(Towards a) Fuzzy type theory

Paige Randall North

Utrecht University

2 February 2021

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Motivation

▶ To develop a language in which to model opinions

Motivation

- To develop a language in which to model opinions
- To (begin to) generalize the correspondence between category theory and type theory to a correspondence with enriched category theory on one side

Motivation

- To develop a language in which to model opinions
- To (begin to) generalize the correspondence between category theory and type theory to a correspondence with enriched category theory on one side
- ▶ To obtain another generalization of Martin-Löf type theory

- Logic of propositions
 - Model with complete lattices (posets with all co/limits)
 - Products (coproducts) represent conjunction (disjunction)
 - The terminal object ⊤ (initial object ⊥) represents the true (false) proposition
 - Write $P \leq Q$ to mean that P implies Q.
 - *P* holds when $\top \leq P$.

- Logic of propositions
 - Model with complete lattices (posets with all co/limits)
 - Products (coproducts) represent conjunction (disjunction)
 - The terminal object ⊤ (initial object ⊥) represents the true (false) proposition
 - Write $P \leq Q$ to mean that P implies Q.
 - *P* holds when $\top \leq P$.
- Logic of facts
 - Model with up-sets (slices) of lattices.
 - Given a lattice L of propositions, and a piece of evidence e ∈ L, e/L is the poset of propositions implied by e.
 - More generally, we can take a subcategory E of L.

- Logic of propositions
 - Model with complete lattices (posets with all co/limits)
 - Products (coproducts) represent conjunction (disjunction)
 - The terminal object \top (initial object \perp) represents the true (false) proposition
 - Write $P \leq Q$ to mean that P implies Q.
 - *P* holds when $\top \leq P$.
- Logic of facts
 - Model with up-sets (slices) of lattices.
 - Given a lattice *L* of *propositions*, and a piece of *evidence* $e \in L$, e/L is the poset of propositions implied by *e*.
 - More generally, we can take a subcategory E of L.
- Logic of opinions
 - Model with fuzzy lattices and fuzzy up-sets
 - Above, we answer "Is P ≤ Q?" or "Does P hold?" with "yes" or "no", i.e., "0" or "1".
 - Now we answer "Is P ≤ Q?" or "Does P hold?" with a value in an ordered monoid, for instance [0,1].

Proof irrelevant	Proof relevant
Propositions	
• Posets	
• Categories enriched in $\{0,1\}$	
Opinions	
 Fuzzy posets 	
• Categories enriched in [0,1]	

Proof irrelevant	Proof relevant
Propositions	Type theory
• Posets	Categories
• Categories enriched in $\{0,1\}$	 Categories enriched in Set
Opinions	
• Fuzzy posets	
• Categories enriched in [0,1]	

Proof irrelevant	Proof relevant
Propositions	Type theory
• Posets	Categories
• Categories enriched in $\{0,1\}$	• Categories enriched in Set
Opinions	Fuzzy type theory
• Fuzzy posets	• Fuzzy categories (?)
• Categories enriched in [0,1]	• Categories enriched in fuzzy sets,
	sets with a function to $\left[0,1 ight]$

Proof irrelevant	Proof relevant
Propositions	Type theory
• Posets	Categories
• Categories enriched in $\{0,1\}$	 Categories enriched in Set
Opinions	Fuzzy type theory
 Fuzzy posets 	• Fuzzy categories (?)
• Categories enriched in $[0,1]$	• Categories enriched in fuzzy sets,
	sets with a function to $\left[0,1 ight]$

• Goal: develop the bottom-right box.

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- Previously, opinions were modeled by real-valued vectors.
- Opinion space was some real vector space.

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- Previously, opinions were modeled by real-valued vectors.
- Opinion space was some real vector space.
- Modeling things as vectors plugs you in to a lot of computational tools,
- but it's akin to modeling propositional logic as {0,1}-valued vector space.

Opinion dynamics (jww Robert Ghrist and Hans Riess)

- Previously, opinions were modeled by real-valued vectors.
- Opinion space was some real vector space.
- Modeling things as vectors plugs you in to a lot of computational tools,
- but it's akin to modeling propositional logic as {0,1}-valued vector space.
- Want to capture more of the structure with tailor-made algebraic notion.

- ► The natural ordering on the booleans B := {0,1} forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a B-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - for each $x \in ob(\mathcal{C})$, a point $1 \rightarrow hom(x, y)$
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \rightarrow hom(x, z)$.
 - such that ...

- ► The natural ordering on the booleans B := {0,1} forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a B-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - ▶ for each $x \in ob(C)$, a point $1 \leq hom(x, y)$
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \rightarrow hom(x, z)$.
 - such that ...

- ► The natural ordering on the booleans B := {0,1} forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a B-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, y)
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \rightarrow hom(x, z)$.
 - such that ...

- ► The natural ordering on the booleans B := {0,1} forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a B-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, y)
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

Booleans

- ► The natural ordering on the booleans B := {0,1} forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a B-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{B} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, y)
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

We can interpret hom(x, y) as indicating whether or not $x \leq y$.

The interval

- ► The natural ordering on the interval I := [0,1] forms a category.
- It has a monoidal structure given by multiplication.
- ▶ Thus, we can consider a I-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{I} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, y)
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

The interval

- ► The natural ordering on the interval I := [0,1] forms a category.
- It has a monoidal structure given by multiplication.
- ► Thus, we can consider a I-enriched category C:
 - ▶ a set of objects ob(C),
 - ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of \mathbb{I} ,
 - ▶ for each $x \in ob(C)$, a point 1 = hom(x, y)
 - ▶ for each $x, y, z \in ob(C)$, a morphism $\circ : hom(x, y) \cdot hom(y, z) \leq hom(x, z)$.
 - such that ...

We can interpret hom(x, y) as indicating **to what extent** $x \leq y$.

- In general, we can replace B or I with any monoidal category, but here we consider only monoidal categories which are posets, i.e., ordered monoids M.
- ▶ Then, given an M-enriched category C (representing a space of opinions) we ask that it has the enriched (fuzzy) versions of all limits and colimits: all weighted limits and colimits.
- Then we consider a network of individuals, each with their own opinion space and opinion that they are communicating, and study dynamics.
 - Encode the network as a graph, and consider a sheaf over it, valued in the category of M-enriched categories.

Weighted limits and colimits

- In a category, we can consider the product A × B of two objects, A, B
- But the concept of 'weighted limits' allows us to weight both
 A and B by sets α and β.
- The product with this weighting is then the product of α-many copies of A and β-many copies of B (A^α ×^β B)
- ▶ In a \mathbb{M} -enriched category, to take a product of A and B, we take weights $\alpha, \beta \in M$.
- Then $A^{\alpha} \wedge^{\beta} B$ behaves like a conjunction of A scaled down by α and B scaled down by β .

Weighted meets and joins

Let:

- ► *S* = "Alice likes strawberry ice cream."
- ► C = "Alice likes chocolate ice cream."
- ► B = "Alice likes chocolate ice cream better than strawberry ice cream."

Weighted meets and joins

Let:

- ► *S* = "Alice likes strawberry ice cream."
- ► C = "Alice likes chocolate ice cream."
- ► B = "Alice likes chocolate ice cream better than strawberry ice cream."

Then we can consider:

- ${}^{\alpha}S$ = "Alice likes strawberry ice cream with intensity α ."
- $B^1 \wedge^{\alpha} S = "B \text{ and } {}^{\alpha} S"$.

Weighted meets and joins

Let:

- ► *S* = "Alice likes strawberry ice cream."
- ► C = "Alice likes chocolate ice cream."
- ► B = "Alice likes chocolate ice cream better than strawberry ice cream."

Then we can consider:

- ${}^{\alpha}S$ = "Alice likes strawberry ice cream with intensity α ."
- $B^1 \wedge^{\alpha} S = "B \text{ and } {}^{\alpha} S"$.

We can prove a 'fuzzy modus ponens':

• $(B^1 \wedge^{\alpha} S \leqslant C) = \alpha$ and $(B^1 \wedge^{\alpha} S \leqslant^{\alpha} C) = 1$

Fuzzy concepts

Let:

- P = "I like the iPhone."
- Q = "I like the Galaxy."
- R = "I like the Pixel."
- $S = \{P, Q, R\}$

Fuzzy concepts

Let:

- P = "I like the iPhone."
- Q = "I like the Galaxy."
- R = "I like the Pixel."
- $S = \{P, Q, R\}$
- \triangleright We can consider the presheaf \mathbb{M} -category $[S, \mathbb{M}]$ whose objects are functions $S \rightarrow M$.
- \triangleright It is the *completion* of *S* under weighted co/limits.
- \triangleright The elements are of the form

 $P^{\alpha} \wedge^{\beta} Q \wedge^{\overline{\gamma}} R$ or $((P, \alpha), (Q, \overline{\beta}), (R, \gamma))$

for $\alpha, \beta, \gamma \in [0, 1]$.

Outline

Introduction and motivation

Fuzzy propositional logic

Fuzzy type theory

Fuzzy type theory (jww Shreya Arya, Greta Coraglia, Sean O'Connor, Hans Riess, Ana Tenório)

- In the last section, we fuzzified propositional logic by seeing it as a part of category theory, and fuzzifying the enrichment from B to I or M.
- ▶ Now we fuzzify Martin-Löf type theory by a similar route.
- People might have multiple reasons for their opinions, so this seems appropriate.

Simple type theory

There is an equivalence of categories between simply typed $\lambda\text{-calculi}$ and cartesian closed categories.

STLC	ССС
type A	object A
term $x : A \vdash b(x) : B$	morphism $b: A \rightarrow B$
conjunction $A \wedge B$	product $A imes B$
implication $A \Rightarrow B$	exponential B ^A

Simple type theory

There is an equivalence of categories between simply typed $\lambda\text{-calculi}$ and cartesian closed categories.

STLC	ССС
type A	object A
term $x : A \vdash b(x) : B$	morphism $b: A \rightarrow B$
conjunction $A \wedge B$	product $A \times B$
implication $A \Rightarrow B$	exponential B ^A

To fuzzify this, we consider on the right-hand side $\operatorname{Set}(\mathbb{M})\text{-enriched}$ categories.

Fuzzy sets

 $\operatorname{Set}(\mathbb{M})$ is the category whose

- ▶ objects are pairs (X, ν) where X is a set and $\nu : X \to M$
- morphisms (X, ν) → (Y, μ) are functions f : X → Y such that ν(x) ≤ μ(fx) for all x ∈ X

It inherits a monoidal structure from the ones on Set and $\mathbb{M}:$

$$\blacktriangleright (X,\nu) \otimes (X,\mu) := (X \times Y, \nu \cdot \mu)$$

▶ The monoidal unit is (*,1).

Fuzzy categories

Definition

A $\operatorname{Set}(\mathbb{M})\text{-enriched}$ category $\mathcal C$ consists of

- a set of objects $ob(\mathcal{C})$,
- ▶ for each pair $x, y \in ob(C)$, an object hom(x, y) of $Set(\mathbb{M})$,
- ▶ for each $x \in ob(C)$, a point $(1, *) \rightarrow hom(x, y)$
 - i.e., an element of hom(x, y) with value 1
- ▶ for each $x, y, z \in ob(C)$, a morphism
 - \circ : hom $(x, y) \otimes$ hom $(y, z) \rightarrow$ hom(x, z).
 - ▶ i.e., a function \circ : hom $(x, y) \times$ hom $(y, z) \rightarrow$ hom(x, z) such that $|f||g| \leq |g \circ f|$
- such that ...
- Now there can be multiple morphisms/reasons of a type/opinion, but each one comes with some intensity.

Dependent type theory

- We've talked about propositional logic and the simply typed λ-calculus, and their categorical interpretations.
- Our goal is actually dependent type theory.
 - Proof relevant first-order logic.
 - Types can be indexed by other types, just as predicates in first-order logic are indexed by sets.
 - In propositional logic, we have types/propositions A, in simply-types λ-calculus, we have terms/proofs
 x : A ⊢ b(x) : B, and in dependent type theory we have dependent types x : A ⊢ B(x).

Display map categories

Definition

A *display map category* is a pair (C, D) of a category C and a class D of morphisms (called *display maps*) of C such that

- C has a terminal object *
- every map $X \rightarrow *$ is a display map
- ► *D* is stable under pullback
- The objects interpret types, the morphisms interpret terms, and the display maps interpret dependent types, and sections of display maps interpret dependent terms.
- From a dependent type x : B ⊢ E(x), we can always form ⊢ π : Σ_{x:B}E(x) → B, and this is represented by the display maps.

Fuzzy display map categories

Definition

A fuzzy display map category is a pair (\mathcal{C}, D) of a Set(\mathbb{M})-enriched category \mathcal{C} and a class D of morphisms (called *fuzzy display maps*) of \mathcal{C} , each of which has value 1, such that

- $\mathcal C$ has a terminal object *
- every map $X \rightarrow *$ is a display map
- D is stable under particular weighted pullbacks

Fuzzy terms

- The objects of a fuzzy display map category represent types (or contexts).
- The display maps $d: E \rightarrow B$ represent dependent types.
- In non-fuzzy display map categories, terms are represented as sections of display maps. Now our sections are fuzzy.

Fuzzy terms

- The objects of a fuzzy display map category represent types (or contexts).
- The display maps $d: E \rightarrow B$ represent dependent types.
- In non-fuzzy display map categories, terms are represented as sections of display maps. Now our sections are fuzzy.

Definition

An α -fuzzy section of a fuzzy display map is a section with value at least α .

• These represent terms $x : B \vdash s :_{\alpha} E(x)$.

Substitution / weighted pullbacks

In the definition of *fuzzy display-map category*, we ask that the class of display maps is stable under particular weighted pullbacks.

- We choose the weight on A to be the singleton with value 1 and the weight on B to be the singleton with the value of f.
- Thus, the vertical maps have the same value (1), as do the horizontal maps.

Structural rules

$\frac{\Gamma \vdash A \operatorname{Type}}{\vdash \Gamma, x: A \operatorname{ctx}} (C-Ext)$
$\frac{\Gamma \vdash s:_{\alpha} A}{\Gamma \vdash s:_{\beta} A}$ (Cons)
$\frac{\Gamma,\Delta \vdash b:_{\beta}B}{\Gamma,x:A,\Delta \vdash b:_{\beta}B} (Weak_{tm})$
$\frac{\Gamma_{,x:A,\Delta \vdash b:_{\beta}B}}{\Gamma_{,\Delta}[a/x] \vdash b[a/x]:_{\beta}B[a/x]} (Subst_{tm})$

Theorem

Fuzzy display map categories validate these rules.

Future work

Goals and questions

- Add type formers, like weighted conjunction
- Do we want to fuzzify other relations in type theory, like equality?
- Use this to study opinion dynamics

Thank you!