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Large collaborations (4)

The Liquid Tensor Experiment is joint work with:

▶ Peter Scholze

▶ Adam Topaz

▶ Riccardo Brasca

▶ Patrick Massot

▶ Scott Morrison

▶ Kevin Buzzard

▶ Bhavik Mehta

▶ Filippo A.E. Nuccio

▶ Andrew Yang

▶ Joël Riou

▶ Damiano Testa

▶ Heather Macbeth

▶ Mario Carneiro

▶ many others
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▶ My attempts to understand the pen-and-paper proof
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Confidence, trust, and evidence (5)

Abductive reasoning:

If it looks like a duck,
swims like a duck, and
quacks like a duck,
then it probably is a duck.
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Confidence, trust, and evidence (7)

A profinite set is a topological space that is

▶ compact,

▶ Hausdorff,

▶ totally disconnected.

A morphism of topological spaces is a continuous function.

A condensed abelian group is a pro-étale sheaf

ProFinop → Ab.



Conclusion

Formal mathematics helps with . . .

▶ large collaborations

▶ cognitive load

▶ spec-driven development

▶ confidence, trust, and evidence


