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Overview

É Introduce the notion of existential free elements for Lawvere doctrines
É Characterize the generalized existential completion
É Present applications to the Dialectica interpretation
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Hyperdoctrines in categorical logic

É Hyperdoctrines;
É fibrations;
É triposes;
É elementary and existential doctrines;
É · · ·
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Conjunctive doctrines

Definition
A conjunctive doctrine is a functor P : Cop // InfSL from the opposite of the
category C to the category of inf-semilattices.

Example
Let C be a category with finite limits. The functor

SubC : Cop // InfSL

assigns to an object A in C the poset SubC(A) of subobjects of A in C and, for an

arrow B
f // A the morphism SubC(f ): SubC(A) // SubC(B) is given by pulling

a subobject back along f .
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Examples

Example
Let C be a category with finite limits. The conjunctive doctrine of weak
subobjects (or variations) is given by the functor

ΨC : Cop // InfSL

where ΨC(A) is the poset reflection of the slice category C/A.

Example
Let A be a locale. The localic conjunctive doctrine is given by the functor:

A(−) : Setop // InfSL

assigning I 7→ AI. The partial order is provided by the pointwise partial order on
functions f : I // A.



Syntactic doctrines

Let L=,∃ be the (>,∧,=,∃)-fragment of first-order Intuitionistic logic (also
called regular). We define a conjunctive doctrine:

LT=,∃ : Cop
L=,∃

// InfSL

where CL=,∃ is the category of lists of variables and term substitutions:
É objects are finite lists of variables ~x := (x1, . . . , xn);
É a morphism from (x1, . . . , xn) into (y1, . . . , ym) is a list [t1/y1, . . . , tm/ym]

where the terms ti are built in L=,∃ on the variable x1, . . . , xn.

The functor LT=,∃ : Cop
L=,∃

// InfSL sends a list (x1, . . . , xn) to the partial order
LT=,∃(x1, . . . , xn) of equivalence classes [ϕ] of well formed formulas ϕ in the
context (x1, . . . , xn) where [ψ] ≤ [ϕ] if ψ ` ϕ and two formulas are equivalent if
they are equiprovable.



Generalized projections

Definition
A class of morphisms Λ of a category C is said to be a left class of morphisms if:

1. given an arrow fh of C, if f ∈ Λ and h ∈ Λ, then we have fh ∈ Λ;
2. pullbacks of arrows in Λ exist for every arrow of C and for every f ∈ Λ and g

of C, for every pullback square

D

g∗f
��

f∗g // A

f ∈ Λ

��
C g

// B

we have that g∗f ∈ Λ;
3. every isomorphism is in Λ.



Λ-existential doctrines

Definition
Let P : Cop // InfSL be a conjunctive doctrine and let Λ be a left class of
morphisms of C. P is called a Λ-existential if, for any arrow f : A // B of Λ, the
functor Pf : P(B) // P(A) has a left adjoint ∃f , and these satisfy:

(BC) Beck-Chevalley condition;
(FR) Frobenius reciprocity.

Notation: When Λ is the class of product projections, we will speak about
pure-existential doctrines, while when Λ is the class of all the morphisms of the
base we will speak about full-existential doctrines.



Examples

Example

É SubC : Cop // InfSL is Mono-existential

∃f (g) := f ◦ g, with f : X �
� // Y and g : Z �

� // X

É ΨC : Cop // InfSL is full-existential

∃f (g) := f ◦ g, with f : X // Y and g : Z // X

É A(−) : Setop // InfSL is full-existential
∃f (g)(y) :=
∨

x∈f−1(y) g(x), with f : X // Y and g : X // A

É LT=,∃ : Cop
L=,∃

// InfSL is pure-existential

∃pr(α(x, y)) := ∃x.α(x, y)



Existential-free elements

Definition
Let P : Cop // InfSL be an Λ-existential doctrine. An object β of the fibre P(B) is
said to be a Λ-existential splitting if for every morphism g : C // B in Λ and for
every element γ of the fibre P(C), whenever

β = ∃g(γ)

holds then there exists an arrow h : B // C such that gh = id and

β = Ph(γ).

Moreover, an object α of the fibre P(A) is said to be Λ-existential-free if, for
every morphism f : B // A, Pf (α) is a Λ-existential splitting.



Examples of existential-free elemets

Example

É The Mono-existential-free elements of the doctrine SubC : Cop // InfSL are
exactly the identities arrows;
É the full-existential-free elements of the doctrine ΨC : Cop // InfSL are

exactly the identities arrows;
É the full-existential-free elements of the doctrine A(−) : Setop // InfSL are

exactly the functions f : X // A such that every element f (x) is
supercompact, i.e. if f (x) ≤

∨

i∈I bi then f (x) ≤ b̄i for some ī ∈ I;
É the pure-existential-free elements of the doctrine LT=,∃ : Cop

L=,∃
// InfSL

are exactly the formulae which are free from the existential quantifier.



Enough existential free elements

Definition
We say that a Λ-existential doctrine P has enough-Λ-existential-free objects if
for every object A of C, any element α ∈ P(A) is Λ-covered by some element
β ∈ P(B) for some object B of C, namely β is a Λ-existential-free element and

α = ∃g(β)

with g : B // A arrow of Λ.

Example

É SubC : Cop // InfSL has enough-Mono-existential-free objects;
É ΨC : Cop // InfSL has enough-full-existential-free objects;

É LT=,∃ : Cop
L=,∃

// InfSL has enough-pure-existential-free objects;



Generalized existential completion

Given a conjunctive doctrine P : Cop // InfSL and a left class Λ of morphisms of
C, we can construct a new Λ-existential doctrine

ExΛ(P): Cop // InfSL.

This construction is called generalized existential completion. As particular
cases, we have the following constructions:
É full existential completion: if C has finite limits, we can construct a full

existential doctrine fEx(P);
É pure existential completion: if C has finite products, we can construct an

existential doctrine pEx(P).

D. Trotta (2020), The Existential Completion, Theory and Applications of Categories, 2020, Vol. 35, No. 43.
M.E. Maietti D. Trotta (2023), A characterization of generalized existential completions, Annals of Pure and
Applied Logic, Vol. 174, No. 4.



Characterization of generalized existential completion

Theorem
Let P : Cop // InfSL be a Λ-existential doctrine. Then the following are
equivalent:
É P ∼= ExΛ(P′) for some conjunctive doctrine P′ : Cop // InfSL;
É P satisfies the following points:

1. P has enough-Λ-existential-free objects;
2. P satisfies Λ-RC, i.e. each top element >A of a fibre P(A) is a Λ-existential-free

object;
3. for every Λ-existential-free object α and β of P(A), α∧ β is a Λ-existential-free

object.

M.E. Maietti D. Trotta (2023), A characterization of generalized existential completions, Annals of Pure and
Applied Logic, Vol. 174, No. 4.



Examples of generalized existential completions

Example

É The doctrine SubC : Cop // InfSL is isomorphic to the generalized
existential completion ExMono(t) of the trivial doctrine t : Cop // InfSL, i.e.
t(X) := {•} for every object X;
É ΨC : Cop // InfSL is isomorphic to the full existential completion fEx(t) of

the trivial doctrine t : Cop // InfSL ;
É LT=,∃ : Cop

L=,∃
// InfSL is isomorphic to the pure existential completion

pEx(LT=) of the syntactic doctrine LT= : Cop
L=

// InfSL associated with the
Horn fragment of first order Intuitionistic logic.
É the localic doctrine A(−) : Setop // InfSL is a full existential completion if

and only if the locale A is supercoherent.



More examples of generalized existential completions

Definition
A pure existential doctrine P : Cop // InfSL is said to be equipped with Hilbert’s
ε-operators if for every element α in P(A× B) there exists an arrow εα : A // B
such that

∃pr1(α) = P〈idA,εα〉(α)

holds in P(A), where pr1 : A× B // A is the first projection.

Theorem
A pure existential doctrine P : Cop // InfSL is equipped with Hilbert’s
ε-operators if and only if P ∼= pEx(P).



More examples of generalized existential completions

Definition
Let A be a PCA. We define the realizability doctrine

P : Setop // InfSL

The partial ordered set (P(X),≤) is defined as follows: let P(A)X denote the set
of functions from X to the powerset P(A) of A. Let ≤ be the preorder on this set
defined as: α ≤ β if there exists an element c ∈ A such that for all x ∈ X and all
a ∈ α(x) we have that c · a is defined and c · a ∈ β(x). Then P(X) is defined as the
quotient of P(A)X by the equivalence relation ∼ generated by ≤.

Theorem
The realizability doctrine P : Setop // InfSL is isomorphic to the full existential
completion of the doctrine Psing : Setop // InfSL of singletons.



Recap: Dialectica interpretation

Gödel’s Dialectica Interpretation: an interpretation of intuitionistic arithmetic
HA in a quantifier-free theory of functionals of finite type, called system T.

Idea: translate every formula A of HA to AD = ∃x∀yAD, where AD is
quantifier-free.

Application: if HA proves A, then system T proves AD(t, y), where y is a string of
variables for functionals of finite type, and t a suitable sequence of terms (not
containing y).

Goal: to be as constructive as possible, while being able to interpret all of
classical arithmetic.

Gödel (1958), Über eine bisher noch nicht benützte erweiterung des finiten standpunktes, Dialectica,
12(3-4):280-287.



Recap: Dialectica interpretation

The most complicated clause of the translation is the definition of the
translation of the implication connective (ψ→ ϕ)D:

(ψ→ ϕ)D = ∃f0, f1.∀u, y.(ψD(u, f1(u, y))→ ϕD(f0(u), y)).

This involves three logical principles: a form of the Principle of Independence of
Premise (IP), a generalisation of Markov Principle (MP), and the axiom of choice
(AC).

Intuition: given a witness u for the hypothesis ψD, there exists a function f0
assigning a witness f0(u) of ϕD to every witness u of ψD. Moreover, this
assignment has to be such that from a counterexample y of the conclusion ϕD
we should be able to find a counterexample f1(u, y) to the hypothesis ψD.

Gödel, Feferman, et al (1986), Kurt Gödel: Collected Works: Volume II:, Oxford University Press.



First-order hyperdoctrines

Definition
A first-order hyperdoctrine is a contravariant functor:

P : Cop // Hey

from a category with finite products C to the category of Heyting algebras Hey
satisfying:

1. for every projection prA : A× B // A, the morphism PprA : P(A) // P(A× B)

has a left adjoint ∃prA and a right adjoint ∀prA , satisfying (BC).
2. For every object A of C there exists a predicate δA of P(A× A) satisfying for

every α of P(A× A) that:

> ≤ P∆A(α) if and only if δA ≤ α

where ∆A : A // A× A denotes the diagonal arrow.



Definition
A first-order hyperdoctrine P : Cop // Hey is called a Gödel hyperdoctrine if:

1. the category C is cartesian closed;
2. the doctrine P has enough pure-existential-free predicates;
3. the pure-existential-free objects of P are stable under universal

quantification, i.e. if α ∈ P(A) is existential-free, then ∀pr(α) is
pure-existential-free for every projection pr from A;

4. the sub-doctrine P′ of the pure-existential-free predicates of P has enough
pure-universal-free predicates.

An element α of a fibre P(A) of a Gödel hyperdoctrine P that is both an
existential-free predicate and a universal-free predicate in the sub-doctrine P′
of existential-free elements of P is called a quantifier-free predicate of P.
D. Trotta, M. Spadetto and V. de Paiva (2023), Dialectica Principles via Gödel Doctrines, Theoretical Computer
Science, Vol. 947.
D. Trotta, M. Spadetto and V. de Paiva (2021), The Gödel fibration, Mathematical Foundations of Computer
Science (MFCS).



Notation. From now on, we shall employ the logical language provided by the
internal language of a doctrine and write:

a1 : A1, . . . ,an : An | ϕ(a1, . . . ,an) ` ψ(a1, . . . ,an)

instead of:
ϕ ≤ ψ

in the fibre P(A1 × · · · × An). Similarly, we write:

a : A | ϕ(a) ` ∃b : B.ψ(a,b) and a : A | ϕ(a) ` ∀b : B.ψ(a,b)

in place of:
ϕ ≤ ∃prAψ and ϕ ≤ ∀prAψ

in the fibre P(A). Also, we write a : A | ϕ a` ψ to abbreviate a : A | ϕ ` ψ and
a : A | ψ ` ϕ.



Skolemisation in Gödel hyperdoctrines

Theorem
Let P : Cop // Hey be a Gödel hyperdoctrine, and let α be an element of P(I).
Then there exists a quantifier-free predicate αD of P(I× U× X) such that:

i : I | α(i) a` ∃u : U.∀x : X.αD(i,u, x).

Theorem
Every Gödel hyperdoctrine P : Cop // Hey validates the Skolemisation principle,
that is:

a1 : A1 | ∀a2.∃b.α(a1,a2,b) a` ∃f .∀a2.α(a1,a2, fa2)

where f : BA2 and fa2 denote the evaluation of f on a2, whenever α(a1,a2,b) is a
predicate in the context A1 × A2 × B.



Principle of Independence of Premise in Gödel hyperdoctrines

Theorem
Every Gödel hyperdoctrine P : Cop // Hey satisfies the Rule of Independence of
Premise: whenever β ∈ P(A× B) and α ∈ P(A) is a existential-free predicate, it is
the case that:

a : A | > ` α(a)→ ∃b.β(a,b) implies that a : A | > ` ∃b.(α(a)→ β(a,b)).

Moreover, if existential-free predicates are closed with respect to finite
conjunctions, then P satisfies the Principle of Independence of Premise:

a : A | > ` (α(a)→ ∃b.β(a,b))→ ∃b.(α(a)→ β(a,b)).

D. Trotta, M. Spadetto and V. de Paiva (2023), Dialectica Principles via Gödel Doctrines, Theoretical Computer
Science, Vol. 947.



Modified Markov Principle in Gödel hyperdoctrines

Theorem
Every Gödel hyperdoctrine P : Cop // Hey satisfies the following Modified
Markov Rule: whenever βD ∈ P(A) is a quantifier-free predicate and α ∈ P(A× B)
is an existential-free predicate, it is the case that:

a : A | > ` (∀b.α(a,b))→ βD(a) implies that a : A | > ` ∃b.(α(a,b)→ βD(a)).

Moreover, if existential-free predicates are closed with respect to implication,
then P satisfies the following Modified Markov Principle:

a : A | > ` (∀b.α(a,b)→ βD(a))→ ∃b.(α(a,b)→ βD(a)).

D. Trotta, M. Spadetto and V. de Paiva (2023), Dialectica Principles via Gödel Doctrines, Theoretical Computer
Science, Vol. 947.



Markov Principle in Gödel hyperdoctrines

Corollary
Every Gödel hyperdoctrine P : Cop // Hey such that ⊥ is a quantifier-free
predicate satisfies Markov Rule: for every quantifier-free element αD ∈ P(A× B) it
is the case that:

b : B | > ` ¬∀a.αD(a,b) implies that b : B | > ` ∃a.¬αD(a,b).

Moreover, if existential-free predicates are closed with respect to implication,
then P satisfies Markov Principle:

b : B | > ` ¬∀a.αD(a,b)→ ∃a.¬αD(a,b).

D. Trotta, M. Spadetto and V. de Paiva (2023), Dialectica Principles via Gödel Doctrines, Theoretical Computer
Science, Vol. 947.



Strengthened Dialectica functionals

Theorem
Let P : Cop // Hey be a Gödel hyperdoctrine such that the existential-free
predicates are closed with respect to implication and finite conjunctions and
falsehood ⊥ is a quantifier-free predicate. Then for every ψD in P(I× U× X) and
ϕD in P(I× V × Y) quantifier-free predicates of P we have that the formula:

i : I | ∃u.∀x.ψD(i,u, x)→ ∃v.∀y.ϕD(i, v, y)

is provably equivalent to:

i : I | ∃f0, f1.∀u, y.(ψD(i,u, f1(i,u, y))→ ϕD(i, f0(i,u), y)).

D. Trotta, M. Spadetto and V. de Paiva (2023), Dialectica Principles via Gödel Doctrines, Theoretical Computer
Science, Vol. 947.



Future work

É Characterize exact and regular completions of doctrines (j.w.w. M. Maietti);
É Abstract the sheafification as tripos-to-topos-adjunction (j.w.w. M. Maietti);
É Abstract the notion of “supercampact element” to implicative algebras, and

characterize their assemblies (j.w.w S. Maschio);
É Categorify computational notions: Medvedev, Muchnik and Weihrauch

reducibilities (j.w.w. M. Valenti and V. de Paiva)


