

Euroopa Liit Euroopa Sotsiaalfond Eesti tuleviku heaks

Electrical Circuits with String Diagrams

Pawel Sobocinski, Tallinn University of Technology, Estonia

Topos Institute

1 December 2022

My takeaways from David Spivak's talk "What are we tracking?"

- We have the tools to tackle the age of complexity!
 - compositionality
 - structure / mathematical design patterns
 - cool diagrammatic syntax
 - better treatment of corner cases
 - mathematics of open systems

Graphical Relational Algebras

strict symmetric monoidal cats, usually props

- symmetric monoidal theories
- string diagrams as syntax
- diagrammatic reasoning
- graphical relational algebra

Relations

Linear Relations

Additive Relations

Affine Relations

"Stateful" Relations Polyhedral Relations Piecewise-Linear Relations

Mathematics of Open Systems

- I want the diagram above to be first class syntax
- I want a useful **calculus**: (in)equational characterisations of semantic identity
- formally, an arrow of a monoidal category (prop)
- but with relational semantics instead of functional semantics

Plan

- String diagrams
- Universal algebra with string diagrams
- Graphical linear algebra
- Graphical affine algebra and electrical circuits

Presenting symmetric monoidal categories

- Monoidal signature
 - $\Gamma = \{ \gamma : (ar(\gamma), coar(\gamma)) \}$
 - $ar(\gamma) \in \mathbf{N}$ arity of γ
 - $coar(\gamma) \in \mathbf{N}$ **coarity** of γ
- Term syntax for arrows
 - c,c' ::= γ | ϵ | id | σ | c;c | c \otimes c

Constructing diagrams

 To disambiguate terms one would need to introduce additional "parentheses" boxes

Only connectivity matters

 It also happens that different terms lead to diagrams with the same connectivity

Fundamental theorem

Theorem: Two diagrams obtained from terms c, c' have the same connectivity iff the terms are equated by the theory of symmetric strict monoidal categories.

String diagram = class of diagrams obtained from a term, up-to "only connectivity matters"

In particular: string diagrams are the arrows of the free symmetric strict monoidal category on Γ

objects = natural numbers ("dangling wires")

arrows = string diagrams

Plan

- String diagrams
- Universal algebra with string diagrams
- Graphical linear algebra
- Graphical affine algebra and electrical circuits

Symmetric monoidal theories

- A presentation of a symmetric monoidal theory is a pair (Γ , E) where
 - Γ is a monoidal signature
 - E is a set of pairs of string diagrams

• Example: Commutative comonoids

- Any presentation yields a symmetric monoidal category
 - arrows are string diagrams modulo "string diagram surgery" or "diagrammatic reasoning"

Cartesian categories

cartesian categories are those sym. mon. cats. where every object has

commutative comonoid structure

and everything commutes with the structure

Example: Set_×

Classical terms vs string diagrams

• consider the theory of magmas, one binary operation m

 $x,y,z \vdash m(x,y)$

 $x,y,z \vdash m(x,m(y,z))$

 $x,y,z \vdash m(y,x)$

Lawvere theories

- Lawvere theory = cartesian prop
- recipe for Lawvere-theories-as-props
 - 1. add a cocommutative comonoid structure
 - 2. make all generators commute with it
 - 3. add your other equations (which may make use of the comonoid structure)

e.g. $X \cdot X^{-1} = e$

Partial theories \overline{A}

(Di Liberti, Loregian, Nester, S. 2021)

- Partial theory = discrete cartesian restriction prop
- recipe for partial-as-locallyordered-props
 - add a partial Frobenius structure
 - make all your generators commute with comultiplication
 - add your other equations (which may make use of the partial Frobenius structure)

Partial Frobenius algebra, the unit is missing!

Relational theories

(Bonchi, Pavlovic, S. 2017)

- recipe for Frobenius-theoriesas-locally-ordered-props
 - add a Frobenius bimonoid structure where monoid is right adjoint to comonoid
 - make all your generators laxly commute with it
 - add your other equations (which may make use of the Frobenius structure)

Functorial semantics

- For Lawvere theories
 - models = cartesian functors (to **Set**_×)
 - homomorphisms = natural transformations
- For partial theories
 - models = cartesian restriction functors (to Parx)
 - homomorphisms = lax natural transformations
- For relational theories
 - models = morphisms of cartesian bicategories (to Rel_×)
 - homomorphisms = lax natural transformations

varieties = locally finitely presentable categories

> varieties = definable categories

See Chad Nester's thesis sometime in 2023!

Plan

- String diagrams
- Universal algebra with string diagrams
- Graphical linear algebra
- Graphical affine algebra and electrical circuits

Lawvere theory of commutative monoids = matrices of natural numbers Mat_N

Relational theory of linear relations

- Give a vector space k, $LinRel_k$ is the smc where
 - objects are natural numbers
 - arrows m to n are relations R⊆ k^{m+n} that are also klinear subspaces
- Graphical linear algebra = a presentation of the relational theory of linear relations
- The free model is isomorphic to the symmetric monoidal category LinRel_Q

GLA: a presentation of LinRel_Q

Where do the generators go? $\left\{\left(x,\begin{pmatrix}x\\x\end{pmatrix}\right)\right\}$ $\{(x, \bullet)\}$ $\left\{ \left(\begin{pmatrix} x \\ y \end{pmatrix}, x + y \right) \right\}$ $\{(\bullet, 0)\}$

Linear algebra = how these four relations and their opposites interact

• Colour

- black and white satisfy exactly the same equations in the equational theory
- so every proof is in fact a proof of two theorems: invert the colours!
- Left-Right
 - every fact is still a fact when viewed in the mirror

Basic concepts, diagrammatically

- transpose
 - combine colour ulletand mirror image symmetries

kernel (nullspace) ullet

cokernel (left nullspace)

image (columnspace)

coimage (rowspace)

Fact. Given a linear subspace R:0->k in LinRel, its orthogonal complement R[⊥] is its colour inverted diagram

Corollary. The "fundamental theorem of linear algera"

> $\ker A = \operatorname{im}(A^T)^{\perp}$ $\ker A^T = \operatorname{im}(A)^{\perp}$

Diagrammatic reasoning in action

Fact. A is injective iff

Theorem. A is injective iff ker A = 0

Fun Stuff - Rediscovering Fraction Arithmetic

Fun Stuff - Dividing by Zero

- LinRel_Q[1,1]
- projective arithmetic with two additional elements
 - the unique 0-dimensional subspace ⊥ = { (0,0) }
 - The unique 2-dimensional subspace $\top = \{ (x,y) \mid x,y \in \mathbf{Q} \}$

+	0	r/s	8	Т	
0	0	r/s	8	Т	
p/q	_	(sp+qr)/ qs	8	Т	
8	_	_	8	8	8
Т	_	_	_	Т	~
T	_	_	_	_	

×	0	r/s	8	Т	Т
0	0	0	\perp	0	\vdash
p/q	0	pr/qs	8	Т	\perp
8	Т	8	8	Т	8
Т	Т	Т	8	Т	8
\perp	0	\bot	\perp	0	\perp

Plan

- String diagrams
- Universal algebra with string diagrams
- Graphical linear algebra
- Graphical affine algebra and electrical circuits

Graphical Affine Algebra

(Bonchi, Piedeleu, S., Zanasi 2019)

Definition. Given a field **k**, a **k**-affine relation k I is a set $R \subseteq \mathbf{k}^k \times \mathbf{k}^l$ which is either empty, or s.t. there is a k-linear relation C and a vector (**a**,**b**) s.t. $R = (\mathbf{a},\mathbf{b}) + C$

- *Proposition*: affine relations are closed under composition
- AffRel_k = sub prop of Rel_k where arrows are affine relations

Diagrammatic syntax for k-affine relations

Equational characterisation

GAA = GLA +

Theorem. **GAA** \cong AffRel_k

Case study: non passive electrical circuits

(Boisseau, S. 2021)

- work with the diagrammatic language for AffRel_{R[X]}
- introduce a syntactic prop of electrical circuits
- develop diagrammatic reasoning techniques
 - the impedance calculus
- prove classical "theorems" of electrical circuit theory

The prop of electrical circuits

Circuits as GAA diagrams over R[x]

• Extend the signature of ECirc with impedance boxes

(i) Resistors, inductors and capacitors are "directionless":

What if R1=R2=0?

-(R1+R2)-

Measuring closed circuits

Relativity of potentials. Adding the same voltage difference to perform do the same voltage.

• **Conservation of current**. The current is equal to the sum of outgoing current.

Theorems 2

• Independent measurement theorem.

• Superposition theorem.

Thévenin's theorem

• If C is a one port circuit of resistors and independent sources then one of the following is true

Bibliography

- F. W. Lawvere. Functorial semantics of algebraic theories. PNAS, 1963.
- T. Fox. Coalgebras and cartesian categories. Comm Algebra 4.7:665-667, 1976
- Carboni and R.F.C. Walters. Cartesian Bicategories I. J Pure Appl Alg 49:11-32, 1987
- S. Lack. Composing PROPs. TAC 13:147-164, 2004
- J.C. Baez and J. Erbele. Categories in Control. arXiv:1405.6881, 2014
- F. Bonchi, P. Sobocinski, F. Zanasi. Interacting Bialgebras are Frobenius. FoSSaCS 2014
- F. Bonchi, P. Sobocinski, F. Zanasi. Interacting Hopf Algebras. J Pure Appl Alg 221:144-184, 2017
- F. Bonchi, P. Sobocinski, F. Zanasi. Full abstraction for signal flow graphs. PoPL 2015.
- B. Coya. Circuits, bond graphs, and signal-flow diagrams: a categorical perspective. PhD dissertation, U California Riverside 2018
- F. Bonchi, D. Pavlovic, P. Sobocinski. Functorial semantics for relational theories. arXiv:1711.08699, 2017
- F. Bonchi, R. Piedeleu, P. Sobocinski, F. Zanasi. Graphical Affine Algebra. LiCS 2019.
- G. Boisseau and P. Sobocinski. String diagrammatic electrical circuit theory. ACT 2021.
- I. Di Liberti, F. Loregian, C. Nester and P. Sobocinski. Functorial Semantics for partial theories. PoPL 2021.
- R. Piedeleu and F. Zanasi. A String Diagrammatic Axiomatisation of Finite-State Automata. FoSSaCS 2021.
- G. Boisseau and R. Piedeleu. Graphical piecewise-linear algebra. FoSSaCS 2022.