\circ} r_{\flat}, r^{\sharp} \, {}_{9}^{\circ} - {}_{9}^{\circ} s_{\flat} \rangle,$$

$$(\mathbf{r} \otimes^{\stackrel{\circ}{}} \mathbf{s})^{\sharp} = r^{\sharp} \times^{\stackrel{\circ}{}} s^{\sharp},$$

$$(\mathbf{r} \otimes^{\stackrel{\circ}{}} \mathbf{s})^{*} : \langle \langle q_{3}, q_{4} \rangle, \langle a_{1}, a_{2} \rangle \rangle \mapsto r^{*}((s^{\sharp} \, {}_{9}^{\circ} q_{3})(a_{2}), a_{1}) \times^{\stackrel{\circ}{}}_{\mathbf{B}} f_{a_{1}}$$

... and another one...

Definition (Monoidal product \Im) The action on the objects is defined as follows:

 $\langle Q_1, A_1, \kappa_1 \rangle \, \mathfrak{F} \langle Q_2, A_2, \kappa_2 \rangle = \langle Q_1 \times Q_2, A_1^{Q_2} \times A_2^{Q_1}, \kappa_1 \, \mathfrak{F} \kappa_2 \rangle$ $\kappa_1 \approx \kappa_2 : \langle \langle q_1, q_2 \rangle, \langle a_1, a_2 \rangle \rangle \mapsto \kappa_1(q_1(a_2), a_1) + \kappa_2(q_2(a_1), a_2),$ where $+_{\mathbf{B}}^{\cdot}$ is the coproduct of two objects in **B**. The monoidal unit is $1_{\mathcal{D}} = \langle \{\bullet\}, \{\bullet\}, \bot\rangle, \qquad \bot : \langle \bullet, \bullet \rangle \mapsto 0_{\mathbf{B}}.$ The product of \mathbf{r} : $\langle Q_1, A_1, \kappa_1 \rangle \rightarrow \langle Q_3, A_3, \kappa_3 \rangle$, \mathbf{s} : $\langle Q_2, A_2, \kappa_2 \rangle \rightarrow \langle Q_4, A_4, \kappa_4 \rangle$ is $\mathbf{r} \, \mathfrak{F} \, \mathbf{s} \colon \langle Q_1 \times Q_2, A_1^{Q_2} \times A_2^{Q_1}, \kappa_1 \, \mathfrak{F} \, \kappa_2 \rangle \to \langle Q_3 \times Q_4, A_2^{Q_4} \times A_4^{Q_3}, \kappa_3 \, \mathfrak{F} \, \kappa_4 \rangle$ $(\mathbf{r} \ \mathscr{D}^{\rightarrow} \mathbf{s})_{b} = \mathbf{r}_{b} \times^{\rightarrow} \mathbf{s}_{b},$ $(\mathbf{r} \ \mathfrak{B}^{\rightarrow} \mathbf{s})^{\sharp} = \langle \mathbf{s}_{\mathsf{h}} \ \mathfrak{g} - \mathfrak{g} \ \mathbf{r}^{\sharp}, \mathbf{r}_{\mathsf{h}} \ \mathfrak{g} - \mathfrak{g} \ \mathbf{s}^{\sharp} \rangle,$ $(\mathbf{r} \, \mathscr{D}^{\stackrel{\rightarrow}{}} \mathbf{s})^* : \langle \langle \mathbf{q}_3, \mathbf{q}_4 \rangle, \langle \mathbf{a}_1, \mathbf{a}_2 \rangle \rangle \mapsto \mathbf{r}^*(\dots, \mathbf{a}_1) + \overset{\rightarrow}{\mathbf{B}} \mathbf{s}^*(\dots, \mathbf{a}_2).$

where $+_{\mathbf{B}}^{\downarrow}$ is the coproduct of two morphisms in **B**.

...and the one we need!

Definition (Monoida The action on the obj

 $\langle Q_1, A_1, \kappa_1 \rangle$ $\kappa_1 \sqcup \kappa_2 : \langle \langle q_1 \rangle$ The monoidal unit is

al product
$$\sqcup$$
)
ects is defined as follows:
 $\downarrow \sqcup \langle Q_2, A_2, \kappa_2 \rangle = \langle Q_1^{A_2} \times Q_2^{A_1}, A_1 \times A_2, \kappa_1 \sqcup \kappa_2 \rangle$
 $\downarrow, q_2 \rangle, \langle a_1, a_2 \rangle \rangle \mapsto \kappa_1(q_1(a_2), a_1) +_{\mathbf{B}} \kappa_2(q_2(a_1), a_2)$
 $\downarrow_{\sqcup} = \langle \{ \bullet \}, \{ \bullet \}, \bot \rangle, \qquad \bot : \langle \bullet, \bullet \rangle \mapsto 0_{\mathbf{B}}.$
 $Q_1, A_1, \kappa_1 \rangle \to \langle Q_3, A_3, \kappa_3 \rangle \text{ and } \mathbf{s} : \langle Q_2, A_2, \kappa_2 \rangle \to \langle Q_4, A_4, \kappa_3 \sqcup \kappa_4 \rangle$
 $\downarrow_2^{A_1}, A_1 \times A_2, \kappa_1 \sqcup \kappa_2 \rangle \to \langle Q_3^{A_4} \times Q_4^{A_3}, A_3 \times A_4, \kappa_3 \sqcup \kappa_4 \rangle$
 $- \circ r_{\flat} r_{\flat}, r^{\ddagger} \circ - \circ s_{\flat} \rangle,$
 $\downarrow_3^{\ddagger}, A_1, a_2 \rangle \mapsto r^*(s^{\ddagger} \circ q_3(a_2), a_1) +_{\mathbf{B}} s^*(r^{\ddagger} \circ q_3(a_1), a_2).$

The product of \mathbf{r} : $\langle \mathbf{Q} \rangle$ κ_4 is

 $\mathbf{r} \sqcup \mathbf{s} \colon \langle \mathbf{Q}_1^{\mathbf{A}_2} \times \mathbf{Q}_2^{\mathbf{A}_2} \rangle$

 $(\mathbf{r} \sqcup \mathbf{s})_{\flat} = \langle s^{\sharp} \mathbf{s} -$ $(\mathbf{r}\sqcup^{\mathbf{H}}\mathbf{s})^{\sharp}=\mathbf{r}^{\sharp}\times^{\mathbf{H}}\mathbf{s}^{\sharp}$ $(\mathbf{r} \sqcup \mathbf{s})^* : \langle \langle q_3, q_4 \rangle$

 \rightarrow

Norphisms by enrichment

Definition (**PN**)

We call **PN** the monoidal category $\langle G(Set, Bool), \sqcup \rangle$.

Proposition. A **PN**-enriched category provides the data necessary to specify a nategory. However, not all nategories can be specified by the data of a **PN**enriched category, because the nategory produced has two additional neutrality properties:

> $\operatorname{id}_X \bullet n = n,$ $n \rightarrow \mathrm{id}_Y = n$,

two "distributivity" conditions:

$$(f \circ g) \bullet n = g \bullet (f \bullet n),$$
$$n \bullet (g \circ h) = (n \bullet h) \bullet g,$$

and a "mixed associativity" condition

$$f \leftrightarrow (n \leftarrow h) = (f \leftarrow n) \leftarrow h,$$

which are not necessarily satisfied by all nategories.

Some steps from the proof

The enrichment gives, for each pair of objects X, Y, a tuple

 $\alpha_{\mathbf{E}}(X,Y) = \langle Q, A, \boldsymbol{\kappa} \rangle$

which we use to define Hom, Nom, and *i*:

 $\alpha_{\mathbf{E}}(X,Y) = \langle \operatorname{Nom}_{\mathbf{C}}(X;Y), \operatorname{Hom}_{\mathbf{C}}(X;Y), \mathbf{i}_{XY} \rangle$

• For each object *X*, we have a morphism

 $\gamma_{\mathbf{E}}(X) : \mathbf{1}_{\mathbf{PN}} \to_{\mathbf{PN}} \alpha_{\mathbf{E}}(X,X)$

in our case:

 $\mathbf{r} = \gamma_{\mathbf{E}}(X) : \langle \{\bullet\}, \{\bullet\}, \bot \rangle \to_{\mathbf{PN}} \langle \operatorname{Hom}_{\mathbf{C}}(X;X), \operatorname{Nom}_{\mathbf{C}}(X;X), \mathbf{i}_{XX} \rangle$

the forward part picks a morphism that, given the other conditions, is the identity. The other conditions are vacuous.

Next up: composition operations..

Derivation of morphism composition operations

• For each triple X, Y, Z, enrichment gives a morphism of PN

 $\beta_{\mathbf{E}}(X,Y,Z): \alpha_{\mathbf{E}}(X,Y) \bigotimes_{\mathbf{PN}} \alpha_{\mathbf{E}}(Y,Z) \to_{\mathbf{PN}} \alpha_{\mathbf{E}}(X,Z)$

unrolling:

$$\mathbf{s}_{XYZ} : \langle \mathbf{N}_{XY}, \mathbf{H}_{XY}, \mathbf{i}_{XY} \rangle \bigotimes_{\mathbf{PN}} \langle \mathbf{N}_{YZ}, \mathbf{H}_{YZ}, \mathbf{i}_{YZ} \rangle \rightarrow_{\mathbf{PN}} \langle \mathbf{N}_{XZ} \rangle \\ \mathbf{s}_{XYZ} : \langle \mathbf{N}_{XY}^{H_{YZ}} \times \mathbf{N}_{YZ}^{H_{XY}}, \mathbf{H}_{XY} \times \mathbf{H}_{YZ}, \mathbf{i}_{XY} \sqcup \mathbf{i}_{YZ} \rangle \rightarrow_{\mathbf{PN}} \rangle$$

The forward part recovers morphism composition:

 s^{\sharp} : Hom_C(X; Y) × Hom_C(Y; Z) → Hom_C(X; Z)

The backward part gives the morphism composition functions:

$$\mathbf{S}_{\flat}: \mathbf{N}_{XZ} \to \mathbf{N}_{XY}^{H_{YZ}} \times \mathbf{N}_{YZ}^{H_{XY}}$$

The last component can be evaluated to get:

 $s^*(n, \langle f, g \rangle) : (i_{XY} \sqcup i_{YZ})(\langle (n -), (- - n) \rangle, \langle f, g \rangle) \rightarrow_{\text{Bool}} i_{XZ}(n, f \circ g)$ expanding:

 $s^{*}(n, \langle f, g \rangle) : i_{XY}(n \leftarrow g, f) +_{\text{Bool}}^{\cdot} i_{YZ}(f \leftarrow n, g) \rightarrow_{\text{Bool}} i_{XZ}(n, f \circ g)$ which is equivalent to 2 morphisms: $s^{*}_{1}(n, \langle f, g \rangle) : i_{XY}(n \leftarrow g, f) \rightarrow_{\text{Bool}} i_{XZ}(n, f \circ g) \qquad i_{YZ}(f \leftarrow i_{YZ}(f \leftarrow g))$

 $s_{2}^{*}(n, \langle f, g \rangle) : i_{YZ}(f \leftrightarrow n, g) \rightarrow_{\text{Bool}} i_{XZ}(n, f \circ g)$

 $\left| \begin{array}{c} \mathbf{H}_{XZ}, \mathbf{h}_{XZ}, \mathbf{i}_{XZ} \right\rangle \\ \mathbf{N}_{XZ}, \mathbf{H}_{XZ}, \mathbf{i}_{XZ} \\ \end{array} \right\rangle$

Z; Z; S: $\bullet : \mathbf{N}_{XZ} \times \mathbf{H}_{YZ} \to \mathbf{N}_{XY},$ $\bullet : \mathbf{H}_{XY} \times \mathbf{N}_{XZ} \to \mathbf{N}_{YZ},$

 $i_{YZ}(f \bullet n, g) \Rightarrow i_{XZ}(n, f \circ g)$ $i_{XY}(n \bullet g, f) \Rightarrow i_{XZ}(n, f \circ g)$

Norphisms by enrichment

Definition (**PN**)

We call **PN** the monoidal category $\langle G(Set, Bool), \sqcup \rangle$.

Proposition. A **PN**-enriched category provides the data necessary to specify a nategory. However, not all nategories can be specified by the data of a PNenriched category, because the nategory produced has two additional neutrality properties:

$$\operatorname{id}_X \bullet n = n,$$

 $n \bullet \operatorname{id}_Y = n,$

two "distributivity" conditions:

$$(f \circ g) \bullet n = g \bullet (f \bullet n),$$

 $n \bullet (g \circ h) = (n \bullet h) \bullet g,$

and a "mixed associativity" condition

$$f \bullet \bullet (n \bullet h) = (f \bullet \bullet n) \bullet h,$$

which are not necessarily satisfied by all nategories.

DP

• A morphism in **DP** is a **design problem**, an **expert**

Definition (Design Problem) A *design problem* (DP) is a tuple $\langle \mathbf{F}, \mathbf{R}, \mathbf{d} \rangle$, where \mathbf{F}, \mathbf{R} are posets and \mathbf{d} is a monotone map of the form

d : $\mathbf{F}^{\mathrm{op}} \times \mathbf{R} \rightarrow_{\mathrm{Pos}} \mathbf{Bool}$.

The composition in **DP** is given by

Definition (Series composition) Let $\mathbf{d} : \mathbf{P} \to \mathbf{Q}$ and $\mathbf{e} : \mathbf{Q} \to \mathbf{R}$ be design problems. We define their series composition $(\mathbf{d} \circ \mathbf{e}) : \mathbf{P} \to \mathbf{R}$ as: $(\mathbf{d} \circ \mathbf{e}) : \mathbf{P}^{\mathrm{op}} \times \mathbf{R} \to_{\mathbf{Pos}} \mathbf{Bool}$ $\langle p^*, r \rangle \mapsto \bigvee_{q \in \mathbf{Q}} \mathbf{d}(p^*, q) \wedge \mathbf{e}(q^*, r)$.

Norphisms (nesign problems) are infeasibility relations

Example: you cannot build a perpetual motion machine

These are still monotone maps, now stating infeasibility

 $n: \mathbf{F} \times \mathbf{R}^{\mathrm{op}} \rightarrow_{\mathrm{Pos}} \mathbf{Bool}.$

Morphisms and norphisms in DP

- Start from d: $\mathbf{F} \rightarrow \mathbf{R}$ and n: $\mathbf{F} \rightarrow \mathbf{R}$.
- Compatibility ensures that there are no contradictions

 $\mathbf{i}_{\mathbf{FR}}(\mathbf{n}, \mathbf{d}) = \exists f \in \mathbf{F}, r \in \mathbf{R} : \mathbf{d}(f, r) \land \mathbf{n}(f, r)$

- How do design problems and nesign problems compose?
- Starting from $n : \mathbf{P} \rightarrow \mathbf{Q}$ and $d : \mathbf{R} \rightarrow \mathbf{Q}$

$$(\mathbf{n} \star \mathbf{d})(p, r) = \bigvee_{q \in \mathbf{Q}} \mathbf{n}(p, q) \wedge \mathbf{d}(r)$$

• Starting from $d: \mathbf{Q} \rightarrow \mathbf{P}$ and $n: \mathbf{Q} \rightarrow \mathbf{R}$

$$(\mathbf{d} \leftrightarrow \mathbf{n})(p, r) = \bigvee_{q \in \mathbf{Q}} \mathbf{d}(q, p) \wedge \mathbf{n}(q)$$

Morphisms and norphisms in DP

- Let's consider the example of two dams
- Consider posets $\mathbf{P} = \mathbf{Q} = \mathbf{R} = \langle \mathbb{R}_{[J]}, \leq \rangle$
- Dams transform potential energy into kinetic energy
- Let's say we have feasibility and infeasibility information about a dam

 $d: \mathbf{R} \rightarrow \mathbf{Q} \qquad n: \mathbf{P} \rightarrow \mathbf{Q}$ $\frac{d(r,q)}{r \cdot 1.1 \le q}, \qquad \frac{n(p,q)}{p \cdot 1.2 > q}.$

• These produce a **nesign** problem $(n + d) : P \rightarrow R$ describing infeasibility between kinetic energies: can I get 10 J from 9 J? No!

$$(n \star d)(10,9) = \bigvee_{q \in \mathbf{Q}} n(10,q) \wedge d(9,q)$$
$$= \bigvee_{q \in \mathbf{Q}} (9.9 \le q < 12) = \top$$

Conclusions and future work

- Negative information can be categorified using negative arrows (norphisms).
 - (as opposed to using some logic on top of category theory...)
- Norphisms behave fundamentally differently than morphisms. They compose using morphisms as catalysts.

$$f: X \to Y \quad g: Y \to Z \qquad \qquad Y \xleftarrow{f} \stackrel{n}{\longrightarrow} Z \qquad \qquad X \xrightarrow{n} X \xrightarrow{$$

- "Nategories" generalize categories to account for the norphism machinery.
- We can derive the norphism rules very elegantly using **enriched category theory**.
 - Just like a **Set**-enriched category provides the data for a small category, ...
 - ... a **PN**-enriched category provides the data for a nategory.

Future work

- **PN** enrichment is too strong; induces more properties.
- Surveying natural norphism structures in the wild.
- Explore more the idea of algorithms producing both positive and negative information.
- Generalization to higher-level concepts. What would a "nunctor" be?

 $\xrightarrow{\bullet} g Y$

