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The Challenge of 
Space Networking:

Aspects of this challenge:
1. Time-Varying Networks
2. Long One-Way Light Travel
3. Different network topologies 

"glued together”
Develop a scalable, 

autonomous routing protocol 
for solar system-wide internet



T I M E -
V A R Y I N G  
G R A P H S

S E M I R I N G  M O D E L S
F O R

S P A C E  N E T W O R K I N G



What is a time-varying graph?
This is not the final answer!

From https://blog.twitter.com/engineering/en_us/topics/insights/2021/temporal-graph-networks



Graph Sequences
• No obvious temporal duration
• “Continuity” undefined
• Graphs studied “slice by slice”, 

e.g. diameter statistics

Diameter of Graph Slice

80 Starlink Satellites over One Day
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the longest 
shortest 
path

Diameter = 9 Diameter = 15



What is a TVG really?

The answer is here!



Definition of a TVG

A time-varying graph (TVG) 
is a matrix of subsets of time

𝑀(𝑖, 𝑗) ∈ 𝒫(ℝ)

node #

node #

Alive or N
ot (secs)

The set of all 
subsets of timeOr…

𝑀:𝐺𝑜𝑝 →𝒫(ℝ)

Cellular Cosheaf⇔ vertex alive whenever edge is alive



W H Y  
M A T R I C E S ?
A R I T H M E T I C  F O R  T V G S



Static Graphs are Boolean Matrices 

True = ⊤ = “1”
False = ⊥ = “0”

Boolean Semiring

AND = ∧ =⊗
OR = ∨ =⊕

Elements Operations
1

2

3

4

⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥

1

2

3

4

1 2 3 4

A =

Adjacency Matrix
Directed Graph

2-Walk Matrix

2-Walk Graph

Fr
om

To

What can you do with matrices? Multiply them!

(⊥ ∧ ⊥) ∨ (⊤ ∧ ⊤) ∨ (⊤ ∧ ⊤) ∨ (⊥ ∧ ⊥)=⊤

Example row times column multiplication

Bool

1

2

3

4

This edge witnesses
a route from 1 to 4 

of length two!⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥

A2 =
⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥

=
⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥

1 2 3 4
1

2

3

4

Semiring: a set S with sum ⊕ and multiplication⊗ operation

{∅ ∗ ∅,       12∗24,       13∗34, ∅ ∗ ∅} = {124, 134}Name



Graphs and Semi-rings

True = ⊤ = “1”
False = ⊥ = “0”

Boolean Semi-ring

AND = ∧ =⊗
OR = ∨ =⊕

Elements Operations

1

2

3

4

⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥

1

2

3

4

1 2 3 4

A =

Adjacency Matrix
Directed Graph

2-Walk Matrix

2-Walk Graph

Fr
om

To

What can you do with matrices? Multiply them!

(⊥ ∧ ⊥) ∨ (⊤ ∧ ⊤) ∨ (⊤ ∧ ⊤) ∨ (⊥ ∧ ⊥)=⊤

Example row times column multiplication

Bool

1

2

3

4

This edge witnesses
a route from 1 to 4 

of length two!

⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥

A2 =
⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥

=
⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥

1 2 3 4
1

2

3

4

Semi-ring
is a set where you can add ⊕ and multiply⊗

{∅ ∗ ∅,       12∗24,       13∗34, ∅ ∗ ∅} = {124, 134}Name

Name (aka Path) Semi-ring
Concatenation of paths = ⊗
Disjoint union of paths =⊕



Boolean Vector Multiplication

⊥ ⊤ ⊥ ⊥
⊤ ⊥ ⊤ ⊤
⊥ ⊤ ⊥ ⊥
⊥ ⊤ ⊥ ⊥

⊤ ⊥ ⊥ ⊥

2

3

1

4

v0
T A = v1

T

⊥ ⊤ ⊥ ⊥

2

3

1

4

⊥ ⊤ ⊥ ⊥
⊤ ⊥ ⊤ ⊤
⊥ ⊤ ⊥ ⊥
⊥ ⊤ ⊥ ⊥

⊤ ⊥ ⊤ ⊤

⊥ ⊤ ⊥ ⊥
⊤ ⊥ ⊤ ⊤
⊥ ⊤ ⊥ ⊥
⊥ ⊤ ⊥ ⊥

2

3

1

4

v0
T v1

T

v1
T A = v2

T

v2
T

v2
T A = v3

T

Periodic Orbit

But! If we aggregate: v0
T (I + A + A2 + A3 + …) = ⊤ ⊤ ⊤ ⊤

Every node is reached!

Boolean Footprint



Accumulating Walks

1

2

3

4 1

2

3

4

Adjacency Matrix
=

1-Walk Matrix

⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥

A2 =

1 2 3 4
1

2

3

4

⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥

A =

1 2 3 4
1

2

3

4

Adjacency Matrix
of 2-walk graph

=
2-Walk Matrix

(I + A + A2) =: C2 =

Original Graph 2-Walk Graph

⊤ ⊤ ⊤ ⊤
⊥ ⊤ ⊤ ⊤
⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊤

1 2 3 4
1

2

3

4

1

2

3

4

2-Cumulant Matrix

2-Cumulant Graph

⊤ ⊥ ⊥ ⊥
v0

T + v1
T + v2

TC2

⊤ ⊤ ⊤ ⊤

(For summarizing reach of a message)

v0
T



The Kleene Star and its Cumulants

A* = I + A + A2 + A3 + … = (I-A)-1

Assume A is an nxn matrix with entries in an idempotent semi-ring R = (S,+,×, 0, 1)

Stephen Kleene (1909-1994)

This means a+a=a

Examples:
• S={⊤, ⊥} Bool
+=OR and ×= AND
0 = ⊥ and 1 = ⊤

• S=𝒫 ℝ Lifetimes
+=∪ and ×=∩
0 = ∅ and 1 = ℝThe KLAY-nee Star

The 3-Cumulant

The k-Cumulant Ck = I + A + A2 + … + Ak = (I+A)k

Sketch of the Proof:
(I+A)2 = I + IA + AI + A2

= I + A + A2

Under Nice Assumptions

A* = Ck = Mk for k > n-1
where M=I+A

First:
we define a ≼ b if a + b = b
Second:
assume w(𝛾) ≼ 1 for any
elementary cycle 𝛾



The Kleene Star for Algebraic Network Theory

A* = I + A + A2 + A3 + … = (I-A)-1

A is an n x n matrix with entries in (S,+,×, 0, 1) Stephen Kleene (1909-1994)
Bool (existence)

S = {⊤, ⊥}
+ = OR and ×= AND
0 = ⊥ and 1 = ⊤

Name (routing)
S = {[ij] edges} 
+ = disjoint union 
× = concatenation 
0 = ∅ and 1 = ∑ [i]

Min-Plus (shortest path)
S = [0,∞] 
+ = min and ×= plus 
0 = ∞ and 1 = 0

Definition: The KLAY-nee Star

The 3-Cumulant

Ck = I + A + A2 + … + Ak = (I+A)k

Theorem:

A* = Ck = Mk for k > n-1
where M=I+A

(under technical assumptions)

Lifetime
S=𝒫 ℝ
+=∪ and ×=∩
0 = ∅ and 1 = ℝ

Definition: The k-Cumulant

(for semi-definite networking problems) 

Our contribution to
NASA & HDTN!



Strongly Connected Graphs via Kleene Star
Strongly Connected: Can get from any vertex to any other vertex

2

3

1

4

2

3

1

4

Complete 
(Directed) 
Graph

A* = C1
i.e. converges after 1 step

⊥ ⊤ ⊤ ⊤
⊤ ⊥ ⊤ ⊤
⊤ ⊤ ⊥ ⊤
⊤ ⊤ ⊤ ⊥

A =

⊥ ⊤ ⊥ ⊥
⊤ ⊥ ⊤ ⊤
⊥ ⊤ ⊥ ⊥
⊥ ⊤ ⊥ ⊥

A =

A* = C2
i.e. converges after 2 steps

A directed graph 
is 

strongly connected

⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤

A* =
2

4

1

3

⊥ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊤
⊤ ⊥ ⊥ ⊥

A =

A* = C3 i.e. converges after 3 stepsA* = Ck = Mk for k ≥ diam(G)



Time-Varying Graphs are Matrices of Lifetimes

TVG M = I + A =  

2-Cumulant TVG

x

y

z

w

[0,6]

[6,10]

[1,4]

[3,7]

[0,8]

ℝ [0,6] [6,10] ∅
∅ ℝ [1,4] [3,7]
∅ ∅ ℝ [0,8]
∅ ∅ ∅ ℝ

ℝ [0,6] [6,10] ∅
∅ ℝ [1,4] [3,7]
∅ ∅ ℝ [0,8]
∅ ∅ ∅ ℝ

M2 =   

ℝ [0,6] [1,4] ∪ [6,10] [3,6] ∪ [6,8]
∅ ℝ [1,4] [1,4] ∪ [3,7]
∅ ∅ ℝ [0,8]
∅ ∅ ∅ ℝ

x

y

z

w

[0,6]

[1,4] ∪ [6,10]

[1,4]

[1,7]

[0,8]

[3,8]

M3 =   
ℝ [0,6] [1,4] ∪ [6,10] [3,8] ∪ [1,4]
∅ ℝ [1,4] [1,7]
∅ ∅ ℝ [0,8]
∅ ∅ ∅ ℝ x

y

z

w

[0,6]

[1,4] ∪ [6,10]

[1,4]

[1,7]

[0,8]

[1,8]

3-Cumulant TVG

“Sum
over 
paths”

Lifetime Growth : ∅ ⊆ 3,8 ⊆ [1,8]



TVG Vector Multiplication

{0} ∅ ∅ ∅TVG x

y

z

w

[0,6]

[6,10]

[1,4]

[3,7]

[0,8]

ℝ [0,6] [6,10] ∅
∅ ℝ [1,4] [3,7]
∅ ∅ ℝ [0,8]
∅ ∅ ∅ ℝ

{0} {0} ∅ ∅

graph slice at t=0

{1} ∅ ∅ ∅

ℝ [0,6] [6,10] ∅
∅ ℝ [1,4] [3,7]
∅ ∅ ℝ [0,8]
∅ ∅ ∅ ℝ

{1} {1} ∅ ∅

ℝ [0,6] [6,10] ∅
∅ ℝ [1,4] [3,7]
∅ ∅ ℝ [0,8]
∅ ∅ ∅ ℝ

{1} {1} {1} ∅

graph slice at t=1

{6} ∅ ∅ ∅

ℝ [0,6] [6,10] ∅
∅ ℝ [1,4] [3,7]
∅ ∅ ℝ [0,8]
∅ ∅ ∅ ℝ

{6} {6} {6} ∅
ℝ [0,6] [6,10] ∅
∅ ℝ [1,4] [3,7]
∅ ∅ ℝ [0,8]
∅ ∅ ∅ ℝ

{6} {6} {6} {6}

graph slice at t=6



TVG Matrix Operations

KLEENE-STAR MODELS  
TIME AVAILABLE 

INSTANTANEOUS WALKS

VECTOR MULTIPLICATION 
MODELS TEMPORAL 

FOOTPRINT OF BROADCAST



Theorem:
The Kleene Star A* = Ck for k = temporal diameter, 
i.e., the largest diameter per component over time.

Proof follows from an isomorphism:

Matn x n(𝒫 ℝ ) ≅ Fun(ℝ, Matn x n(Bool)) 

Upshot: Temporal Diameter << number of nodes

80 Starlink Satellites over One Day

Diameter of Graph Slice

ℝ ℝ ℝ ℝ
ℝ ℝ ℝ ℝ
ℝ ℝ ℝ ℝ
ℝ ℝ ℝ ℝ

A(K4) =
Testing proximity to Complete TVG
requires lower degree cumulants!

(Robby Green, as part of TIMAEUS)



STARLINK
Lifetime Growth

Using Portion Library in Python 
we can automatically extract TVG 
matrices from SOAP simulations

Mk models lifetimes of length ≤k 
walks from node to node

Average Lifetime out of 86,400 
seconds models connectivity over 
1 day

If we randomly sample STARLINK, how close is a sample to a “static” graph; when using longer walks?

Phase 
transition!



Connectivity Properties for STARLINK

• 20 or 30 nodes insufficient for 
strong connectivity
• Phase transition around n=40 

for strong connectivity
• Convergence radius tapers from 

k=9 (for n=50) to k=7 (for n=70) 
to k=5 (for n=100)
• With ~340 mile altitude, k=3 is 

the conjectured limiting 
behavior

R earth
= 3958 mi

Rsat = 4298 mi
𝜃 = 36.5



Modeling Propagation Delay

t=0

t=3

t=1.5

t=4.5

x y

∅ ( 0,3 , 1.5)
∅ ∅A =

Interpret this as element in End(𝒫 ℝ )
• intersect with [0,3]
• shift by 1.5 units to the right
• ⊕ is union of images
• ⊗ is composition of operators Kleene Star doesn’t converge = Difficulty of Deep Space Routing!

(Using another semiring)



50 Years of Algebraic Network Theory
/ . Inst. Maths Applies (1971) 7, 273-294

Am Algebra for Network Rontimg Problems

B. A. CARRE

Department of Electrical Engineering, University of Southampton, England

[Received 15 May 1970 and in revised form 25 June 1970]

Problems involving the determination of routes on networks arise in many different
contexts. For example network flow problems in operations research, such as trans-
portation and assignment problems, involve the determination of a succession of shortest
or least-cost paths between commodity sources and sinks. Again, critical path analysis
and certain scheduling problems involve the determination of longest paths on activity
networks. Pathfinding problems of different kinds also arise in the design of logic
networks, and in routing messages through congested communication networks. This
paper presents an algebraic structure for the formulation and solution of such problems.

After defining the algebraic structure and giving concrete examples applicable to
different kinds of routing problems, we use it in a general analysis of a class of directed
networks, in which each arc has an associated measure (representing for instance a
transportation cost, an activity duration, the state (open or closed) of a switch, or the
probability of a communication link being available). It is then shown that all the routing
problems mentioned above can be expressed in the same algebraic form, and that they can
all be solved by variants of classical methods of linear algebra, differing from these only in
the significance of the additive and multiplicative operations.

1. Introduction
THIS PAPER presents an algebra which is applicable to several different kinds of path-
finding problems, for instance (i) shortest or least-cost path problems, as arise in
transportation studies, (ii) "critical" (i.e. longest) path and scheduling problems,
(iii) the determination of routes with least probability of blockage through congested
communication networks, and (iv) the determination of the transitive closure of
directed graphs.

After defining the algebra (in Section 2), we use it to describe certain properties of
networks (in Section 3), and to study their measure matrices (Section 4). We then
formulate some path-finding problems (in Section 5), and demonstrate that in terms of
our algebra, each of these may be posed as that of determining a matrix Y which
satisfies an equation Y = AY ® B, where the matrices A and B are specified.

We observe an analogy between this problem and that of solving a set of linear
algebraic equations, which leads us to investigate the possibility of solving our problem
by "variants" of the classical methods of numerical linear algebra, differing from these
only in the significance of the additive and multiplicative operations. In Section 6,
devoted to iterative methods, we analyse variants of the Jacobi and Gauss-Seidel
methods, and obtain conditions for their convergence. Section 7, on direct methods,
describes variants of the Gauss and Jordan elimination methods, and an escalator
method.

In the last 15 years many methods have been published for finding paths in networks,
most of which were derived directly from graph-theoretic concepts and described in
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6.

LIST
O

F
SE

M
IR

IN
G

S
A

N
D

A
PPLIC

AT
IO

N
S

Application S ⊕ ⊗
Path enumeration Subsets of ∪n

i=1V i Set union Latin multiplication
Markov chain stationary distri-
bution

[0, ∞) ∪ {∞} + ×

Expected number of visits of
random walk from vertex s to
t

[0, ∞) ∪ {∞} + ×

Expected cost of paths from ver-
tex s to t

{(p, c) ∈ ([0, ∞) × R)} (p1 + p2, c1 + c2) (p1p2, p1c2 + p2c1)

Minimum weight spanning tree R min max
Longest path R ∪ {−∞} max +
Shortest path R ∪ {∞} min +
Widest path [0, ∞) ∪ {∞} max min
Most reliable path [0, 1] max ×
Widest-shortest path {(d, b) ∈ [0, ∞) × [0, ∞)} lexicographic min (d1 + d2, min(b1, b2))

k-shortest paths a, b ∈ {R ∪ {∞}}k min-k{a1, a2, . . . , ak, b1, b2, . . . , bk} min-k{ai + bj |i, j = 1, . . . , k}
BGP routing {c, p, r, 1©, 0©} see Table 4.1 see Table 4.1
Shortest path with time-
inhomogeneous edges

w1, w2 : R ∪ {∞} → R ∪ {∞}
and t → ∞ ⇒ w(t) ↗ ∞

min{w1(t), w2(t)} w2(w1(t))

Reachability under determinis-
tic edge failures

{0, 1} max min

Bridge and cut vertices 2E ∪ { 0©} Set intersection Set union
Reachability under probabilistic
edge failures

formal polynomials we in the vari-
ables xei , e ∈ E, i ∈ N

w1 + w2 − w1 ⊗ w2
∏{all xe in w1 or w2}

Shortest paths with edge gains
or losses

{(c, µ) ∈ R × (0, ∞)}






(c1, µ1) if c1
µ1

< c2
µ2

(c1, µ1) if c1
µ1

= c2
µ2

and µ1 > µ2

(c2, µ2) otherwise

(c1 + µ1c2, µ1µ2)

 EBSCOhost - printed on 5/5/2022 2:05 PM via SUNY ALBANY. All use subject to https://www.ebsco.com/terms-of-use

From Baras and Theodorakopoulos “Path Problems in Networks” 2010 
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Application S ⊕ ⊗

Trust: Path semiring {(t, c) ∈ [0, 1] × [0, 1]} (t1t2, c1c2)






(t1, c1) if c1 > c2

(t2, c2) if c1 < c2

(max{t1, t2}, c1) if c1 = c2
Trust: Distance semiring {(a, b) ∈ ([0, ∞] × [0, 1])} (a1 + a2, b1 + b2) (a1a2, a1b2 + a2b1)

Trust: PGP computation model a1, a2 ∈ Nk, k ∈ N + valid(a1)a2
Trust: EigenTrust [0, 1] + ×
Trust: Semantic web [0, 1] max ×
Social: balance semiring {0, −1, 1, a} see Table 4.2 see Table 4.2
Social: cluster semiring {0, −1, 1, a, b} see Table 4.3 see Table 4.3

Social: Geodetic semiring
(length and number of shortest
paths)

{(d, n) ∈ ([0, ∞) ∪ {∞}) × (N ∪ {∞})}






(d1, n1) if d1 < d2

(d2, n2) if d1 > d2

(d1, n1 + n2) if d1 = d2

(d1 + d2, n1n2)

Social: Geosetic semiring (set of
vertices of shortest paths)

finite sets with quadruples of the form
(i, P , j, d), i, j ∈ V, P ⊆ V, d ∈ N

see Sec. 4.11.4 see Sec. 4.11.4

Traffic assignment a1, a2 ∈ [0, ∞) − 1
µ log

(
e−µa1 + e−µa2

)
a1 + a2

Edge sensitivity: Traffic attrac-
tion attack

[0, ∞) ∪ {∞} min +

Edge sensitivity: Traffic repul-
sion attack

[0, ∞) ∪ {∞} min +
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From Baras and Theodorakopoulos “Path Problems in Networks” 2010 



O U R  T V G  
D E F I N I T I O N  

I S  N E W !
( S U R P R I S I N G L Y )



M E T R I C S  
O N  T V G S

C O O R D I N A T I Z I N G  T H E  
S P A C E  O F  A L L  

N E T W O R K I N G  S C E N A R I O S



The Difficulty of Continuity

ℓ!

2

3

1

4

ℓ"

ℓ#

ℓ!
ℓ"

ℓ#

Space networking has both continuous, 
e.g., signal strength, and discrete aspects, 
e.g., line of sight.

ℓ"(𝑡)

ℓ#(𝑡)

ℓ!(𝑡)

ℓ!(𝑡 + ∆)

ℓ!(𝑡)

But subsets of ℝ (TVG Coordinates) 
have metrics where these are ∆

F
- close!

𝑘!(𝑡)

∆

constantly connected edge

Traditional methods fail to 
capture line of sight 



Hausdorff Distance

Two subsets X and Y are 𝜀-close if 𝑋 ⊆ 𝑌$ and 𝑌 ⊆ 𝑋$

𝜀
𝑋 ⊆ 𝑌$

𝜀
𝑌 ⊆ 𝑋$

dHaus(𝑋, 𝑌)=inf 𝜀 |𝑋 ⊆ 𝑌! and 𝑌 ⊆ 𝑋!

Felix Hausdorff (1868-1942)

∆
Check our 
example!



Disconnect (Bottleneck) Distance on TVGs
node x

node y

TVG with two intervals of disconnect

t=1 t=2 t=4 t=6

node x

node y

TVG with one interval of disconnect

t=2 t=6

node x

node y

TVG with no disconnections

BC1

BC2

BC3

dB = min max 𝑝 − 𝜎(𝑝) %𝑝𝜎

Effectively Computable
via Hungarian Algorithm



STARLINK Distance Curves
ℝ ℝ ℝ ℝ
ℝ ℝ ℝ ℝ
ℝ ℝ ℝ ℝ
ℝ ℝ ℝ ℝ

measures distance to 
(bigger version of) this!

d2-Wasserstein = min % ∑! 𝑝 − 𝜎(𝑝) "𝜎
dB = min max 𝑝 − 𝜎(𝑝) #𝑝𝜎



M O R E
M E T R I C S  
O N  T V G S

C O M P A R I N G
S Y S T E M S  W H E R E

T H E  N O D E
C O R R E S P O N D E N C E

I S  U N C L E A R



Dimensionality 
Reduction via 
Topological 

Featurization

• Best-case for Disconnect Distance: O(n2 x n3)
• Worst-case for Disconnect Distance: O(n! x n2 x n3)
• Topological Reduction reduces to: O(n3)

dim 1

dim 0

Zig-Zag 
Persistence

H1

H0

⊆ ⊆⊇ ⊇

dZZ(BC1,BC2)≤dDC(TVG1,TVG2)
THM: STABILITY

Computational Complexity Concerns



Earth + Mars
vs. Earth + Moon
Network Comparison
Took 24 samples from 2 classes:
• 15 Starlink + 5 Moon Sats
• 15 Starlink + 5 Mars Sats

Test point
to classify

k= 3 
closest 
neighbors

K Nearest Neighbors Classifier
Distance measured in zigzag 

diagram space using H1

Avg = 90% accuracy
for k=5 neighbors



Discussion of Distance Calculations

1. Quantify how close to a strongly 
connected TVG system

2. Necessary for control 
applications---steer a system 
from a disconnected one to a 
connected one!

3. First steps in identifying clusters 
(“motifs”) in TVG space.

[2]: “A Framework for Differential Calculus on 
Persistence Barcodes” Leygonie, Tillman, and Oudot. FoCM. 2021.

[3]: “Learning Low-Rank Latent Mesoscale Structures in Networks” 
by Lyu, Kureh, Vendrow, and Porter. arXiV:2102.06984



Motifs for Dictionary Learning

From “Learning Low-Rank Latent Mesoscale Structures in Networks” by Lyu, Kureh, Vendrow, Porter



F U T U R E  
D I R E C T I O N S

G L U I N G  T O G E T H E R  
R O U T I N G  P R O T O C O L S  

U S I N G  S H E A V E S  



Leveraging Periodicity

single representative for 
periodic contact windows

• Convergence of Kleene-star fails for 
propagation delay semiring b/c 
w(𝛾) ⋠1⟺Non-trivial shift 

• Learn periodicity of TVG subnets
• Replace 𝒫 ℝ with 𝒫 𝕊, or 𝒫(𝕋-)
• Study clustergrams over 𝕊, or 𝕋-

From “Sliding Windows and Persistence” by Perea and Harer. FoCM 2015.



Sub-Netting Methods for TVGs

w/ Brendan Mallery (Tufts) + Alan Hylton (Goddard)

Temporal Curvature-Based

Persistence-Based

w/ Woojin Kim (Duke)



Learning Sheaves 
for Routing

“Neural Sheaf Diffusion for Deep Learning on Graphs”
by Bodnar, Bronstein, and Di Giovanni

“Cellular Sheaves of Lattices and the Tarski Laplacian” by Ghrist and Reiss. HHA 2022.

• “Small” Routing sheaves: assign to a 
fixed graph a routing procedure
• “Big” TVG Routing Sheaves: assigns to 

every possible TVG a routing protocol
• Goal: Learn optimal assignments via 

deep learning and sheaf Laplacians



T H E  T I M A E U S  P R O J E C T

Billy Bernardoni, Robert Cardona, Jacob Cleveland, Justin Curry, Jordan deSha
Robby Green, Brian Heller, Alan Hylton, Brendan Mallery, Bob Short

Not Pictured: Tung Lam



Simulation Work 
R. Cardona, B. Heller

Semirings 
B. Bernardoni, J. 

Curry, R. Green, T. 
Lam, B. Heller

Tropical Geometry
B. Bernardoni, J. 

Cleveland

TDA Foundations
R. Cardona, J. Curry, 

T. Lam

Sheaves and 
Cosheaves

R. Cardona, J. Curry, 
A. Hylton, B. Short

Network Curvature
B. Mallery

Hypergraphs
R. Green

T H E  T I M A E U S  P R O J E C T
Topologically Inspired Methods for Adhoc Evolving and Uncertain Systems



T H A N K  
Y O U !

L E T  U S  B U I L D  B R I D G E S



Critical Path Analysis
Cooking Dinner

1. Preheat Oven (20 mins)
2. Chop Veggies (15 mins)
3. Boil Water (7 mins)
4. Bake Veggies (30 mins)
5. Cook Pasta (11 mins)
6. Heat Sauce (8 mins)
7. Plate Veggies (2 mins)
8. Plate Pasta (3 mins)
9. Eat dinner!
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Semiring Model
S = ℝ ∪ −∞
⊕= max  
“0” = −∞
⊗ = +
“1” = 0

0

1
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4
20 mins

15 mins
0 mins

0 mins

If     b = 1700 −∞ −∞ −∞
then y = 1700 1700 1700 1720

−∞ 0 0 −∞
−∞ −∞ −∞ 20
−∞ −∞ −∞ 15
−∞ −∞ −∞ −∞

A =
y = yA⊕ b

⟺
y=bA*Max-Plus Semiring

A* solves 
“all pairs longest/shortest

path problem”

(The opposite of earliest time of arrival)

When’s Dinner!?


