Generalized existential completions and applications

Davide Trotta

University of Pisa

Overview

- Introduce the notion of existential free elements for Lawvere doctrines
- Characterize the generalized existential completion
- Present applications to the Dialectica interpretation

D. Trotta (2020), *The Existential Completion*, Theory and Applications of Categories, 2020, Vol. 35, No. 43. M.E. Maietti D. Trotta (2023), *A characterization of generalized existential completions*, Annals of Pure and Applied Logic, Vol. 174, No. 4.

D. Trotta, M. Spadetto and V. de Paiva (2023), *Dialectica Principles via Gödel Doctrines*, Theoretical Computer Science, Vol. 947.

D. Trotta, M. Spadetto and V. de Paiva (2021), *The Gödel fibration*, Mathematical Foundations of Computer Science (MFCS).

Hyperdoctrines in categorical logic

- Hyperdoctrines;
- ► fibrations;
- triposes;

• • • •

elementary and existential doctrines;

F.W. Lawvere (1969), Adjointness in foundations, Dialectica

B. Jacobs (1999), Categorical logic and type theory, North-Holland

J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts (1980), Tripos theory, Math. Proc. Camb. Phil. Soc.

M.E. Maietti, G. Rosolini (2012), *Quotient completion for the foundation of constructive mathematics*, Log. Univer.

Conjunctive doctrines

Definition

A **conjunctive doctrine** is a functor $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ from the opposite of the category \mathcal{C} to the category of inf-semilattices.

Conjunctive doctrines

Definition

A **conjunctive doctrine** is a functor $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ from the opposite of the category \mathcal{C} to the category of inf-semilattices.

Example

Let $\ensuremath{\mathcal{C}}$ be a category with finite limits. The functor

 $Sub_{\mathcal{C}} : \mathcal{C}^{op} \longrightarrow InfSL$

assigns to an object A in C the poset $\operatorname{Sub}_{\mathcal{C}}(A)$ of subobjects of A in C and, for an arrow $B \xrightarrow{f} A$ the morphism $\operatorname{Sub}_{\mathcal{C}}(f)$: $\operatorname{Sub}_{\mathcal{C}}(A) \longrightarrow \operatorname{Sub}_{\mathcal{C}}(B)$ is given by pulling a subobject back along f.

Examples

Example

Let C be a category with finite limits. The conjunctive doctrine of **weak subobjects (or variations)** is given by the functor

 $\Psi_{\mathcal{C}} \colon \mathcal{C}^{\mathsf{op}} \longrightarrow \mathsf{InfSL}$

where $\Psi_{\mathcal{C}}(A)$ is the poset reflection of the slice category \mathcal{C}/A .

Example

Let \mathcal{A} be a locale. The **localic conjunctive doctrine** is given by the functor:

 $\mathcal{A}^{(-)}: \operatorname{Set}^{\operatorname{op}} \longrightarrow \operatorname{InfSL}$

assigning $I \mapsto \mathcal{A}^{I}$. The partial order is provided by the pointwise partial order on functions $f: I \longrightarrow \mathcal{A}$.

Syntactic doctrines

Let $\mathcal{L}_{=,\exists}$ be the $(\top, \land, =, \exists)$ -fragment of first-order Intuitionistic logic (also called regular). We define a conjunctive doctrine:

$$LT_{=,\exists} : \mathcal{C}_{\mathcal{L}_{=,\exists}}^{op} \longrightarrow InfSL$$

where $\mathcal{C}_{\mathcal{L}_{=,\exists}}$ is the category of lists of variables and term substitutions:

• **objects** are finite lists of variables $\vec{x} := (x_1, \ldots, x_n)$;

▶ a **morphism** from $(x_1, ..., x_n)$ into $(y_1, ..., y_m)$ is a list $[t_1/y_1, ..., t_m/y_m]$ where the terms t_i are built in $\mathcal{L}_{=,\exists}$ on the variable $x_1, ..., x_n$.

The functor $LT_{=,\exists} : C_{\mathcal{L}_{=,\exists}}^{op} \longrightarrow \mathbf{InfSL}$ sends a list (x_1, \ldots, x_n) to the partial order $LT_{=,\exists}(x_1, \ldots, x_n)$ of equivalence classes $[\phi]$ of well formed formulas ϕ in the context (x_1, \ldots, x_n) where $[\psi] \le [\phi]$ if $\psi \vdash \phi$ and two formulas are equivalent if they are equiprovable.

Generalized projections

Definition

A class of morphisms Λ of a category ${\mathcal C}$ is said to be a **left class of morphisms** if:

- 1. given an arrow fh of C, if $f \in \Lambda$ and $h \in \Lambda$, then we have $fh \in \Lambda$;
- 2. pullbacks of arrows in Λ exist for every arrow of C and for every $f \in \Lambda$ and g of C, for every pullback square

we have that $g^* f \in \Lambda$;

3. every isomorphism is in Λ .

\wedge -existential doctrines

Definition

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ be a conjunctive doctrine and let Λ be a left class of morphisms of \mathcal{C} . P is called a Λ -**existential** if, for any arrow $f: A \longrightarrow B$ of Λ , the functor $P_f: P(B) \longrightarrow P(A)$ has a left adjoint \exists_f , and these satisfy:

- (BC) Beck-Chevalley condition;
- (FR) Frobenius reciprocity.

Notation: When Λ is the class of product projections, we will speak about **pure-existential doctrines**, while when Λ is the class of all the morphisms of the base we will speak about **full-existential doctrines**.

Examples

Example

 \blacktriangleright Sub_c: $C^{op} \longrightarrow$ InfSL is Mono-existential $\exists_f(q) := f \circ q$, with $f: X \longrightarrow Y$ and $q: Z \longrightarrow X$ \blacktriangleright $\Psi_{\mathcal{C}}: \mathcal{C}^{op} \longrightarrow$ **InfSL** is full-existential $\exists_f(q) := f \circ q$, with $f : X \longrightarrow Y$ and $q : Z \longrightarrow X$ \blacktriangleright $A^{(-)}$: Set^{op} \longrightarrow **InfSL** is full-existential $\exists_f(g)(y) := \bigvee_{x \in f^{-1}(y)} g(x)$, with $f: X \longrightarrow Y$ and $g: X \longrightarrow A$ ▶ $LT_{=,\exists}: C_{C_{a}}^{op} \longrightarrow InfSL$ is pure-existential $\exists_{\mathrm{pr}}(\alpha(x, y)) := \exists x. \alpha(x, y)$

Existential-free elements

Definition

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ be an Λ -existential doctrine. An object β of the fibre P(B) is said to be a Λ -**existential splitting** if for every morphism $g: C \longrightarrow B$ in Λ and for every element γ of the fibre P(C), whenever

$$eta = \exists_g(\gamma)$$

holds then there exists an arrow $h: B \longrightarrow C$ such that gh = id and

$$eta=\mathsf{P}_h(\gamma).$$

Moreover, an object α of the fibre P(A) is said to be Λ -**existential-free** if, for every morphism $f: B \longrightarrow A$, $P_f(\alpha)$ is a Λ -existential splitting.

Examples of existential-free elemets

Example

- The Mono-existential-free elements of the doctrine Sub_C: C^{op} ---> InfSL are exactly the identities arrows;
- the full-existential-free elements of the doctrine Ψ_C: C^{op} → InfSL are exactly the identities arrows;
- ▶ the full-existential-free elements of the doctrine $\mathcal{A}^{(-)}$: Set^{op} \longrightarrow InfSL are exactly the functions $f: X \longrightarrow \mathcal{A}$ such that every element f(x) is supercompact, i.e. if $f(x) \leq \bigvee_{i \in I} b_i$ then $f(x) \leq b_{\overline{i}}$ for some $\overline{i} \in I$;
- ► the pure-existential-free elements of the doctrine $LT_{=,\exists} : C_{\mathcal{L}_{=,\exists}}^{op} \longrightarrow InfSL$ are exactly the formulae which are free from the existential quantifier.

Enough existential free elements

Definition

We say that a Λ -existential doctrine P has **enough**- Λ -**existential-free objects** if for every object A of C, any element $\alpha \in P(A)$ is Λ -**covered** by some element $\beta \in P(B)$ for some object B of C, namely β is a Λ -existential-free element and

 $lpha = \exists_g(eta)$

with $g: B \longrightarrow A$ arrow of Λ .

Example

- ▶ $Sub_C : C^{op} \longrightarrow InfSL$ has enough-Mono-existential-free objects;
- ▶ $\Psi_C : C^{op} \longrightarrow$ InfSL has enough-full-existential-free objects;
- ► $LT_{=,\exists}: C_{\mathcal{L}_{=,\exists}}^{op} \longrightarrow InfSL$ has enough-pure-existential-free objects;

Generalized existential completion

Given a conjunctive doctrine $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ and a left class Λ of morphisms of \mathcal{C} , we can construct a new Λ -existential doctrine

 $\operatorname{Ex}^{\Lambda}(P): \mathcal{C}^{\operatorname{op}} \longrightarrow \operatorname{InfSL}.$

This construction is called **generalized existential completion**. As particular cases, we have the following constructions:

- full existential completion: if C has finite limits, we can construct a full existential doctrine fEx(P);
- **pure existential completion**: if C has finite products, we can construct an existential doctrine pEx(P).

D. Trotta (2020), *The Existential Completion*, Theory and Applications of Categories, 2020, Vol. 35, No. 43. M.E. Maietti D. Trotta (2023), *A characterization of generalized existential completions*, Annals of Pure and Applied Logic, Vol. 174, No. 4.

Characterization of generalized existential completion

Theorem

Let $P: C^{op} \longrightarrow$ **InfSL** be a Λ -existential doctrine. Then the following are equivalent:

- ▶ $P \cong Ex^{\Lambda}(P')$ for some conjunctive doctrine $P': C^{op} \longrightarrow InfSL;$
- P satisfies the following points:
 - 1. P has enough- Λ -existential-free objects;
 - P satisfies ∧-RC, i.e. each top element T_A of a fibre P(A) is a ∧-existential-free object;
 - 3. for every Λ-existential-free object α and β of P(A), α ∧ β is a Λ-existential-free object.

M.E. Maietti D. Trotta (2023), A characterization of generalized existential completions, Annals of Pure and Applied Logic, Vol. 174, No. 4.

Examples of generalized existential completions

Example

- ► The doctrine $Sub_{\mathcal{C}}: \mathcal{C}^{op} \longrightarrow InfSL$ is isomorphic to the generalized existential completion $Ex^{Mono}(t)$ of the trivial doctrine $t: \mathcal{C}^{op} \longrightarrow InfSL$, i.e. $t(X) := \{\bullet\}$ for every object X;
- ► $\Psi_{\mathcal{C}}: \mathcal{C}^{op} \longrightarrow \text{InfSL}$ is isomorphic to the full existential completion fEx(t) of the trivial doctrine t: $\mathcal{C}^{op} \longrightarrow \text{InfSL}$;
- ► $LT_{=,\exists}: \mathcal{C}_{\mathcal{L}_{=,\exists}}^{op} \longrightarrow InfSL$ is isomorphic to the pure existential completion $pEx(LT_{=})$ of the syntactic doctrine $LT_{=}: \mathcal{C}_{\mathcal{L}_{=}}^{op} \longrightarrow InfSL$ associated with the Horn fragment of first order Intuitionistic logic.
- ► the localic doctrine A⁽⁻⁾: Set^{op} → InfSL is a full existential completion if and only if the locale A is supercoherent.

More examples of generalized existential completions

Definition

A pure existential doctrine $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ is said to be **equipped with** Hilbert's ϵ -**operators** if for every element α in $P(A \times B)$ there exists an arrow $\epsilon_{\alpha}: A \longrightarrow B$ such that

$$\exists_{\mathsf{pr}_1}(\alpha) = \mathsf{P}_{\langle \mathsf{id}_A, \epsilon_\alpha \rangle}(\alpha)$$

holds in P(A), where $pr_1: A \times B \longrightarrow A$ is the first projection.

Theorem

A pure existential doctrine $P: \mathcal{C}^{op} \longrightarrow$ **InfSL** is equipped with Hilbert's ϵ -operators if and only if $P \cong pEx(P)$.

More examples of generalized existential completions

Definition

Let $\mathbb A$ be a PCA. We define the **realizability doctrine**

 $\mathcal{P} \colon \mathsf{Set}^\mathsf{op} \longrightarrow \mathsf{InfSL}$

The partial ordered set $(\mathcal{P}(X), \leq)$ is defined as follows: let $P(\mathbb{A})^X$ denote the set of functions from X to the powerset $P(\mathbb{A})$ of \mathbb{A} . Let \leq be the preorder on this set defined as: $\alpha \leq \beta$ if there exists an element $c \in \mathbb{A}$ such that for all $x \in X$ and all $a \in \alpha(x)$ we have that $c \cdot a$ is defined and $c \cdot a \in \beta(x)$. Then $\mathcal{P}(X)$ is defined as the quotient of $P(\mathbb{A})^X$ by the equivalence relation \sim generated by \leq .

Theorem

The realizability doctrine $\mathcal{P}: \operatorname{Set}^{\operatorname{op}} \longrightarrow \operatorname{InfSL}$ is isomorphic to the full existential completion of the doctrine $\mathcal{P}^{\operatorname{sing}}: \operatorname{Set}^{\operatorname{op}} \longrightarrow \operatorname{InfSL}$ of singletons.

Recap: Dialectica interpretation

Gödel's Dialectica Interpretation: an interpretation of intuitionistic arithmetic HA in a quantifier-free theory of functionals of finite type, called system T.

Idea: translate every formula A of HA to $A^D = \exists x \forall y A_D$, where A_D is quantifier-free.

Application: if HA proves A, then system T proves $A_D(t, y)$, where y is a string of variables for functionals of finite type, and t a suitable sequence of terms (not containing y).

Goal: to be as constructive as possible, while being able to interpret all of classical arithmetic.

Gödel (1958), Über eine bisher noch nicht benützte erweiterung des finiten standpunktes, Dialectica, 12(3-4):280-287.

Recap: Dialectica interpretation

The most complicated clause of the translation is the definition of the translation of the **implication connective** $(\psi \rightarrow \phi)^{D}$:

$$(\psi \rightarrow \phi)^{D} = \exists f_{o}, f_{1}. \forall u, y. (\psi_{D}(u, f_{1}(u, y)) \rightarrow \phi_{D}(f_{o}(u), y)).$$

This involves three logical principles: a form of the **Principle of Independence of Premise** (IP), a generalisation of **Markov Principle** (MP), and the **axiom of choice** (AC).

Intuition: given a witness u for the hypothesis ψ_D , there exists a function f_o assigning a witness $f_o(u)$ of ϕ_D to every witness u of ψ_D . Moreover, this assignment has to be such that from a counterexample y of the conclusion ϕ_D we should be able to find a counterexample $f_1(u, y)$ to the hypothesis ψ_D .

Gödel, Feferman, et al (1986), Kurt Gödel: Collected Works: Volume II:, Oxford University Press.

First-order hyperdoctrines

Definition

A first-order hyperdoctrine is a contravariant functor:

 $P: \mathcal{C}^{op} \longrightarrow Hey$

from a category with finite products ${\mathcal C}$ to the category of Heyting algebras ${\mbox{Hey}}$ satisfying:

- 1. for every projection $pr_A : A \times B \longrightarrow A$, the morphism $P_{pr_A} : P(A) \longrightarrow P(A \times B)$ has a left adjoint \exists_{pr_A} and a right adjoint \forall_{pr_A} , satisfying (BC).
- 2. For every object A of C there exists a predicate δ_A of $P(A \times A)$ satisfying for every α of $P(A \times A)$ that:

 $T \leq P_{\Delta_A}(\alpha)$ if and only if $\delta_A \leq \alpha$

where $\Delta_A : A \longrightarrow A \times A$ denotes the diagonal arrow.

Definition

A first-order hyperdoctrine $P: \mathcal{C}^{op} \longrightarrow Hey$ is called a **Gödel hyperdoctrine** if:

- 1. the category $\ensuremath{\mathcal{C}}$ is cartesian closed;
- 2. the doctrine *P* has enough pure-existential-free predicates;
- 3. the pure-existential-free objects of *P* are stable under universal quantification, i.e. if $\alpha \in P(A)$ is existential-free, then $\forall_{pr}(\alpha)$ is pure-existential-free for every projection pr from *A*;
- 4. the sub-doctrine P' of the pure-existential-free predicates of P has enough pure-universal-free predicates.

An element α of a fibre P(A) of a Gödel hyperdoctrine P that is both an existential-free predicate and a universal-free predicate in the sub-doctrine P' of existential-free elements of P is called a **quantifier-free predicate** of P.

D. Trotta, M. Spadetto and V. de Paiva (2023), *Dialectica Principles via Gödel Doctrines*, Theoretical Computer Science, Vol. 947.

D. Trotta, M. Spadetto and V. de Paiva (2021), *The Gödel fibration*, Mathematical Foundations of Computer Science (MFCS).

Notation. From now on, we shall employ the logical language provided by the **internal language** of a doctrine and write:

$$a_1: A_1, \ldots, a_n: A_n \mid \phi(a_1, \ldots, a_n) \vdash \psi(a_1, \ldots, a_n)$$

instead of:

$$\phi \leq \psi$$

in the fibre $P(A_1 \times \cdots \times A_n)$. Similarly, we write:

 $a : A \mid \phi(a) \vdash \exists b : B.\psi(a, b) \text{ and } a : A \mid \phi(a) \vdash \forall b : B.\psi(a, b)$

in place of:

$$\phi \leq \exists_{\mathrm{pr}_{A}}\psi$$
 and $\phi \leq \forall_{\mathrm{pr}_{A}}\psi$

in the fibre P(A). Also, we write $a : A | \phi \dashv \vdash \psi$ to abbreviate $a : A | \phi \vdash \psi$ and $a : A | \psi \vdash \phi$.

Skolemisation in Gödel hyperdoctrines

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow \text{Hey}$ be a Gödel hyperdoctrine, and let α be an element of P(I). Then there exists a quantifier-free predicate α_D of $P(I \times U \times X)$ such that:

 $i: I \mid \alpha(i) \dashv \vdash \exists u: U. \forall x: X. \alpha_D(i, u, x).$

Theorem

Every Gödel hyperdoctrine $P: \mathcal{C}^{op} \longrightarrow Hey$ validates the **Skolemisation principle**, that is:

$$a_1$$
: $A_1 \mid \forall a_2$. $\exists b. \alpha(a_1, a_2, b) \dashv \exists f. \forall a_2. \alpha(a_1, a_2, fa_2)$

where $f : B^{A_2}$ and fa_2 denote the evaluation of f on a_2 , whenever $\alpha(a_1, a_2, b)$ is a predicate in the context $A_1 \times A_2 \times B$.

Principle of Independence of Premise in Gödel hyperdoctrines

Theorem

Every Gödel hyperdoctrine P: $C^{op} \longrightarrow$ Hey satisfies the **Rule of Independence of Premise**: whenever $\beta \in P(A \times B)$ and $\alpha \in P(A)$ is a existential-free predicate, it is the case that:

 $a : A \mid \top \vdash \alpha(a) \rightarrow \exists b.\beta(a, b) \text{ implies that } a : A \mid \top \vdash \exists b.(\alpha(a) \rightarrow \beta(a, b)).$

Moreover, if existential-free predicates are closed with respect to finite conjunctions, then P satisfies the **Principle of Independence of Premise**:

$$a: A \mid \top \vdash (\alpha(a) \to \exists b.\beta(a, b)) \to \exists b.(\alpha(a) \to \beta(a, b)).$$

D. Trotta, M. Spadetto and V. de Paiva (2023), *Dialectica Principles via Gödel Doctrines*, Theoretical Computer Science, Vol. 947.

Modified Markov Principle in Gödel hyperdoctrines

Theorem

Every Gödel hyperdoctrine P: $C^{op} \longrightarrow$ Hey satisfies the following **Modified Markov Rule**: whenever $\beta_D \in P(A)$ is a quantifier-free predicate and $\alpha \in P(A \times B)$ is an existential-free predicate, it is the case that:

 $a : A \mid \top \vdash (\forall b.\alpha(a, b)) \rightarrow \beta_D(a) \text{ implies that } a : A \mid \top \vdash \exists b.(\alpha(a, b) \rightarrow \beta_D(a)).$

Moreover, if existential-free predicates are closed with respect to implication, then P satisfies the following **Modified Markov Principle**:

 $a: A \mid \top \vdash (\forall b. \alpha(a, b) \rightarrow \beta_D(a)) \rightarrow \exists b. (\alpha(a, b) \rightarrow \beta_D(a)).$

D. Trotta, M. Spadetto and V. de Paiva (2023), *Dialectica Principles via Gödel Doctrines*, Theoretical Computer Science, Vol. 947.

Markov Principle in Gödel hyperdoctrines

Corollary

Every Gödel hyperdoctrine P: $C^{op} \longrightarrow$ Hey such that \bot is a quantifier-free predicate satisfies **Markov Rule**: for every quantifier-free element $\alpha_D \in P(A \times B)$ it is the case that:

 $b : B | \top \vdash \neg \forall a. \alpha_D(a, b)$ implies that $b : B | \top \vdash \exists a. \neg \alpha_D(a, b)$.

Moreover, if existential-free predicates are closed with respect to implication, then P satisfies **Markov Principle**:

$$b: B \mid \top \vdash \neg \forall a. \alpha_D(a, b) \rightarrow \exists a. \neg \alpha_D(a, b).$$

D. Trotta, M. Spadetto and V. de Paiva (2023), *Dialectica Principles via Gödel Doctrines*, Theoretical Computer Science, Vol. 947.

Strengthened Dialectica functionals

Theorem

Let $P: C^{op} \longrightarrow Hey$ be a Gödel hyperdoctrine such that the existential-free predicates are closed with respect to implication and finite conjunctions and falsehood \bot is a quantifier-free predicate. Then for every ψ_D in $P(I \times U \times X)$ and ϕ_D in $P(I \times V \times Y)$ quantifier-free predicates of P we have that the formula:

$$i: I \mid \exists u. \forall x. \psi_D(i, u, x) \rightarrow \exists v. \forall y. \phi_D(i, v, y)$$

is provably equivalent to:

 $i: I \mid \exists f_{\circ}, f_{1}. \forall u, y. (\psi_{D}(i, u, f_{1}(i, u, y)) \rightarrow \phi_{D}(i, f_{\circ}(i, u), y)).$

D. Trotta, M. Spadetto and V. de Paiva (2023), *Dialectica Principles via Gödel Doctrines*, Theoretical Computer Science, Vol. 947.

Future work

- Characterize exact and regular completions of doctrines (j.w.w. M. Maietti);
- Abstract the sheafification as tripos-to-topos-adjunction (j.w.w. M. Maietti);
- Abstract the notion of "supercampact element" to implicative algebras, and characterize their assemblies (j.w.w S. Maschio);
- Categorify computational notions: Medvedev, Muchnik and Weihrauch reducibilities (j.w.w. M. Valenti and V. de Paiva)